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ABSTRACT. Ice cauldrons are depressions which form at the surface of ice sheets when an underlying
subglacial lake empties, in particular when subglacial volcanic eruptions occur. Notable examples of
such cauldrons occur on the surface of the Vatnajökull ice cap in Iceland. More generally, cauldrons will
form when a subglacial lake empties during a jökulhlaup. The rate of subsidence of the ice surface is
related to the rate at which the subglacial water empties from the lake. We use a viscous version of
classical beam theory applied to the ice sheet to determine the relation between the subsidence rate and
flood discharge. We use the results to make inferences concerning ring fracture spacings in cauldrons,
the consequent effect on flood discharge dynamics and the likely nature of subsidence events in the
Antarctic Ice Sheet.

1. INTRODUCTION
Ice cauldrons are depressions which form on ice caps when
basal ice is melted to form subglacial lakes which then drain
(Björnsson, 1988). Two well-known examples are the Skaftá
cauldrons on the ice cap Vatnajökull in east Iceland, which
lie above subglacial lakes which drain every year. A dra-
matic example of cauldron formation occurred during the
1996 eruption at Gjálp, also under Vatnajökull. Figure 1
shows a forming cauldron in its early stages. The ice surface
subsided at a rate of �12mh–1, as the basal fissure eruption
melted the subglacial ice. The resultant meltwater (�3 km3)
drained towards the subglacial lake Grı́msvötn, from where
a jökulhlaup eventually emerged. Another less dramatic
example has recently been observed on the surface of the
Antarctic Ice Sheet, where a subsidence of the order of 4m
has occurred over a period of several years above an inferred
subglacial lake, whose area is likely to be hundreds of km2

(Wingham and others, 2006).
The subsidence is not passive, as ice is viscous. The

drawdown of the ice, necessary to accommodate the
discharge of the subglacial floodwater, requires the flood-
water to be underpressured in order that it can suck down
the ice. The underpressure competes with the viscosity of the
ice, and the consequence is that there must be a dynamic
relationship between the underpressure and the rate of
subsidence of the ice.

The purpose of this paper is to propose the nucleus of a
theory that will predict how the rate at which the ice
surface deforms is related to the water pressure in the basal
lake. This theory will apply to cauldrons such as that in
Figure 1, and also to the smaller depressions which have
recently been observed on the surface of the Antarctic Ice
Sheet (Wingham and others, 2006). The basis for our theory
lies in the approximate treatment of the ice overlying the
lake as a viscous ‘beam’. The theory is essentially that of
classical beam theory in elasticity, except that viscosity
replaces elasticity thus introducing an extra time derivative
to the problem. The approximation is based on the large
aspect ratio of the ice, and is thus a version of the shallow
ice approximation. It is similar to the description of ice
shelf dynamics, insofar as normal stresses are dominant, but
there the similarity ends. Since space is restricted, this
paper provides a theoretical summary. For full details, see
Evatt (2006).

2. VISCOUS BEAM THEORY
2.1. Basic equations
The geometry of the situation we wish to consider is shown
in Figure 2. For simplicity and pedagogy, we work in two
dimensions: x and z. The corresponding components of
velocity are u and w, the deviatoric longitudinal stress is �1
and the shear stress is �3. The equations of slow flow (that is,
flow at zero Reynolds number, also known as Stokes flow)
can then be written in the form (where subscripts x, z and
later t denote partial derivatives)

ux þwz ¼ 0,

0 ¼ �px þ �1x þ �3z ,

0 ¼ �pz þ �3x � �1z � �ig,

uz þwx ¼ A�n�1�3,

2ux ¼ A�n�1�1,

�2 ¼ �21 þ �23 ð1Þ
where p is pressure, � is the second stress invariant, A is the
flow law rate coefficient, typically dependent on tempera-
ture, n (¼ 3) is the exponent in Glen’s law, �i is ice density,
and g is the acceleration due to gravity. The boundary
conditions at the top and bottom surfaces are those of stress
continuity and material integrity (manifested as the kine-
matic condition). These boundary conditions take the
following forms: on z ¼ s,

