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SIR, 

Paleothermometry redux 

In "Paleothermometry by control methods" (MacAyeal 
and others, 1991 ) , we presented a mathematical method 
for estimating past surface-temperature history from ice
sheet borehole-temperature profiles (the paleothermo
metry problem). Dahl-Jensen and others (1993) have 
suggested that our solution of the paleothermometry 
problem fell short of what is needed to achieve meaningful 
paleoclimatic inference. Naturally, we focused in our 
paper primarily on the virtues of the control method, 
perhaps to the detriment of a sufficient discussion of the 
vices. Therefore, we appreciate Dahl-Jensen and others' 
comments for drawing attention to questions which our 
paper left unanswered. Answers to many of these 
questions, and further analysis of the Dye 3 demonst
ration test we presented in our paper, are provided in 
Firestone (1992). 

The two main points we shall address in this letter are: 
(1) that our paper fails to demonstrate that a quantitative 
estimate of surface-temperature uncertainty is possible 
(let alone satisfactory in the examples presented in our 
paper); and (2) that the improved fit between calculated 
and observed temperature profiles that our method 
facilitates is illusory (i.e. deceptive). We agree with both 
criticisms. We disagree, however, with what we believe 
Dahl-J ensen and others imply: first, that failure to 
quantify uncertainty results from the inadequacy of our 
particular method alone; and secondly, that our method 
cannot avoid "overfitting" the data. 

With respect to the first implication, we believe that 
all inverse methods are inadequate in quantifying 
uncertainty in the paleothermometry problem. A notor
ious difficulty of this problem is that there exists a class of 
possible surface-temperature histories which has no 
measurable effect on the borehole temperatures. The 
diurnal temperature cycle prior to 5000 years ago is an 
extreme example of one such history. It is therefore 
impossible for any mathematical analysis of a borehole
temperature profile, and in particular a least-squares 
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analysis such as ours, to distinguish between these 
histories. It is in this sense that we agree with Dahl
Jensen and others; our method, indeed all methods, fail to 
quantify uncertainty. 

In retrospect, we recognize that we misstated one of 
the conclusions in the abstract of our paper; namely, that 
the uncertainty of our method "can be established 
quantitatively". We correct this misstatement by rep
lacing the term uncertainty with the term resolution which, 
as shown below, is a more specific measure of uncertainty. 
Figure 9 of our paper, and the discussion surrounding 
equations (44) and (45 ), present the quantitative 
assessment of resolution we intended to highlight in our 
abstract. 

With respect to the second implication, we reiterate 
what we stated in our paper; the control method does 
allow for a trade-off between fitting noisy borehole data 
and satisfying independent performance constraints such 
as estimated climate histories. The transformation of 
equation (7) into equation (8) demonstrates this trade-off. 
The point Dahl-Jensen and others made, and with which 
we agree, is that this trade-off should be carefully 
engineered to restrain the method from interpreting 
unmeaningful measurement noise in the borehole 
profile. We shall outline how this can be done. 

Insofar as other points have not been discussed in 
sufficien t detail to satisfy Dahl-J ensen and others, and 
conceivably other readers as well, we shall re-visit the 
paleothermometry problem in sufficient detail to diagnose 
the unsatisfactory results in the demonstration tests of our 
paper. The lengthy analysis that follows reflects our 
continuing interest in applying inverse methods to 
glaciological problems. In particular, we believe that 
the paleothermometry problem serves as a metaphor for a 
large class of glaciological inverse problems which are 
burdened by imprecise methods. An example is the 
problem of deducing basal traction from measurements of 
velocity at the surface of a glacier. The surface velocity is 
analogous to the borehole-temperature profile, and the 
basal-traction field is analagous to the surface temper
ature history. As demonstrated by Bahr and others 
(1992), this problem is ill-posed in the same sense as is 
the paleothermometry problem. Techniques developed 
here may therefore have applications that extend beyond 
the narrow subject of borehole-temperature analysis. 

We set forth several goals to accomplish in this letter. 
First, we wish to show that unsatisfactory aspects of our 
demonstration tests do not stem from the control method, 
but rather from the way in which we defined our 
particular performance index (i.e. the way in which we 
defined the paleothermometry problem) . Second, we wish 
to develop an integral-equation approach using contin
uous variables as a means of separating the fundamental 
properties of the problem from the details associated with 
finite-difference discretization . Third, we wish to derive a 
formal correspondence between the control method and 
other least-squares methods in common use (e.g. 
Anderssen and Saull, 1973; Wang, 1992). Fourth, we 
wish to cut through the exoskeleton of mathematical 
formalism that may have left some readers of our paper 
mystified as to what the paleothermometry problem is 
and how it can be solved; we re-develop our method using 
a familiar eigenfunction (or eigenvector) approach. 
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1. What is the paleotherInometry probleIn? 

The ice-sheet heat-transfer problem is non-linear because 
the thermal properties of ice are temperature-dependent 
and because the equations of heat transfer couple to the 
equations of momentum conservation through thermal 
advection and the variation of ice flow with temperature. 
For the purpose of answering the questions posed by 
Dahl-J ensen and others, however, we shall consider the 
simpler linear problem. In addition, since they are not 
germaine to the questions, we shall adopt a homogeneous 
initial condition and a homogeneous boundary condition 
at the base of the ice sheet (i.e. zero geothermal-heat 
flux). In this circumstance, we may immediately write the 
relationship between the known borehole-temperature 
profile, O(z), and the unknown surface-temperature 
history, Ts(t), as 

r la G(z, t) Ts(t)dt = O(z) (1.1) 

where the variables are defined as in our paper, and 
G(z, t) is a Green's function (Carslaw and Jaeger, 1988, 
chapter XIV). In our paper, we used a discrete, finite
difference treatment of the heat-transfer problem. Our 
method was thus described in terms of matrix equations. 
For clarity, here we shall adopt a continuous view of the 
heat-transfer problem; this leads to integral equations 
such as Equation (1.1 ). 

