Glasgow Math. J. **44** (2002) 455–461. © 2002 Glasgow Mathematical Journal Trust. DOI: 10.1017/S00170895020210122 Printed in the United Kingdom

AN EXISTENCE THEOREM OF CONSTANT MEAN CURVATURE GRAPHS IN EUCLIDEAN SPACE*

RAFAEL LÓPEZ

Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain e-mail: rcamino@goliat.ugr.es

(Received 19 January, 2001; accepted 29 June, 2001)

Abstract. We prove the following result of existence of graphs with constant mean curvature in Euclidean space: given a convex bounded planar domain Ω of area $a(\Omega)$ and a real number H such that $a(\Omega)H^2 < \pi/2$, there exists a graph on Ω with constant mean curvature H and whose boundary is $\partial\Omega$.

2000 Mathematics Subject Classification. 53A10, 53C42.

1. Introduction and statement of results. Let Ω be a smooth bounded domain in \mathbb{R}^2 and let *H* be a given non-zero constant. We consider classical solutions $u \in C^2(\Omega) \cap \partial C^0(\overline{\Omega})$ of the constant mean curvature boundary value problem (P_H) :

div
$$\frac{\nabla u}{\sqrt{1+|\nabla u|^2}} + 2H = 0$$
 in Ω , (1)

u = 0 on $\partial \Omega$. (2)

The geometric meaning of (1)–(2) is that the graph of a solution u describes a nonparametric surface of \mathbb{R}^3 spanning $\partial \Omega \times \{0\}$ and with constant mean curvature H with respect to the orientation $N = (\nabla u, -1)/\sqrt{1 + |\nabla u|^2}$. In variational terms, a constant mean curvature surface is a critical point for area given the constraint of fixed volume. From the physical viewpoint, a soap film in equilibrium between two regions of different gas pressure—no gravity—is modelled mathematically by the fact that the surface it defines has nonzero constant mean curvature and the constant H is the pressure difference across the surface. We refer to [3] as a complete guide to quasilinear elliptic equations. A suitable introduction to the properties of the constant mean curvature equation (1) is [8]. We will use both references in our proofs.

A few existence results are known of the Dirichlet problem (1)–(2), even if Ω is a convex domain. Serrin established an existence result when the boundary condition (2) is replaced by $u = \phi$, where ϕ is a function defined on $\partial\Omega$ that extends to a C^2 function on $\overline{\Omega}$. In [10], he proved that given a constant H, there is solvability of (1) for arbitrary continuous boundary data ϕ if and only if $2|H| \le \kappa$, where κ denotes the curvature of $\partial\Omega$ as a planar curve. In particular, Ω must be strictly convex. However, when the boundary condition is u = 0, it is natural to think that the Serrin's condition on H could be relaxed. Thus, if the curvature κ of $\partial\Omega$ satisfies

^{*}Research partially supported by DGICYT grant number PB97-0785.

RAFAEL LÓPEZ

 $\kappa > 1/|H|$, the problem (P_H) has a solution. (See, for example, [4].) In this case, spherical caps included in a halfsphere are used as barrier surfaces for searching the new graphs.

Montiel and the present author used quarter-cylinders as barriers to obtain estimates of the solutions of (P_H) . In this sense, the following result is proved in [7].

THEOREM 1. Let Ω be a convex bounded domain whose boundary $\partial \Omega$ has length L. If H is a given number such that

$$|H| < \frac{\sqrt{3\pi}}{L},\tag{3}$$

then (P_H) has a unique solution.

Throughout this paper, for a convex bounded domain we assume that the curvature κ of $\partial\Omega$ satisfies $\kappa \ge 0$. In this result (as well as in [4]), C^0 estimates of a solution of the Dirichlet problem are used in order to obtain $C^1(\overline{\Omega})$ estimates. In Theorem 1, we used an isoperimetric inequality together with a height estimate for a compact constant mean curvature surface immersed in \mathbb{R}^3 measured from a plane *P*. This estimate is done in terms of the value of the constant *H* and the area *A* of the region of *M* above the plane *P*: if *h* denotes the height of the surface with respect to *P*, then

$$h \le \frac{A|H|}{2\pi} \tag{4}$$

and the equality holds if an only if M is a spherical cap. Using again quarter-cylinders as barriers, it is proved in [5] that for each convex bounded or unbounded domain Ω included in a strip of width 1/|H| there exists a graph on Ω bounded by $\partial\Omega$ and with constant mean curvature H. Recently, the present author has given results on existence for nonconvex domains that satisfy some *R*-sphere condition on the boundary. See [6].

