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SUMMARY

Planning adequate public health responses against emerging infectious diseases requires predictive

tools to evaluate the impact of candidate intervention strategies. With current interest in

pandemic influenza very high, modelling approaches have suggested antiviral treatment combined

with targeted prophylaxis as an effective first-line intervention against an emerging influenza

pandemic. To investigate how the effectiveness of such interventions depends on contact

structure, we simulate the effects in networks with variable degree distributions. The infection

attack rate can increase if the number of contacts per person is heterogeneous, implying the

existence of high-degree individuals who are potential super-spreaders. The effectiveness of

a socially targeted intervention suffers from heterogeneous contact patterns and depends on

whether infection is predominantly transmitted to close or casual contacts. Our findings imply

that the various contact networks’ degree distributions as well as the allocation of contagiousness

between close and casual contacts should be examined to identify appropriate strategies of disease

control measures.

INTRODUCTION

Understanding disease transmission and controlling

disease outbreaks are primary public health objec-

tives. The threat of emergent and re-emergent dis-

eases, such as SARS and pandemic influenza, has

made the research community and the general public

more aware of the need for accurate and robust

planning tools. Among these tools, individual-based

computer simulations are important for allowing

explicit consideration of contact structures in the

population. Contact structures are the basis for the

transmission of the infection, but they must be

regarded as highly disease-specific and may remain

unknown for many diseases. In these cases, model-

based evaluations of competing intervention schemes

must be subject to sensitivity analyses across varying

networks.

With current interest in pandemic influenza very

high, massive computer simulation models have been

used to investigate optimal intervention strategies,

and a promising intervention approach against emerg-

ing pandemic influenza is the distribution of antivirals

based on geographic proximity and/or contact pat-

terns [1, 2]. Intervention strategies that rely on contact

information are affected by the network structure

and various investigations have shown that disease

dynamics and intervention effectiveness depend on

the type of the contact network (e.g. [3–11]).
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Networks can be characterized by variousmeasures,

but epidemiological phenomena can often be suffi-

ciently explained by the average degree [12], i.e. the

average number of contacts per person. If, however,

contacts in the population are highly dispersed, the

infection dynamics may no longer be well character-

ized by the average degree [13]. Measures based on

the variance and/or the skewness of the degree dis-

tribution [14] are then more appropriate, because

they give more weight to the individuals who infect

a disproportionately large numbers of other individ-

uals. These so-called super-spreaders can introduce

substantial stochasticity into the course of an epi-

demic [15], because their impact on the epidemic curve

strongly depends on when they are involved in trans-

mission [16]. Scale-free networks, whose skewed

degree distributions allow for the existence of highly

connected individuals, are therefore potentially rel-

evant for network epidemiology.

Scale-free networks show observed characteristics

which cannot be reproduced by other types of net-

works [5, 6, 9, 14, 17]. Conclusions based on network

studies, however, take place in a situation of uncer-

tainty as they examine only a certain collection of

networks. In infectious disease epidemiology, scale-

free contact networks have to date been only de-

scribed for sexual relationships [18, 19]. The actual

contact network involved in transmission of airborne

diseases is difficult, perhaps impossible, to establish,

but weakly skewed [2] or even normal degree dis-

tributions [20] have been suggested. Taken together,

this means that networks generated by a preferential

attachment scheme that can produce a range of degree

distributions [21] might be candidates for studies in

the field of network epidemiology.

To model diseases in which transmission rates or

risks differ between casual and close contacts (within-

household contacts), the network structure must

distinguish between these two groups [22, 23]. For

influenza, there is no consensus as to whether infec-

tion is predominantly transmitted via close or casual

contacts, because it seems to depend on the strain

involved, or at least be different for seasonal and

pandemic influenza [22, 24]. One would expect

that the effectiveness of targeted interventions and

prophylaxis schemes depends on how the overall basic

reproduction number (R0) is distributed between these

two groups. Sensitivity analyses addressing this issue

have so far not been performed.

The aim of this study is to investigate how the

final size of an epidemic and the effectiveness of

intervention depend upon network structure and the

relative contagiousness of close and casual contacts,

using a model of pandemic influenza and antiviral

treatment combined with targeted prophylaxis. We

explore these effects in networks which are based on

preferential attachment, but allow for tunable degree

distributions [21]. Dispersion of the degree distri-

bution is represented by its standard deviation (S.D.)