As defined in Equation (1.1 ), O(z) is a linear functional 
of the surface-temperature history; in particular, it is an 
integral transform ofTs(t). The Green's function, G(z, t), 
describes the physics of the problem and determines the 
mathematical properties of the function O(z), such as that 
it be analytic. Comments by Dahl-Jensen and others 
concerning our treatment of vertical ice velocity and 
accumulation rate are simply details absorbed into 
G(z, t); they need not concern us here. 

Before outlining our approach to the paleothermo
metry problem, it is important to distinguish between 
three related inverse problems. The mathematical 
apparatus used to solve the third problem is the subject 
of our paper. We introduced the other two, and in 
particular the first , to emphasize the fact that the way in 
which the problem is defined strongly determines the 
properties of the resulting solution (e.g. oscillations). 

Problem 1. Given borehole data, Ob(Z), a definition of the heat
transfer physics, boundary and initial conditions, and G(z, t)Jind 
Ts(t) using Equation (1.1) 
This is not the problem we solved in our paper. In fact, it 
may not be possible to solve this problem in general 
because borehole data, Ob(Z), may not satisfy the 
mathematical properties required of solutions of the 
heat-transfer equations (i.e. analyticity). In addition, 
Equation (1 .1) is an integral equation of the first kind, that 
is, Ts(t) appears only under the integral sign (Courant 
and Hilbert, 1953, p. 159). This kind of integral equation 
is notoriously difficult to solve and we did not do so in our 
paper. 

One of the properties of integral equations of the first 
kind that is germaine to the question of uncertainty is that 
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they can have a null space, i.e. there might be a function 
(or functions ) Ts(t) 1:- 0 such that 

r la G(z, t) Ts(t)dt = O. (1.2) 

(By setting the righthand side of Equation (1.2) to zero, 
we mean 0 K; in other words, the history Ts has no effect 
on the borehole-temperature profile.) If a solution to 
Equation (1.2 ) exists, then the surface-temperature 
history which solves problem I can be accurate only to 
within a multiplicative constant of this solution. On 
intuitive grounds, we believe that a non-trivial solution to 
Equation (1.2) is physically unlikely; i.e. it is unrealistic to 
think that there are climate histories which have literally 
no effect on borehole temperatures at time tr. 

What is intuitively more reasonable to us, as we stated 
in our paper, is that finite-precision arithmetic and limited 
borehole-measurement sensitivity make the possibility of non
trivial solutions to Equation (1.2) a certainty in practical 
situations. Finite-precision arithmetic (such as that which 
is performed on a computer) suggests that some 
temperature histories Ts(t) cannot be operated on by 
the integral transform expressed by Equation (1.1) 
without serious arithmetic error. In fact, this arithmetic 
error may make the associated borehole-temperature 
profile that results from Ts to be zero. More importantly, 
limited measurement sensitivity implies that there are an 
infinite number of borehole-temperature profiles e(z) that 
cannot be distinguished from zero. The Ts(t) associated 
with these profiles, which cannot be distinguished in the 
solution, constitute the null space of the problem in 
Equation (1.1). 

In this circumstance, no inverse method can guide us 
in the choice between the infinite number of equally 
satisfactory solutions to Equation (1.1 ) which differ only 
by solutions of Equation (1.2); or, in other words, by their 
projection into the null space. Typically, we choose to 
accept a solution which has a zero projection. In the 
Dye 3 demonstration of our paper, the projection is 
determined by the climatology 1/(t) we imposed in 
equation (8) of our paper. A description of the temporal 
structure which has been excluded from our solution 
serves as the best statement we can provide about the 
uncertainty of the solution. Since any function that 
belongs to the null space can be added to our solution 
without affecting the fit to borehole data, it is not possible 
to represent this uncertainty quantitatively. 

Problem 2. Approximate the solution of Equation (1.1) in a least
squares sense 
Here we recall the definition of the performance index, 
equation (7) in our paper, but make use of the expression 
in Equation (1.1 ) 

Henceforth, we shall drop the subscript from Ob(Z) to 
show that the measured profiles no longer need to satisfy 
the stringent mathematical properties of exact solutions to 
the heat-transfer problem. This is indeed the main benefit 
provided by adopting a least-squares approach. 
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Problem 3. Approximate the solution of Equation (1.1) in a least
squares sense; but add subsidiary performance conditions, such as a 
cost function that depends on deviations between Ts(t) and a 
climatology 1]( t) 
In this circumstance, the performance index J of problem 
2 is modified as follows 

J = (1 - a) lH [l tf 

G(z, t) Ts(t)dt _ O(z)] 2 dz 

r + a lo [Ts(t) -1](t)fdt. 