In this paper, we prove the following existence theorem for (P_H) .

THEOREM 2. Let Ω be a convex bounded domain. Let H be a real number such that

$$a(\Omega)H^2 < \frac{\pi}{2},\tag{5}$$

where $a(\Omega)$ denotes the area of Ω . Then (1)–(2) has a unique solution.

In a recent paper and with different techniques, Montiel has proved the solvability of (P_H) if $a(\Omega)H^2 < \alpha^2 \pi$, where $\alpha = (\sqrt{5} - 1)/2$ is the golden ratio. Then $\alpha^2 \approx 0.3819$. Thus our estimate in Theorem 2 improves Montiel's result. Note that the constant 1/2 in (5) is not optimal, as it occurs when Ω is a round disc: there is a family of spherical caps that are graphs on Ω with mean curvature varying in the interval $[0, \sqrt{\pi/a(\Omega)})$. From this example, one is led to the conjecture that it suffices that $a(\Omega)H^2 < \pi$, which is optimal in the case of a circle.

On the other hand, the classical isoperimetric inequality in the plane states that $L^2 \ge 4\pi a(\Omega)$. This inequality links Theorems 1 and 2 as follows. For the Dirichlet

problem (P_H) , there exists a positive value H_{max} such that (P_H) has a unique solution if $|H| \leq H_{\text{max}}$ and (P_H) has no solution if $|H| > H_{\text{max}}$. See [8]. Condition (3) implies that $H_{\text{max}} \geq \sqrt{3}\pi/L$, but (5) gives a better estimate $H_{\text{max}} \geq \sqrt{\pi}/\sqrt{2a(\Omega)}$. As we have already stated, the examples of spherical caps that are graphs on round discs make us think that $H_{\text{max}} = \sqrt{\pi}/\sqrt{a(\Omega)}$.

REMARK. It is worthwhile to point out that in the setting of the existence problem for *parametric surfaces* with prescribed mean curvature and given boundary curve, there are some results of the same nature as Theorem 2. A theorem formulated by Wente [12] and sharpened by Steffen [11] proves the existence of a disc immersed in \mathbb{R}^3 of constant mean curvature H and spanning a closed Jordan curve Γ provided that $a_{\Gamma}H^2 < 2\pi/3$, where a_{Γ} is the least spanning area of Γ .

2. Proof of Theorem 2. In the proof of Theorem 2, we shall need two previous results. The first one relates the algebraic volume of a constant mean curvature surface with a certain L^1 -norm defined in terms of the coordinates of its Gauss map. The second result is concerned with an estimate of the height of a graph with constant mean curvature in terms of the area of the planar domain in which the graph is defined.

First, recall some facts on solutions of (1). Firstly, a symmetry property holds for solutions of (P_H) : if u is a solution of (P_H) , then -u solves the problem (P_{-H}) . On the other hand, the maximum principle (or the comparison principle with horizontal planes) ensures that either $u \ge 0$ and $H \ge 0$ or $u \le 0$ and $H \le 0$. Also, a monotonicity principle holds for the family of Dirichlet problems (P_H) and that it is again a consequence of the comparison principle [3, Theorem 10.1]: if H' < H, then $u_{H'} < u_H$ on Ω . Finally, the uniqueness of a given solution u of (P_H) follows from the comparison principle.

Consider an immersion $\phi: M \to \mathbb{R}^3$ from an oriented compact surface M with non-empty boundary ∂M into Euclidean space. The algebraic volume V is defined as

$$V = -\frac{1}{3} \int_{M} \langle N, \phi \rangle dM,$$

where N stands for the Gauss map for the immersion ϕ compatible with the orientation of M. The starting point is the following result that was stated without proof in [7, p. 597]. For the sake of completeness we present a proof of it.

PROPOSITION 1. Let $\phi : M \to \mathbb{R}^3$ be an immersion of constant mean curvature H and with boundary included in a plane P. Then

$$2HV = \int_{M} |\nabla\langle\phi, \vec{a}\rangle|^2 dM,$$
(6)

where \vec{a} is a unit vector orthogonal to P.