ð�p þ �1Þsx � �3 ¼ 0,

�3sx þ p þ �1 ¼ 0,

w ¼ st þ usx � a ð2Þ
while at the lake roof z ¼ h,

ðp � �1Þhx þ �3 ¼ pwhx ,

p þ �1 þ �3hx ¼ pw ,

w ¼ ht þ uhx �m ð3Þ
where a is the surface accumulation rate and m is the basal
melt rate.

In addition, we suppose that the water pressure in the
lake is hydrostatic, which implies

ðpw þ �wghÞx ¼ 0 on z ¼ h: ð4Þ
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Finally, if the net volume flux out of the lake is Q, then

Q ¼ �
Z
AL

w dS ð5Þ

where AL is the lake area. Our 2-dimensional theory
assumes the lake is rectangular in shape.

2.2. Non-dimensionalization
Let us suppose that the lake is of width l and the ice is of
depth d. We define the aspect ratio to be

� ¼ d
l
: ð6Þ

The basis of viscous beam theory (Howell, 1996; Ribe,
2001) is the assumption that � is small. We suppose that a
suitable scale for the rate of subsidence is ws, and that a
suitable scale for the longitudinal stress is �A. In beam
theory, the greatest stresses are normal stresses, and if we
consider also the variation of the flow rate coefficient Awith
temperature, then the rate-controlling value of A is its
minimal value, obtained at the surface. We let As denote this
surface value, and suppose for simplicity that it is constant.
The drainage from the lake is controlled by the effective
pressure of the lake (Nye, 1976), defined as

N ¼ �igðs � hÞ � pw ð7Þ
and we suppose that a typical value of this is N0 and that the
time scale appropriate to channel drainage is t0.

It is appropriate to scale the variables as

z, h, s � d , x � l, p � �igðs � zÞ � �A, �1 � �A,

�3 � � �A, A � As, w � ws, u � �ws, t � t0,

Q � ALws, N � N0: ð8Þ

The beam stress is chosen to be

�A ¼ �2ws

dAs

� �1=n
ð9Þ

in order to balance terms in the definition of longitudinal
strain rate.

With these scales, the equations become

�2ux þwz ¼ 0,

0 ¼ ��sx þ �3z � px þ �1x ,

0 ¼ �pz þ �1z � �2�3x ,

uz þwx ¼ �2A�n�1�3,

2ux ¼ A�n�1�1,

�2 ¼ �2�23 þ �21 ð10Þ

and we retain the now dimensionless A in case we want to
have it as a function of temperature and thus depth: in the
present paper, only the case A ¼ 1 is considered.

The boundary conditions become, on the surface z ¼ s,

�3 þ ðp � �1Þsx ¼ 0,

�2�3sx þ p þ �1 ¼ 0,

st ¼ �ðw � �2usx þ a�Þ ð11Þ
where

� ¼ wst0
d

ð12Þ
and

a� ¼ a
ws

: ð13Þ

Fig. 1. An ice cauldron forming after the Gjálp eruption under Vatnajökull in 1996. The cauldron is about 2 km in diameter and hundreds of
metres deep. Ring shear fractures can be seen, indicating yield of the ice. The subsidence rate of the ice surface was initially about 12mh–1;
for further information see Guðmundsson and others (2004). Photograph courtesy of M.T. Guðmundsson.
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On the lake roof, z ¼ h,

�3 þ ðp � �1Þhx ¼ ���Nhx ,

�2�3hx þ p þ �1 ¼ ���N,

ht ¼ �ðw � �2uhx �m�Þ ð14Þ
where

m� ¼ m
ws

: ð15Þ

The parameters � and � are defined by

� ¼ �igd
�A

and � ¼ N0

�igd
: ð16Þ

The lake hydrostatic condition Equation (4) becomes

ðs þ �h � �NÞx ¼ 0 ð17Þ
where

� ¼ �w � �i
�i

ð18Þ

and the lake refilling equation (5) becomes, in dimensionless
terms,

Q ¼ �
Z xþ

x�
w dx ð19Þ

where x– and x+ are the upstream and downstream positions
of the lake margins.