(1.4) 

To address better the questions Dahl-Jensen and others 
have about the choice of the parameter t in our paper, we 
have replaced t with a new mixture parameter a E [0 , 1] 
which describes the trade-off between the fit to borehole 
data and the fit to climatology. The above performance 
index is the same as that defined in equation (8 ) of our 
paper when a/(l - a) = t. We deviate from the original 
notation to explain better the role of preconceived 
climatology and to indicate better what considerations 
must be used to choose a (formerly t ). Observe that when 
a = 0, borehole misfit is the only consideration used to 
determine the surface-temperature history (problem 3 
becomes problem 2); and, when Q = 1, borehole misfit 
becomes irrelevant; only deviation from climatology is 
important. (We note that a could be defined as a function 
of time. For simplicity, we have refrained from doing so 
here. ) 

To minimize J defined in Equation (1.4), we follow 
the course of action described in our paper and consider 
the conditions to be satisfied when the variation of J is 
zero, 8J = 0: 

r 0= (1 - Q) lo 8Ts(t') 

. [!a tf 
Ts(t)·{fa

H 
G(z, t)G(z, t')dZ} 

- {l
H 

G(z, t')O(Z)dZ}] dt' 

r + a lo 8Ts(t')[Ts(t') -1](t')]dt'. 

(1.5) 

If we define 

K(t, t') = faH G(z, t)G(z, t')dz (1.6) 

and 

8(t') = faH G(z, t')B(z)dz, (1.7) 

then Equation (1.5) reduces to finding the solution, Ts(t) , 
of 

(1 - a) fotf Ts(t')K(t, t')dt' + QTs(t) lo (1.8) 
= (1 - a)8(t) + Q1](t). 

Equation (1.8) is an integral equation of the second kind 
(Courant and Hilbert, 1953, p.112), and the kernel 
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K(t, t!) is symmetric. The solution of Equation (1.8) 
constitutes what we define here to be the least-squares 
solution to the paleothermometry problem. 

2. A family of p aleothermOln.etry problelll.s 

In shifting our attention from problem 1 to problem 3, we 
have changed the mathematical and physical nature of 
the paleothermometry problem. This shift is necessary 
because it allows us to avoid serious mathematical 
difficulties. Problem I leads to an integral equation of 
the first kind, which may not have a solution due to the 
incompatibility between the data, Ob(Z), and solutions of 
heat-transfer equations (i.e. analyticity). Problem 3, 
however, leads to an integral equation of the second 
kind which always has a solution, often an infinite 
number of solutions. Problems 1 and 3 also differ in that 
K(t, t') is a symmetric kernel whereas G(z, t) is not. In 
addition, the data in problem I, Ob(Z), can be rough; 
whereas, the data in problem 3, 8(t), are smoothed by 
the integral transform implied by Equation (1.7) . From 
what we know about singular-value decomposition 
(SVD), we expect the kernel K(t, t') to have eigenvalues 
that are near zero. As we shall show later, this motivates 
the need to introduce the climatology and a non-zero a. 
Even with all the advantages gained by abandoning 
problem 1 in favour of problem 3, we must still deal with 
the possibility that the kernel K(t, t') may have 
singularities (i .e. may not be square-integrable), and so 
may be very difficult to work with in a specific 
application. 

Efforts to define a workable problem, both here and in 
our paper, call attention to the fact that there is no 
universally accepted definition of the paleothermometry 
problem. If problem I were workable, methods for its 
solution could be compared in direct and absolute terms. 
In reality, problem 1 is unworkable (ill-posed); thus, in 
comparing methods, we must remember that there can be 
subtle differences in the problems to which the methods are 
applied. In other words, differences between our method 
and that used, for example, by Dahl-]ensen and Johnsen 
(1986) are obscured by the fact that the two methods may 
not have been applied to precisely the same problem. 

3. Is the control Ill.ethod relev ant? 

Thus far, we have said nothing about control methods. 
We shall next argue that the con trol method we used in 
our paper to solve the paleothermometry problem is 
irrelevant from the standpoint of Dahl-] ensen and others' 
commentary. In other words, this method does nothing to 
determine the properties of the solution to the paleo
thermometry problem. (Heat-transfer physics determines 
these properties.) The control method is simply one of 
many strategies for obtaining the conditions which 
minimize J defined by Equation (1.4). In other words, 
the control method provides an alternative avenue to the 
derivation of Equation (1.8), and nothing more. 

To show the correspondence between the control 
method and the least-squares problem represented by 
Equation (1.8), we develop the Green's function which 
solves the forward problem represented by equations (1)
(4) of our paper. This forward problem for T(z, t) is 
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restated here with a homogeneous boundary condition at 
z = H (the bed of the ice sheet) and a homogeneous 
initial condition to simplify the analysis 

Tt - ",Tzz + w(z)Tz = 0 

for 0 < z < Hand 0 < t < tr , and 

T(z, 0) = 0 

T (O, t) = Ta(t) 

Tz(H, t) = O. 

(3.1) 

(3.2) 

(3 .3) 

(3.4) 

Here, and elsewhere, subscripts (t and z) denote partial 
differentiation by the subscripted variable. The solution, 
T(z, t) to Equations (3.1 )-(3.4) may be written in terms 
of a Green's function, 9(z, tj ~), which satisfies the 
following equations: 

(3.5) 

for 0 < z < Hand 0 < t < tr , and 

Q(z, tr je) = -8(z - e) (3.6) 

9(0, tj~) = 0 (3.7) 

",9z + w(z)9 = 0 at z=H (3.8) 

where 8(z - e) is the delta function . Notice that Equation 
(3.5) represents the adjoint form of Equation (3.1 ) . The 
expression which gives T(z, t) in terms of9(z, tj~) is found 
by manipulating the following integral 

0= fa
tl 

faH [TWt + ",9zz + (wQ) z) 
(3.9) 

+ 9(Tt - ",Tu + wTz)]dzdt. 