Proof. Let N be the Gauss map of the immersion. We define on M two 1-forms α and β by

$$\alpha_p(v) = \langle (d\phi)_p(v), \vec{a} \rangle \langle \phi(p), \vec{a} \rangle,$$
$$\beta_p(v) = \langle (d\phi)_p(v) \wedge N(p), \phi(p) \wedge \vec{a} \rangle \langle \phi(p), \vec{a} \rangle,$$

for each $p \in M$ and $v \in T_p M$. Compute their codifferentials $\delta \alpha$ and $\delta \beta$. Let $p \in M$ and let $\{e_1, e_2\}$ be an orthonormal basis of the tangent plane $T_p M$. Then

$$\delta\alpha(p) = \sum_{i=1}^{2} \sigma(e_i, e_i) \langle N(p), \vec{a} \rangle + \sum_{i=1}^{2} \langle \vec{a}, e_i \rangle^2,$$

$$\delta\beta(p) = \sum_{i=1}^{2} \langle e_i \wedge N(p), e_i \wedge \vec{a} \rangle \langle \phi(p), \vec{a} \rangle + \sum_{i=1}^{2} \langle e_i \wedge N(p), \phi(p) \wedge \vec{a} \rangle \langle e_i, \vec{a} \rangle.$$

where σ stands for the second fundamental form of the immersion ϕ . Then

$$\delta \alpha = |\nabla \langle \phi, \vec{a} \rangle|^2 + 2H \langle \phi, \vec{a} \rangle \langle N, \vec{a} \rangle$$
$$\delta \beta = 3 \langle \phi, \vec{a} \rangle \langle N, \vec{a} \rangle - \langle N, \phi \rangle.$$

Let us integrate these two inequalities over M. Because the mean curvature H is constant and since α and β vanish on the boundary ∂M , we get the desired identity (6). \triangle

As a consequence of Proposition 1 and the height estimate (4), we obtain the following result.

THEOREM 3. Let u be a solution of the Dirichlet problem for the prescribed constant mean curvature (P_H) . Let $h = \sup_{\Omega} |u|$. Then

$$h \le \frac{a(\Omega)|H|}{2(\pi - a(\Omega)H^2)},\tag{7}$$

where $a(\Omega)$ denotes the area of the domain Ω .

Proof. Let $\vec{a} = (0, 0, 1)$. Without loss of generality we assume that $u \ge 0$. Since the orientation N of M = graph(u) is chosen pointing downwards, the mean curvature H is positive. A straightforward computation yields $|\nabla \langle x, \vec{a} \rangle|^2 = 1 - \langle N, \vec{a} \rangle^2$, where x denotes a point of M. Let A be the area of M. Then (6) gives

$$2H\int_{\Omega} u \, dx \, dy = A - \int_{M} \langle N, \vec{a} \rangle^2 dM.$$

Using (4), we obtain

$$\frac{2\pi h}{H} \le A \le 2H \int_{\Omega} u \, dx \, dy + \int_{M} \langle N, \vec{a} \rangle^2 dM \le 2ha(\Omega)H + \int_{M} |\langle N, \vec{a} \rangle|$$
$$= 2h \, a(\Omega)H + \int_{\Omega} 1 \, dx \, dy = (2Hh + 1)a(\Omega),$$

yielding the desired inequality (7).

We are now prepared to prove Theorem 2. The reasoning below follows the work in [7]. We give a more detailed exposition. We shall apply the method of continuity to solve the Dirichlet problem (1)–(2). We refer the reader to the discussion in [3] for a modern treatment of the theory of the Dirichlet problem for the prescribed mean curvature equation. As usual, the proof is based on the establishment of global $C^{1,\alpha}(\overline{\Omega})$ a priori estimates for prospective solutions of (P_H) . Let *c* be a positive number with $a(\Omega)c^2 < \pi/2$. Consider the set S defined as

$$S = \{H \in [0, c]; \text{ there exists a solution } u_H \text{ of } (P_H)\}$$

Since $u_0 = 0$ solves the minimal case, the set S is not empty.