(which is strongly determined by the degree of in-

dividuals with many contacts) and by the average

clustering coefficient (describing to what extent people

within neighbourhoods are in contact with each

other). Our results help to identify uncertainties of

interventions in real social networks and emphasize

the relevance of projects that investigate the structure

of such networks.

METHODS

Network

A simulated closed population of 10 000 individuals

was created and individuals in the population were

assigned both close (household) contacts and casual

(any other) contacts. For the close contacts, the

population was partitioned into households whose

sizes were chosen from a distribution of household

sizes in Thailand, which has been regarded as a

potential country of origin of pandemic influenza with

detailed demographic data [2]. Everyone in a house-

hold was assumed to be in close contact with all

other individuals in the household. The minimum,

maximum and average household size is Hmin=1,

Hmax=10 and �HH=3.57 respectively. The average

number of close contacts in the network then equals
�DDh=

PHmax

i=Hmin
(ix1)fi=3�13, where fi is the relative

frequency of individuals who live in a household of

size i.

The network for casual contacts was created using

a generalization of the Barabási–Albert scale-free

network generation algorithm [25] in which a tuning

distribution is used to alter the preferential attach-

ment scheme, yielding degree distributions that can

vary from that of the scale-free network [21]. In the

classical preferential attachment procedure, the tun-

ing distribution is uniform, yielding a degree distribu-

tion of the power law type which is represented by a

straight line on log-log scale. The tuning distributions

used for this investigation were beta distributions

which allow for modifying the shape of the degree

distribution in a flexible way, as illustrated in Figure 1.
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The algorithm for the network of casual contacts

starts with eight individuals who are connected as

a ring, implying two casual contacts per individual

(remaining contacts, see below). Network growth

proceeds by subsequently adding new individuals who

always establish four casual contacts to individuals

of the existing network by the modified preferential

attachment scheme. After the last individual has been

added, the remaining contacts for the initial ring

of individuals were completed, using the modified

preferential attachment scheme, too. The minimum

degree of Dmin=4 results in those cases when an in-

dividual has only these four casual contacts and no

close contacts. In order to test the sensitivity of our

results to the initial ring configuration of individuals,

networks were generated beginning with a complete

graph on the initial individuals. Conclusions in this

investigation do not depend on this initial configur-

ation.

Heterogeneity in the degree distributions of all

contacts (close and casual) is represented by the S.D.

The above-mentioned household structure of close

contacts combined with a classic scale-free network

of casual contacts yields degree distributions with

S.D.SFB10.8. A degree distribution will be called

underdispersed if S.D.<S.D.SF and overdispersed if

S.D.>S.D.SF. In general, the S.D. is highly influenced by

outliers, given in this context by Dmax, the maximum

degree of the degree distribution.

Networks with differing S.D. and clustering were

generated from 45 different parameter constellations,

originating from nine different beta distributions

[all parameter combinations of as(1.0, 1.4, 2.0)

and bs(0.7, 1.0, 1.2)] and five different clustering

parameters [cs(0, 0.25, 0.5, 0.75, 1.0)]. The clustering

parameter c is the probability that an individual

chooses to connect randomly among the contact

persons of his/her current contacts (triad formation

step), instead of using the preferential attachment

step. The algorithm produced degree distributions

with values for the root skewness of 3.2<S.D.<17.2,

maximum degrees of 22<Dmax<960 and average

clustering coefficients between 0 and 0.5. With 100

simulation repetitions for epidemics with and with-

out intervention, these variations result in 9r5r
100r2=9000 total networks used for each of the

four scenarios (see Table). Independent of the par-

ameter settings, the network had an average of �DDc=8

casual contacts and �DDh=3.13 close contacts yielding

an average combined degree of �DD=11.13.

Individual-based simulation

The contact network is the basis for a stochastic

individual-based simulation of an influenza epidemic.

Each network node represents an individual and each

edge represents a potential contact along which the

infection can spread. Individuals have discrete inter-

nal states describing the states of infection, symptoms

and treatment. State changes of the individuals are

executed in chronological order, using parameters as

listed in the Table. The parameter estimates described

in the following paragraphs have been adopted from

previous simulation studies [26, 27].