Performing integration by parts, we get 

(3.10) 

Consequently, using boundary conditions, 

(3.11) 

Thus, 

(3.12) 

which is a restatement of Equation (l.l ) with ",9z(0 , t j e) 
identified with G(e, t) . 

To minimize the performance index expressed in 
Equation (1.4) using the control method we solve the 
adjoint trajectory problem given by equations (17)-(20) 
in our paper for >'(z, t) (the motivation for deriving the 
adjoint trajectory problem is outlined in our paper) . The 
solution is expressed in terms of the same Green's function 
9(z, tj e) used to solve the forward problem in Equations 
(3.1)-(3.4), 
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>'(z, t) = - faH [e(~) - T (e, tr)]9(z, tj ~)de . (3.13) 

To determine the surface-temperature history, Ta(t) , we 
simply solve equation (21 ) of our paper, which is restated 
below (recall that f = a/(l - Q) ) 

(1 - a) [-",>',(0, t) - w(O)>'(O, t)] + aTs(t) = (1)(t). 

(3.14) 

Making use of Equation (3.13), and recalling that 
9(0, tj ~) = 0, this expression becomes 

(1 - a) faH ",[T(e, tr) - eW]9z(0, tj ~)de 
+ aTs(t) = (1)(t) . (3.15) 

Replacing T(e, tr) with the expression given by Equation 
(3.12), we obtain 

tl rH 
(1 - a) lo lo ",2Ts(t')9z(0 , t'j ~)Qz (O, tj e)dedt' 

+ aTa(t) = (1 - a) foH eW9z(0 , t j ~)d~ + (1)(t) , 

(3.16) 

which is a restatement of Equation (1.8). 
We come now to a crucial point in our response to 

Dahl-Jensen and others ' commentary. The correspon
dence between Equations (1.8) and (3.16) shows that the 
control method developed in our paper serves only to 
assist in the solution of problem 3. The surface
temperature history produced by the control method is 
identical to the least-squares solution (i.e. the solution to 
Equation (1.8)). The fact that a control method was used 
in our paper to obtain the least-squares solution is thus a 
minor detail, and is therefore irrelevant to our discussion of 
Dahl-J ensen and others' comments concerning the 
mathematical properties of the solution to our Dye 3 
demonstration problem. In what follows, we shall 
describe these properties without making further refer
ence to the control method. 

4. The least-squares solution: continuous case 

We are now ready to develop a general solution Ts(t) to 
problem 3 by solving Equation (1.8) . If the symmetric 
kernel K(t, t') were square-integrable (finite when 
t = t' = tr, for example), we could exploit the fact that 
K(t, t') has eigenvalues {J1.d:l and eigenfunctions {1Pi(t)}:l 
(Courant and Hilbert, 1953, p. 122) to describe Ts(t). By 
square integrability we mean 

(4.1) 

where M is a finite bound. We state without proof, 
however, that the K(t, t') associated with an inverse 
linear heat-diffusion problem is assured not to be square 
integrable (this will be demonstrated explicitly for the 
heat-conduction problem in a semi-infinite solid below). 
Strictly speaking, we are therefore not able to use an 
eigenfunction analysis comparable to the eigenvector 
analysis made possible by adopting discrete, finite
difference versions of the variables. 
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The lack of square-integrability is yet another 
indication of the great difficulty of the paleothermometry 
problem. Even with all the benefits gained by adopting a 
least-squares approach, the problem is still intractable 
owing to the singularity in K(t, t') which, stated without 
proof, occurs at t = t' = tf. Once a numerical method is 
adopted, such as in our paper, the kernel in Equation 
(1.8) is converted to a square, symmetric matrix, and the 
question of square-integrability is converted to a question 
of how to cope with an ill-conditioned matrix (a matrix 
with a near-zero determinant) . Eigenvalues and eigen
vectors can be found for the matrix representing the 
discrete, numerical problem even when the matrix is ill
conditioned (using, for example, singular value decom
position). We shall thus proceed with an eigenvalue and 
eigenfunction approach to solving the continuous prob
lem by replacing the kernel K(t, t') with an (unspecified) 
approximation K(t, t') that is square integrable. We must 
not forget, however, that error is introduced into the 
solution of Equation (1.8) when we make this replace
ment . We shall not attempt to characterize this error since 
it is not pertinent to the analysis of the Dye 3 
demonstration test we discuss below. 

Keeping the above remarks in mind, we carry on with 
the formal solution of Equation (1.8) subject to the 
approximation of K(t, t') by K(t, t'). Let {j.t;}:1 and 
{tP;(t)}~l denote the eigenvalues and eigenfunctions 
associated with K(t, t') (Courant and Hilbert, 1953, p. 
122): 

Furthermore, let {tP;} ~1 form a complete set, i.e. 
arbitrary functions can be expressed as linear combin
ations of these functions. Then, if we expand Ts, 8 and 'f/ 
as follows 

00 

Ts(t) = L a;tP;(t) (4.3) 
;=1 

00 

8(t) = L b;tP;(t) ( 4.4) 
;=1 

00 

'f/(t) = LC;tP;(t). (4.5) 
;=1 

Equation (1.8) reads 

[(1 - a)f-L; + ala; = (1 - a)b; + ae; for i = 1, ... ,00 

(4.6) 

and the solution Ts(t) becomes 

Ta(t) = f: (1- a)b; + ae; tP;(t) . (4.7) 
;=1 (1 - a)J.t; + a 

We have now produced a description of the formal 
solution to the least-squares inverse problem with 
climatology (problem 3). This formal solution is abstract 
in the sense that we do not actually specify the 
eigenfunctions or eigenvalues. The advantage gained by 
expressing Ta(t) as an infinite sum of eigenfunctions is that 
we can discuss the general properties of uncertainty, and 
the role of a, without the distractions of a specific 
application. 
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5. Least-squares solution: discrete case 