Now we show that S is open. This is accomplished by using the Implicit Function Theorem for Banach spaces. Let $\phi : \overline{\Omega} \to \mathbb{R}^3$ be an isometric immersion, where N denotes a unit normal vector field along ϕ in \mathbb{R}^3 . For each $u \in C_0^{2,\alpha}(\overline{\Omega})$, the maps $\phi_t : \Omega \to \mathbb{R}^3$ defined as $\phi_t(p) = \phi(p) + tu(p)N(p)$, $(p \in \overline{\Omega})$, are immersions for t near zero. Consider on $\overline{\Omega}$ the metric induced by ϕ_t and let H be the mean curvature. The linearized operator (up to a factor) $L : C_0^{2,\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$, defined by

$$L(u)(p) = \frac{d}{dt}\bigg|_{t=0} H(\phi_t(p))),$$

turns out to be $L = \Delta + |\sigma|^2$, where Δ denotes the Laplacian operator on $\overline{\Omega}$ with the induced metric from ϕ and σ is its second fundamental form. Here L(u) is a self-adjoint linear elliptic operator. We claim that the kernel of L is trivial. This is proved as follows. Assume that $H \in S$ and denote $G_H = \operatorname{graph}(u_H)$. Because the mean curvature is constant, the function $\langle N, \vec{a} \rangle$ defined on G_H satisfies

$$\Delta \langle N, \vec{a} \rangle = -|\sigma|^2 \langle N, \vec{a} \rangle, \tag{8}$$

so that

$$L\langle N, \vec{a} \rangle = 0$$
 and $\langle N, \vec{a} \rangle < 0$.

Hence, if $v \in C^{2,\alpha}(\overline{\Omega})$ satisfies L(u)v = 0 and v = 0 on $\partial\Omega$, then v = 0. (See, for example, [2, Theorem 1].) Then L is a Fredholm operator of index zero. Hence we use the Riesz spectral theory of compact operators to assert that the Fredholm alternative applies and the invertibility of (1)–(2) is assured. (See [1].) The Implicit Function Theorem in Banach spaces guarantees an interval of solutions of (P_H) around the value H.

Finally, to prove that S is a closed set, the Schauder approach reduces the question to establishing apriori $C^{1,\alpha}(\Omega)$ bounds for any solution u_H with $0 \le H \le c$ [3, Theorem 13.8]. In our situation, it suffices to prove that there is a fixed constant M independent of H such that

$$|u_H|_{C^1(\overline{\Omega})} = \sup_{\Omega} |u_H| + \sup_{\Omega} |\nabla u_H| < M$$

holds for any $u_H \in C_0^{2,\alpha}(\overline{\Omega})$ and $H \in [0, c]$.

The apriori C^0 bounds for u_H is obtained as follows. The monotonicity principle ensures that $0 \le u_H \le u_c$, for $0 \le H \le c$. On the other hand, the hypothesis on $a(\Omega)$ and inequality (7) imply that $u_c < 1/(2c)$ and, consequently, $0 \le u_H < 1/(2c)$.

RAFAEL LÓPEZ

Now, we seek apriori estimates for $|\nabla u_H|$. By the expression of N in terms of ∇u_H we obtain

$$\langle N, \vec{a} \rangle = -\frac{1}{\sqrt{1 + |\nabla u_H|^2}}$$

Then we have apriori estimates of $|\nabla u_H|$ provided that $\langle N, \vec{a} \rangle$ remains bounded away from zero. But equation (8) tells us that $\Delta \langle N, \vec{a} \rangle \ge 0$ and so the maximum $\langle N, \vec{a} \rangle$ on $\overline{\Omega}$ is attained at some boundary point. This proves the well-known maximum principle $\sup_{\Omega} |\nabla u_H| = \sup_{\partial \Omega} |\nabla u_H|$ for the constant mean curvature equation (1). The above bound 1/(2c) on the height of our graphs provides barriers which serve to estimate $|\nabla u_H|$ on $\partial \Omega$. The reasoning that follows is based on the use of appropriate pieces of quarter-cylinders as barriers. (See [5], [7] and [9] for examples in the same context.)

Let v_H denote the inner conormal of G_H along its boundary. Since $0 \le u_H$, we have $0 \le \langle v_H, \vec{a} \rangle$. The boundary condition $u_H = 0$ on $\partial \Omega$ yields $\langle N, \vec{a} \rangle^2 + \langle v_H, \vec{a} \rangle^2 = 1$. According to the orientation N chosen on G_H , we have

$$\langle v_H, \vec{a} \rangle = \frac{|\nabla u_H|}{\sqrt{1 + |\nabla u_H|^2}}$$