The infection states are ‘susceptible ’, ‘exposed’,

‘ infectious ’ and ‘removed’, following the notation of

classic SEIR models. Initially all individuals except

the index cases are susceptible. Infection is introduced

into the population by 10 randomly chosen index

cases on day zero. Newly infected individuals enter

10000

1000

100

10

Fr
eq

ue
nc

y

Number of contacts

1
100 1000

S.D. = 4·2

(a)

10

10000

1000

100

10

Fr
eq

ue
nc

y

Number of contacts

1
100 1000

S.D. = 6·55

(b)

10

10000

1000

100

10

Fr
eq

ue
nc

y

Number of contacts

1
100 1000

S.D. = 13·5

(c)

10

Fig. 1. Examples of degree distributions of different networks with increasing standard deviation (S.D.) in a population of
10 000 individuals. The unimodal structure in the low-degree region originates from close contacts within households. All
networks have an average degree of 3.13 close and 8 casual contacts. The distributions were generated using the algorithm

described in ref. [21] with no extra clustering (c=0) and beta tuning distributions with parameter values : (a) a=1.4, b=0.7,
(b) a=1.4, b=1.0, (c) a=1.0, b=1.2.
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the latent period, the length of which is assumed to be

gamma distributed with mean TL=1.6 days and a

coefficient of variation of CVL=35%. Individuals

in the latent period are not yet infectious and show

no symptoms. In the subsequent infectious period

(gamma distributed with mean TI=4.1 days and

CVI=23%), individuals infect contacts with rate b

(see next section). Loss of immunity is neglected,

as only epidemic (and no endemic) scenarios are

investigated.

The symptom states are ‘asymptomatic ’, ‘sympto-

matic ’ and ‘ immune’ or ‘dead’. Symptoms, which

are a prerequisite for diagnosis and treatment (see

below), appear at the beginning of the infectious

period. For influenza we assume that a fraction of

1 – Fs=33% of infections proceed asymptomatically,

and that these individuals are only half as infectious

as symptomatic cases (r=50%). We assume that

about Fw=73% of infected and symptomatic cases

stay at home, having contact with family members

only. The other 27% of symptomatic cases continue

circulating and transmitting the infection to their

casual contacts. The symptomatic state ends with the

infectious period, after which individuals no longer

contribute to transmission as they are either immune

or dead.

The treatment states are ‘no treatment ’, ‘prophy-

laxis ’ and ‘treatment ’. The intervention scheme is

based on antiviral treatment of cases and prophylaxis

of their close contacts. Treatment is restricted to the

67% of infected individuals who show symptoms

and we assume a compliance rate of 80%. Treatment

starts 1 day after the onset of symptoms, is continued

for 5 days and reduces infectiousness by 62%.

Prophylaxis of close contacts (i.e. household mem-

bers) begins simultaneously with the treatment of the

symptomatic family member, but lasts for a period of

10 days. Prophylaxis has a compliance of 80% and

reduces the susceptibility of an individual to 30%.

Transmission rates and infection attack rates

Transmission rates were chosen so that baseline

epidemics in networks with the highest variance and

without intervention cause an infection attack rate

(IAR) of either y50% or y30% of the population.

Since the distribution of R0 between close and casual

contacts is not known, we address by sensitivity

analyses two hypotheses : the rate of transmission to

close contacts (index h) is either twice the rate of

transmission to casual contacts (index c) (bh=2bc)

or vice versa (bh=0.5bc). This yields the following

four scenarios:

(1) Transmission predominantly to close contacts,

baseline IARB50% (bh=0.116, bc=0.058).

(2) Transmission predominantly to close contacts,

baseline IAR B30% (bh=0.088, bc=0.044).

(3) Transmission predominantly to casual contacts,

baseline IAR B50% (bh=0.047, bc=0.094).

(4) Transmission predominantly to casual contacts,

baseline IAR B30% (bh=0.035, bc=0.070).

Within each scenario, contact rates are kept constant

and thus, changes in the IAR are attributable to net-

work structure.

Table. Parameter values used for the simulations

(see Methods section)

Population
Simulated population size : 10 000
Introduction of infection by 10 index cases, randomly

chosen from the population

Infection
Duration of latent period : gamma distributed with mean
1.6 days and CV=35%
Duration of infectious period: gamma distributed with

mean 4.1 days and CV=23%
Immunity : no loss of immunity
Fraction of infections that are asymptomatic :

1 – Fs=33%

Contagiousness
Scenario 1: bh=0.116 and bc=0.058 contacts per day,
yielding an IAR of B50%

Scenario 2: bh=0.088 and bc=0.044 contacts per day,
yielding an IAR of B30%
Scenario 3: bh=0.047 and bc=0.094 contacts per day,

yielding an IAR of B50%
Scenario 4: bh=0.035 and bc=0.070 contacts per day,
yielding an IAR of B30%
Reduction of infectiousness of asymptomatic cases :

r=50%
Fraction of circulating cases among symptomatic cases :
1 – Fw=27%

Antiviral treatment of cases

Duration: 5 days
Delay : 1 day after onset of symptoms
Compliance : 80%

Infectiousness under treatment is reduced by 62%

Antiviral prophylaxis of close contacts
Duration: 10 days
Delay : 1 day after onset of symptoms of a family member