Equation (1.8) and its solution in Equation (4.7 ) are the 
continuous versions of the matrix equation and the finite
difference version of Ts(t) derived in our paper. ' To 
display the parallel between the continuous and the 
discrete solutions to the paleothermometry problem, we 
re-express the solution derived in our paper as follows. 
First, we recall that in the above derivation, we have 
assumed the initial and basal boundary conditions to be 
homogeneous; thus, we take T(l) = 0 and G = 0, where 
T(l) and G are the discrete analogs of the initial and 
basal boundary conditions as defined in our paper. 
Secondly, we use the description of the adjoint trajec
tory, equations (36) and (37) of our paper, to derive the 
expression for Ta = (Ts(.:1t) ,Ts(2.:1t), . . . ,Ts(n.:1t), 
... , Ts((N - l).:1t)l E R N - 1 in terms of T(N) - e, 
where T(N) = J,T(O), T(.:1z) , T(2.:1z) , ... , T(n.:1z) , ... , 
T((M - l).:1z)) E RM is the discrete analog of the 
temperature profile at time tf = (N - l).:1t, and e is 
the discrete analog of the bore hole data. Thirdly, we use 
equation (27) of our paper to express T(N) in terms of 
the Ts. Fourthly, we invoke f = aj(l - a). The result of 
these four steps is the discrete analog to Equation (1.8) : 

(1 - a)KTs + aTs = (1- a)r + aH (5.1) 

where the vector H E R N - 1 is the discrete analog of the 
climatology 'f/(t), and the vector r E R N - 1 is the discrete 
analog of the continuous function 8(t), and is given by 

where the rectangular M x (N - 1) matrix g is the 
discrete analog of the Green's function G(z, t), and is 
given by 

(5.3) 

The (N - 1) x (N - 1) matrix K is the discrete analog of 
the kernel K(t, t') appearing in Equation (1.8), and is 
given by 

(5.4) 

and where A, Band C are matrices or vectors defined in 
our paper, and the superscript T denotes the transpose. 
We remind the reader that A, Band C are determined 
by the physics of the heat-transfer process only; thus, K 
and the properties of its eigenvectors are independent of 
the climatology or borehole data. (Note two typograph
ical errors in the definition of A in equation (28) of our 
paper. The terms which read (2K:)j(2.:1z2) should not 
have the 2 in the denominator; and the term in the last 
column of the second-to-Iast row should have a minus sign 
where a plus sign appears. ) 

The solution to Equation (5.1 ) can be expressed 
formally in terms of the eigenvalues and eigenvectors 
associated with the symmetric matrix K : R N- 1 

-4 RN-I. 

Let {~;} ;:~l and {f-L} ;:~1, respectively, denote the eigen
vectors and eigenvalues of K . In other words, let 

i = 1, ... , (N - 1). (5.5) 

The »-::mmetry of K assures us that the eigenvectors 
{cf>;}i=~1 can be made orthonormal, and will span the 
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vector space RN-I. In parallel with the continuous 
version of the problem, we expect the matrix K to be 
ill-conditioned in the sense that some of its rows may have 
vanishingly small (near-zero) elements, and this may lead 
to a near-zero determinant. This is the discrete analog of 
the difficulty associated with the non-square-integrability 
of the continuous kernel K(t, t'). As a result of this ill
conditioning, it may be very difficult to compute all the 
eigenvalues and eigenvectors of K. In this circumstance, 
singular-value decomposition (Press and others, 1989, 
p. 52) can be used to determine s of the eigenvalues and 
eigenvectors. The remaining N - 1 - 8 eigenvalues can 
be taken as zero, and the remaining N - 1 - 8 

eigenvectors can be chosen via an orthonormalization 
process to ensure that the set {4)d;:~l spans the vector 
space RN-I. 

We may expand Ts, rand H as follows 

N-1 

Ts = L ai4)i 
i=1 

N-1 

r= Lbi4)i 
i=1 

N-l 

H = LCi4)i 
i=l 

(5.6) 

(5.7) 

(5.8) 

where the coefficients {ai}[:,~l, {bd;:~l and {Ci};:~l are 
given by 

(5.9) 

(5.10) 

(5.11) 

Substituting Equations (5.6)-(5.8) into Equation (5.1), 
and making use of Equation (5.5), !lives a relation 
between the unknown coefficients {ad;:l and the known 
coefficients {bd;:~l and {Ci}[:,11 

[(1 - a)J.Li + alai = (1 - a)bi + aCi (5.12) 

for i = 1, .. . , (N - 1). The solution of the discrete form 
of the paleothermometry problem is thus 

~(1- a)bi +aCi 
Ts = ~ 4)i · 

i=l (1 - a)J.Li + a 
(5.13) 

The advantage gained by expressing Ts in terms of the 
eigenvectors of K as opposed to the equally valid 
expression 

Ts = [(1- a)K + alr1{(1- a)r + aH} (5.14) 

is that the mathematical properties of Ts can be 
immediately appreciated. The fact that {(])i};:11 are 
independent of the borehole data and climatology tells us 
how the solution depends on the physics of the heat
transfer process. The eigenvectors depend solely on the 
matrix K which depends, in turn, on a statement of the 
discrete form of the forward problem. 