As a consequence of the reasoning above, we shall obtain estimates for $|\nabla u_H|$ on Ω if we are able to establish a constant $C'(\Omega, c)$, depending only on Ω and c, such that $\langle v_H, \vec{a} \rangle \leq C'(\Omega, c)$. This estimate will be accomplished by the technique of barriers. We define K the quarter-cylinder by

$$K = \{(x, y, z); 0 \le y \le \frac{1}{2c}, z = \frac{1}{2c}\sqrt{1 - 4c^2y^2}\}.$$

The surface K is a graph on the strip $\{0 < y < 1/(2c)\}$ and its mean curvature is c with the downwards orientation. Moreover, $K \subset \{x \in \mathbb{R}^3; \langle x, \vec{a} \rangle \ge 0\}$ and its boundary ∂K is formed by two parallel straight-lines; one of them lies on the (x, y)-plane and the other one lies at height 1/(2c) over this plane. Consider $\epsilon > 0$ such $h_c + \epsilon < 1/(2c)$. We move down K an amount ϵ (with respect to the \vec{a} -direction), and call $K_{\epsilon} = K \cap \{x \in \mathbb{R}^3; \langle x, \vec{a} \rangle \ge 0\}$.

Consider the circle of horizontal directions

$$S^{1} = \{ \vec{\mathbf{v}} \in \mathbb{R}^{3}; |\vec{\mathbf{v}}| = 1, \langle \vec{\mathbf{v}}, \vec{\mathbf{a}} \rangle = 0 \}.$$

Let $\vec{v} \in S^1$. After a horizontal translation and a rotation with respect to a vertical axis, we assume that the axis of rotation of K_{ϵ} is orthogonal to \vec{v} , its concave side lies in front of G_H and that K_{ϵ} does not intersect G_H . If $h_H = \sup_{\Omega} u_H$ denotes the height of G_H , then

$$h_H \le h_c < \frac{1}{2c} - \epsilon =$$
 height of K_{ϵ} .

Call $C' = \langle v_{K_{\epsilon}}, \vec{a} \rangle$, where $v_{K_{\epsilon}}$ denotes the inner conormal of K_{ϵ} along the component boundary that lies in the (x, y)-plane. Notice that C' is a constant and C' < 1. Move

460

 K_{ϵ} towards G_H and parallel to \vec{a} until the first contact point occurs between K_{ϵ} and G_H . Since the height of G_H is strictly less than the K_{ϵ} and because the mean curvature H of G_H is strictly less than K_{ϵ} , the maximum principle ensures that this touching point is some boundary point $p \in \partial \Omega$. At this point p, we have

$$0 \le \langle v_H(p), \vec{a} \rangle < C'. \tag{9}$$

Now, let us repeat the same argument varying \vec{v} on S^1 . Because $\partial\Omega$ is a *convex curve*, the successive straight-lines on the (x, y)-plane that are boundary to K_{ϵ} go touching *each point* of $\partial\Omega$. Hence, inequality (9) holds for each $p \in \partial\Omega$. This gives the uniform bound of $|\nabla u_H|$ along $\partial\Omega$ and it concludes the proof of Theorem 2.

REFERENCES

1. H. Brézis, Analyse fonctionnelle: théorie et applications (Masson, Paris, 1992).

2. D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature, *Comm. Pure Appl. Math.* 33 (1980), 199–211.

3. D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order* (Springer-Verlag, 1983).

4. R. López, Constant mean curvature surfaces with boundary in Euclidean three-space, *Tsukuba J. Math.* **23** (1999), 27–36.

5. R. López, Constant mean curvature graphs on unbounded convex domains, J. Differential Equations 171 (2001), 54-62.

6. R. López, Constant mean curvature graphs in a strip of \mathbb{R}^2 , *Pacific J. Math*, to appear.

7. R. López and S. Montiel, Constant mean curvature surfaces with planar boundary, *Duke Math. J.* 85 (1996), 583–604.

8. J. McCuan, Continua of *H*-graphs: convexity and isoperimetric stability, *Calc. Var. P.D.E.s* **9** (1999), 297–325.

9. S. Montiel, A height estimate for *H*-surfaces and existence of *H*-graphs, *Amer. J. Math.* 123 (2001), 505–514.

10. J. Serrin, The problem of Dirichlet for quasilinear elliptic equations with many independent variables, *Philos. Trans. Roy. Soc. London Ser. A* 264 (1969), 413–496.

11. K. Steffen, On the existence of surfaces with prescribed mean curvature and boundary, *Math. Z.* 146 (1976), 113–135.

12. H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318–344.