Compliance : 80%
Susceptibility under prophylaxis is reduced by 70%

CV, Coefficient of variation ; IAR, infection attack rate.
The IAR is determined by the contact rate b and is the

overall percentage of the population that is infected during
the course of the epidemic.
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Basic reproduction number R0

We assume that the time until infection is exponen-

tially distributed with mean 1/b and density P(t)=
bexbt, and the probability that a contact is infected by

time t is
R t

0P(t)dt=1xexb t. The expected number of

persons who are infected by time t if m persons are

in contact with the case is then S*=m(1xexbt). All

m contact persons are infected if the case is contagious

forever. Since this is not true, S* must be weighted

with the probability that a case is infectious by time t,

and we assume the infectious period to be gamma

distributed with mean m and coefficient of variation

n, thus

Q(t)=
ext=mn2t1=n

2x1 1=mn2ð Þ1=n
2

C 1=n2ð Þ :

Weighting S* with Q(t) yields the expected number of

secondary infections,

S=
Z O

0
m 1xexb t
� �

Q tð Þ dt=m 1x
1

1+n2bm

� �� �1=n2

:

(S is lower than the ‘classical ’ R0 which does not

adequately consider the infectious period, leading to

a situation where repeated infections of the same

individual are possible and consequently, the spread

of the disease is overestimated [23].)

A model with close and casual contacts involves

the two contact rates bh and bc, and mh close and

mc casual contacts. Correspondingly, the expected

numbers of secondary infections can be calculated as

Sh and Sc, and a proxy for the basic reproduction

number is their sum, i.e. R0=Sh+Sc. With mh=3.11

close and mc=8 casual contacts on average, the

four scenarios yield the following reproduction

numbers:

(1) 50% IAR: bh=0.116, Sh=1.17, bc=0.058:

Sc=1.68,

yielding R0=2.85.

(2) 30% IAR: bh=0.088, Sh=0.93, bc=0.044,

Sc=1.31,

yielding R0=2.24.

(3) 50% IAR: bh=0.047, Sh=0.54, bc=0.094,

Sc=2.54,

yielding R0=3.08.

(4) 30% IAR: bh=0.035, Sh=0.41, bc=0.070,

Sc=1.98,

yielding R0=2.39.

RESULTS

Epidemic curves

Figure 2 shows examples of simulated epidemics in

networks with high (a) and low (b) dispersion of the

degree distribution. Although transmission is driven

by the same transmission rates in both networks

(bh=0.088, bc=0.044, see Methods section and cf.

Fig. 3b) the course of the epidemics as well as the

IARs differ considerably. Epidemics in networks with

high variance pervade the population more quickly

with more individuals infected compared to epidemics

in networks with lower variance. More specific com-

ments are given in the next two paragraphs.

Highly contagious influenza strains

For highly contagious influenza strains, the size of

the epidemic does not depend on heterogeneity in the

degree distribution if no intervention is performed

(Fig. 3a). With ten index cases in a population of

10 000 people, major epidemics occur in more than

99% of simulations, independent of whether infection

is predominantly transmitted via close or casual

contacts. On the other hand, intervention effective-

ness does depend on heterogeneity in the degree dis-

tribution and is more efficient in networks with low

variance than with high variance (Fig. 3c, e). Under

intervention, epidemics with an IAR of 20–30% still

occur in highly heterogeneous networks, but they

become increasingly rare as the variance decreases. As

the proposed intervention is directed more towards

close contacts, it is more efficient if transmission is

predominantly driven by them (Fig. 3c) than by

casual contacts (Fig. 3e). Using a threshold of 500

cases (5% of the study population) to define success-

ful containment, the probability of intervention suc-

cess decreases from 100% to 40% in the close-contact

scenario (Fig. 3c) and from 80% to 20% in the

casual-contact scenario (Fig. 3e) for weakly to highly

dispersed degree distributions respectively.