We note in passing that Equation (5.1) is readily 
solved by standard linear-algebra techniques and the 
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result is the same as that which comes from solving 
equation (40) in our paper for T(N) and then using the 
adjoint equations, equations (36)-(38) of our paper, to 
get Ts . We chose to work with equation (40) of our paper 
instead of Equation (5.1) because the matrix in equation 
(40) is dimensioned by the number of vertical grid points 
(101 for the Dye 3 example), whereas the matrix in 
Equation (5.1) is dimensioned by the number of time 
steps (1199 for the Dye 3 example). 

The close parallel between the continuous and discrete 
versions of the solution to problem 3 reminds us that the 
basic properties of the solutions are independent of the 
discretization. We thus expect the physics of the problem 
to have the greatest effect on the intrinsic properties of the 
solution. Details of the numerical method used to find the 
solution are important, as Dahl-J ensen and others have 
pointed out, but are not the sole cause of what Dahl
Jensen and others cited as unsatisfactory in our Dye 3 
surface-temperature history. 

6. Regularization and the role of clitnatology 

We now answer the question concerning trade-off 
between the fit to borehole data and the fit to 
climatology. For both the continuous and discrete 
versions of the least-squares solution, the mixture 
parameter, a, determines the trade-off between the 
coefficients of the climatology, Ci, and the coefficients of 
the borehole data bi . This is why we emphasize that our 
method does indeed allow for imprecision in the borehole 
data. 

Whether we failed to select a value of the trade-off 
parameter that would take adequate account of bore hole
data error in our Dye 3 demonstration is an issue we are 
not able to resolve without further work. We anticipate 
that an objective choice of a will depend on an evaluation 
of the relative confidence ascribed to the borehole
temperature measurements (which determine the bis) 
and the climatology (which determine the Cis) . For 
example, one might choose a/(l - a) = (7~/(7-;, where (7~ 
is a statistical measure of temperature-measurement 
uncertainty and (7; is a measure of the uncertainty in 
the climatology. 

There is another important role played by the mixture 
parameter a which must be considered when selecting its 
value. It serves to regularize the problem of determining 
Ts(t). Even without specifying the approximation K(t, t') 
to the symmetric kernel K(t, t') in Equation (1.6), or the 
symmetric matrix K in Equation (5.4), we can anticipate 
that the eigenvalues J.Li will tend to converge to 0 as 
i --+ 00 in the continuous case (Courant and Hilbert, 
1953, p.130) or as i --+ (N - 1) in the discrete case. Thus, 
when a = ° (i.e. when weforce our retrodiction to depend 
only on achieving the best fit between predicted borehole 
temperatures and data), the expressions in Equations 
(4.7) and (5 .13) could become divergent because of zeros, 
or extremely small numbers, in the denominator of the 
expansion coefficients. By specifying a > 0, the denomi
nator remains finite when J.Li --+ O. The series expressions 
thus become well-behaved from an arithmetic standpoint. 
The benefit of regularizing the problem is offset by the fact 
that, as the problem becomes better conditioned from a 
mathematical standpoint, the retrodicted surface-tem-
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perature history depends more on the climatology TJ(t) and 
less on the borehole-temperature data. 

We were well aware of the important role of a and the 
preconception TJ(t) in regularizing the Dye 3 demonstrat
ion problem (see figure 11 of our paper). The value of 
f = a/(l - a) we used in our demonstration was chosen 
solely on this basis (regularization). We urge future 
researchers to take note of the fact that an objective 
choice of a (or the original f) depends on two needs: (1) 
the mathematical need to regularize an otherwise ill
conditioned problem (as represented by the series
expansion representations of the solutions to the contin
uous and discrete versions of the problem), and (2) the 
strategic need to optimize the balance between fitting 
borehole data and matching preconceived climatology. 
The need to regularize the problem can be met by 
consideration of the physics only (physics determines the 
eigenvalues and eigenfunctions) . The need to optimize 
the balance requires an understanding of the relative 
accuracy of the borehole data with respect to the 
climatology. 

7. Why does the solution oscillate? 

The .form of the surface-temperature solution given by 
Equations (4.7) and (5.13) allows us to explain why the 
solution produced in the Dye 3 demonstration oscillates. 
Although we have not specified the exact form of the 
{4>i(t)}::l or {q,i};:'~\ we can anticipate that they are 
functions or vectors which exhibit oscillatory behavior. 
The surface-temperature history, Ts(t) or T s, may thus be 
expected to oscillate too. 

To demonstrate this point, we plot in Figure 1 several 
of the eigenvectors of the matrix K defined in Equation 
(5.4) using the A, Band C developed for the 
"demonstration using synthetic data" described in our 
paper. (In this circumstance K is a 49 x 49 matrix, and 
can be decomposed into eigenvalues and eigenvectors on 
a Macintosh computer. The matrix K from our Dye 3 
demonstration is 1199 x 1199, too big to fit into our 
computer. ) As seen in the figure, the eigenvectors are 
oscillatory, and this imposes oscillations of the kind seen in 
our demonstration analysis of Dye 3. Noteworthy proper
ties of the eigenvectors are: ( I ) that they decay as t -+ 0 
(t = 0 is represented by 5000 years BP in Figure 1), (2) 
they oscillate with increasing frequency as t --+ tr, and (3) 
the most oscillatory eigenfunctions are associated with the 
smallest eigenvalue. This is why the history produced in 
our Dye 3 demonstration (see the caption for figure 6 of 
our paper) displayed what we referred to as "insignif
icant" (meaningless) oscillations as t -+ tr. 