Moderately contagious influenza strains

For moderately contagious influenza strains, the size

of the epidemic depends on heterogeneity in the

degree distribution even when no interventions are

performed (Fig. 3b). The average number of infec-

tions increases from y1000 when the variance is low

to y3000 when the S.D. is high. The variability in

the size of the epidemics is inversely related to the

dispersion in the degree distribution, as indicated by
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the coefficient of variation which decreases from

100% for epidemics resulting from weakly hetero-

geneous degree distributions to 40% for epidemics

resulting from highly heterogeneous degree dis-

tributions. Both effects – the increasing size and the

decreasing variability of the epidemics – make the

distinction between small outbreaks and vast epi-

demics more pronounced as the variance increases.

The probability of an epidemic increases from 50%

to 85% for weakly to highly heterogeneous degree

distributions respectively. For moderately contagious

influenza strains, the proposed intervention efficiently

controls epidemics in networks with low variance

(Fig. 3d, f ). For networks with higher variance,

however, the probability of successful containment

decreases to 80% (Fig. 3d ) and to 50% (Fig. 3f ),

depending on whether the infection is predominantly

transmitted to close or casual contacts.
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Fig. 2. Examples of simulated epidemics in populations with different network structures. Each graph gives three realizations
resulting from the degree distribution shown in the inset. The degree distribution is fixed for the three realizations respect-

ively, but epidemiological factors (e.g. the time of infection of high-degree individuals or the duration of their infectious
period) are subject to random variation given the parameters listed in the Table. Infection attack rates (IARs) of the
epidemics are shown in the key. The six epidemics are a subset of the scenario in Figure 3b. (a) Epidemics in a highly

heterogeneous network (S.D.=13.5) with a maximum degree of Dmax=479 contacts. (b) Epidemics in a network with lower
standard deviation (S.D.=4.2) with Dmax=33 contacts.
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Fig. 3.Distributions of the sizes of outbreaks and epidemics occurring under different networks and transmission modes. Left
panels : Highly contagious influenza strain causing an infection attack rate (IAR) of y50%. Right panels : Moderately
contagious influenza strain causing an IAR of up to y30%. Epidemic outcomes under no intervention (a, b). Effects of

intervention are shown dependent on whether infection is predominantly transmitted to close (c, d ) or casual (e, f ) contacts.
Bars have a width of 100 cases. For each panel, 4500 simulations were performed.
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DISCUSSION

Investigating characteristics of a hypothetical influ-

enza epidemic and the effects of intervention under

different networks shows that the IAR of an epidemic

and the effectiveness of intervention can depend on

dispersion in the degree distribution of the number of

contacts and the distribution of transmission rates

between close and casual contacts. With parameters

specifically adjusted to influenza and targeted distri-

bution of antivirals, we have followed a parameter-

rich and realistic modelling approach, using networks

which are produced by a modified preferential at-

tachment step as a possible representation of contact

structures in the population.

Degree distributions with high variance or the

occurrence of high-degree individuals can be associ-

ated with an accelerated course of the epidemic [14]

(see also Fig. 2) and with an increased IAR (Fig. 3b).

The effect on the increased IAR is limited if the

infectious agent is highly contagious, i.e. if infection

is efficiently transmitted from the outset, producing

a self-exhausting infection process that cannot be

further propagated by contact patterns (Fig. 3a). We

conclude that heterogeneous degree distributions

increase the IAR of epidemics which are produced by

moderately effective transmission – and that is the

situation when intervention is applied (Fig. 3c–f ).

Contact patterns will influence intervention success

less, if intervention is targeted geographically [1, 2],

rather than socially, as assumed in this investigation.

Apart from measures of dispersion and clustering

in the degree distribution, additional network charac-

teristics influence the epidemiological outcome of an

epidemic [9, 12]. The type of network [3, 16] and the

population size [5] have an effect on the probability of

an epidemic occurring and/or the final size of the

epidemic. For the networks studied here in the case

of an influenza epidemic, we have found that cluster-

ing is a negligible factor with respect to epidemi-

ological outcomes (results not shown). However,

other studies have shown that clustering can influence

the size of the epidemic [28], indicating that epi-

demiological outcomes can be highly network-specific

(For a more generalized approach describing the

effects of close and casual contact patterns on the

epidemics see ref. [23]).

The maximum degree in our networks largely

determines the variance of the degree distribution

and the relationship for the networks used in this

investigation is Var=10.5+0.33 Dmax with r2=0.93.

Thus, epidemiological outcomes may be explained

largely by the influence of only one individual in

the network, the individual with the highest degree.

To date it is not clear to what extent this effect is

restricted to networks which are built on the basis

of preferential attachment. Extending the present

conclusions to a wider class of networks would be an

important advance for infectious disease studies.
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