The eigenvector analysis presented in Figure I 
confirms Dahl-Jensen and others' concern about the 
formulation of our problem as a source of oscillation. 
Oscillations are indeed a natural consequence of solutions 
of problem 3 (the least-squares problem). The physics of 
the heat-transfer process (the Green's function G(z, t) or 
the matrix g) and the least-squares formulation determine 
the properties of the kernel K(t, t') and matrix K. These 
properties, in turn, determine the oscillatory nature of the 
eigenfunctions and eigenvectors from which the solutions, 
Ts(t) and Ts respectively, are composed. The distinction 
should be made, however, that the oscillations Dahl-
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Fig. 1. Five eigenvectors associated with the largest 
eigenvalues of the 49 x 49 symmetric matrix K in 
Equation (5.4) . Most of these vectors are 
oscillatory, and the amplitude of their oscillation 
increases as t --+ tr. 

Jensen and others found unacceptable are inherent in all 
least-squares solutions of our particular paleothermomet
ry problem. Indeed, oscillations appear to be inherent in 
least-squares solu tions of problems similar to ours such as 
the rock-borehole paleothermometry problem presented 
by Wang (1992). Had we defined our problem differently, 
perhaps by penalizing the time derivative of Ts(t) in the 
performance index, then we would have obtained a less 
oscillatory solution. 

8. The rock-borehole paleotherlnolnetry probleln 

Dahl-Jensen and others have pointed to the literature 
concerning paleothermometry problems involving tem
perature profiles in rock, and suggested that a comparison 
between our method and those described in this literature 
would be a "useful first step". We have taken this 
suggestion and have made two comparisons. First, we 
asked a student at the University of Chicago to repeat the 
analysis of an observed temperature profile in permafrost 
from northern Alaska (site A WU) reported by Lachen
bruch and Marshall (1986). The student used the 
techniq ues described in section 5 of this letter. (We are 
indebted to Ms H. Wang for performing this analysis. ) 
Secondly, to examine correspondence with the theoretical 
development presented in this letter, we found the exact 
::xpressions for G(z, t) and K(t, t') associated with the 
thermal conduction problem in a homogeneous half-space 
Earth. 

The results of these two comparisons are interesting, 
but shed no new light on the comments made by Dahl
J ensen and others. In short, the analysis of the northern 
Alaskan temperature profile produced a surface-temper
ature history that oscillates with increasing frequency as 
t --+ tr . As with our Dye 3 demonstration, the fit to 
bore hole data could be improved with seemingly 
unlimited precision (depending on the choice of a ). The 
cost of this improvement is an increase in the complexity 
of the surface-temperature history. Thus, while our 
method can fit the data presented by Lachenbruch and 
Marshall (1986), indeed with greater precision than is 
justified by the data, the resulting surface-temperature 
history can be so complex (depending on the choice of a ) 
that it fails to confirm the conclusion reached by 
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Lachenbruch and Marshall (1986); namely, that the 
local climate has warmed by 2-4 deg in the last few 
decades to a century. 

The fact that two so widely different surface
temperature histories can explain the same borehole 
temperature profile (as is the case for our Dye 3 
demonstration and the analysis of Dahl-J ensen and 
Johnsen (1986)) troubles us. Can we conclude that the 
simplest of the two histories is a better representation of 
the true climate history than the other? Perhaps this 
question may have an affirmative answer; however, the 
analysis presented here and in our paper cannot provide 
the answer to this question. 

For the second comparison, involving the heat
conduction problem in a semi-infinite Earth, we display 
the Green's function, G(z, t), and symmetric kernel, 
K(t, t'), introduced in section 1. The temperature profile 
in the semi-infinite region z < 0 is assumed to satisfy the 
following conditions 

z < 0, 0 < t < tf 

T(z,O) = 0 

T(O, t) = Ts(t) 

z -+-00 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

where subscripts denote partial differentiation by the 
subscripted variable, and where". is assumed constant. A 
non-homogeneous initial condition and a steady, non
zero geothermal flux at z -+ -00 need not concern us 
here. 

The solution T(z, t) to Equations (8.1 )-(8.4) is 
expressed as the convolution of the Green's function, 
G(z, t), with the surface-temperature history, Ts(t), as in 
Equation (1.1). The Green's function is readily deter
mined (Carslaw and Jaeger, 1988, p. 62); 

-ze-7? / {4".(tr - tn 
G(z, t) = /. (8.5) 

2.j7r".3/2(tr _ t)3 2 

This Green's function is used to obtain the symmetric 
kernel using Equation (1.6), 

( ') 1 K t,t = / . 
2.j7r".2 (2tr - t _ t,)3 2 

(8.6) 

We remark that K(t, t') for this problem is not square 
integrable. It blows up as t, t' -+ tr. This reflects our 
physical intuition that surface-temperature history in the 
most recent part of the past has a stronger influence on 
the borehole-temperature profile than the history in the 
more distant past. 

9. Uncertainty 

We now address Dahl-Jensen and others' main question: 
is our method able to quantify uncertainty in the surface
temperature history? There are many factors which 
contribute to uncertainty. The emphasis in our paper 
was on the uncertainty which stems from the physics of 
heat diffusion; in other words, from the dissipation of 
thermal memory. This source of uncertainty is independent 
of borehole-temperature data, and its quantification 
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yields the lower bound on uncertainty which would be 
valid if the data were error-free. As demonstrated in our 
paper, the model-resolution matrix provides a convenient 
quantitative description of this lower bound. (A careful 
consideration of the model-resolution matrix, inciden
tally, will answer the questions Dahl-Jensen and others 
raised about our demonstration test with synthetic data. ) 

A second contribution to error discussed in our paper 
concerns the preconceived climatology. Again, this 
contribution is independent of measurement error in the 
data. We refrained from analyzing this source of error for 
the Dye 3 demonstration because our choice of climatol
ogy was intentionally oversimplified. 

We are unsure of how to describe quantitatively the 
uncertainty generated by borehole-data error. Dahl
Jensen and others' reminder that this error could have 
coherent spatial structure associated with borehole-fluid 
convection leads us to believe that this error will translate 
into a non-uniform temporal distribution of surface
temperature uncertainty. We lack sufficient information 
about the data to proceed with a formal analysis of this 
error. We therefore offer merely a suggestion as to how 
one might approach such an analysis in future work. 

We suggest that the observed borehole-temperature 
profile be expressed as the sum of the actual temperature 
profile and an error profile. In this situation, each 
expansion coefficient of Equation (4.4) becomes the sum 
of two terms 

(9.1) 

where 6i is the expansion coefficient for the actual 
borehole-temperature profile, and ei is the expansion 
coefficient for the error profile £(z). Recalling Equation 
(1. 7), 

r rH 
ei = lo <Pi(t) la G(z, t)£(z)dzdt. (9.2) 

Taking Cl! = 0 to simplify the discussion, we can write 
Equation (5.7 ) as 

N 00 

Ts(t) = Ta(t) + L ei
. (/>i(t) + L e

i
. (/>i(t) (9.3) 

i=l ILl i =N+l ILl 

where Ts(t) is the uncertain surface-temperature history, 
and where the summation has been split into two parts to 
highlight the effect of truncation. The second term on the 
righthand side of Equation (9.3) represents the part of the 
measurement error which can be quantified, provided the 
eiS, for i = 1, ... , N, can be estimated from information 
about the borehole-data collection process and anticip
ated convection cells. The last term on the righthand side 
of Equation (9.3) represents the part of the measurement 
error which cannot be quantified because of our inability to 
sum the series to infinite terms. We can anticipate that as 
i -+ 00 the eigenvalues ILi -+ 0, and that the eigenfunc
tions <Pi(t) contain smaller time-scale structure. The last 
series on the righthand side of Equation (9.3) may 
therefore diverge when the eiS for i > N are incorrectly 
estimated. Contributions to the surface-temperature 
history due to this error would have very short time
scales but very large, or infinite, amplitude. Physically, 
this amounts to saying that the uncertainty associated 
with a temperature cycle of short duration , a diurnal 
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cycle in the ancient past for example, cannot be 
quantitatively assessed. 

To quantify the second term on the righthand side of 
Equation (9.3) in a manner such as would yield error 
bars, or confidence intervals, on the retrodicted surface
temperature history, we suggest that afamily of coefficient 
sets {ei} ~l be estimated. This could be done using 
information about the accuracy of the measurement 
devices and the anticipated spatial structures of the 
convection cells. The family of coefficient sets can then be 
transcribed into a family of surface-temperature histories 
using the eigenfunction expansion in Equation (9.3). The 
envelope which bounds this family of histories would then 
constitute an error-bar representation of measurement 
error. 

10. Conclusion 
We believe that the analysis presented above clarifies our 
position concerning the quantification of uncertainty and 
the trade-off between fitting noisy borehole data and 
satisfying secondary performance constraints, such as 
simplicity. As to the first position, no absolute measure of 
uncertainty is possible in the paleothermometry problem 
due to the inherent memory loss of heat diffusion. What is 
possible to quantify, however, is the resolution of an inverse 
method such as ours. As to the second position, a 
tendency to overfit measurement noise in borehole
temperature data can be restrained through the impos
ition of precisely described secondary constraints on the 
surface-temperature history. These secondary constraints 
determine the functional properties of the surface
temperature history, such as the degree to which it 
oscillates. There are no strict rules which define these 
secondary constraints; thus, it is perfectly natural to 
expect two or more widely differing surface-temperature 
histories to result from the analysis of the same borehole
temperature data. 

Concerning the question of whether solutions of 
borehole paleothermometry problems could serve as a 
check on the interpretation of ice-core isotope strati
graphy, we direct the reader to Firestone (1992). To our 
understanding, the interpretation of isotopic stratigraphy 
depends as much on an empirical relationship between 
present-day surface temperature and present-day isotopic 
compositions of precipitation as it does on complex 
theories of the hydrologic cycle. We are aware of no 
proof that this empirical relationship cannot change with 
time. We thus re-affirm our interest in developing better 
methods to solve the paleothermometry problem. 
Furthermore, we suggest that this development is no less 
justified than the continued development of ice-core 
geochemical methods for inferring the paleoclimate. 
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SIR, 

Supraglacial lake drainage near Sendre StremjJord, Greenland 

An unseasonal release of meltwater from the western 
margin of the Greenland ice sheet near S0ndre Str0mfjord 
was noted by residents of S0ndre Stf0mfjord during 
January and February 1990 (Russell, 1990). Russell 
(1990) proposed a possible release of subglacial meltwater 
to account for the unusual flows into the 0rkendalen and 
Sandflugtdalen rivers. Since this event, further obser
vations pertinent to the observed release of meltwater 
have come to light. Two circular depressions, located at a 
distance of 20-30 km from the ice-sheet margin, were 
observed on the ice surface from aircraft flying into 
Semdre Stf0mfjord (Fig. 1). The nature, origin and 
significance of these unusual features are briefly consid
ered. 

Photographs of these features were taken late in the 
winter of 1990 with a hand-held video camera from an 
aircraft cockpit by Captain U. Larsen. Frames were 
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