The deflation rate scale ws must be determined, if the
effective pressure scale is known. The way it is chosen is by
selecting the parameter � to balance terms in the hydrostatic
equation, and we do this by choosing

� ¼ �

1þ �
ð20Þ

and we will see that this is appropriate for closed subsurface
lakes.

The three other parameters involved in finding an
approximate solution to this set of equations are �, �
and �. Generally, we can assume �9 1, � � 1 and �0 1.
We therefore begin by seeking approximate solutions for
� � 1, and then subsequently considering possible choices
for � and �. The limit � ! 0 is the classical approximation
associated with beam theory.

2.3. The beam equation
With � � 1, we havew � w (x, t ), � � |�1| and uz þwx � 0,
from which we obtain

2ux � A �1j jn�1�1
u � v � zwx ð21Þ

where v (x, t ) is to be determined. From Equations (10), (11)
and (14), we see that p þ �1 � �2. (Strictly, this requires
�� � �2, but for the moment we only use this to motivate the
definition of the following equation. See later comment after
Equation (28).) We therefore define

p þ �1 ¼ ��2	3: ð22Þ
From (21), we find

�1 ¼ 2
A

� �1=n vx � zwxx

vx � zwxxj jðn�1Þ=n
: ð23Þ

We now define three quantities: the bending moment M, the
shear force S and the tension T as

M ¼
Z s

h
2z�1 dz, S ¼

Z s

h
�3 dz and T ¼

Z s

h
�1 dz:

ð24Þ
We also define the secondary quantities uplift force U and
lifting torque L to be

U ¼
Z s

h
	3 dz and L ¼

Z s

h
z	3 dz: ð25Þ

Integrating the force balance equations and applying the
boundary conditions at z ¼ s and z ¼ h, we find that

2Tx þ �2Ux ¼ ���Nhx þ �ðs � hÞsx ,
Mx � �2Lx þ S ¼ ��Nhhx � 1

2
�ðs2 � h2Þsx ,

Sx ¼ ��N
�2

: ð26Þ
Subject to suitable boundary conditions, these equations
will enable us to provide a closed solution which determines
the surface depression rate –w in terms of the underlying
effective pressure N.

The simplest assumption for the boundary conditions is
that the positions of the lake margins are fixed, so that the
values x� are constant. The ice at the margins does not
subside, so we set

w ¼ 0 at x ¼ x�: ð27Þ
In reality, the margins will move as the ice sags, forming a
moving grounding line problem. The solution in the case of
ice sheet/ice shelf transition is itself non-trivial (Schoof,
2007).

The second condition at a margin is less easy to motivate.
The horizontal velocity scale in the beam is �ws (see
Equation (8)), so that for the rapid subsidence in the
Vatnajökull cauldrons, we would expect to prescribe
u ¼ 0 and thus v ¼ wx ¼ 0 at the margin (clamped
conditions). For the much smaller rates of subsidence
appropriate to the Antarctic sub-glacial lake (Wingham
and others, 2006), the horizontal velocity scale is much
smaller than that of the surrounding ice-sheet ice. A more
appropriate boundary condition may be to prescribe zero
longitudinal stress, thus �1 ¼ 0. Another argument in favour
of this is that the beam stress �Awill typically be much larger
than the normal stress scale in the ice sheet.

Another consideration is the effect of temperature in the
ice. The rate of subsidence in the beam depends on the
surface rate constant As and the beam stress �A. The effective
beam viscosity is thus 
 ¼ (2As�

n�1
A )�1. Generally the beam

Fig. 2. Schematic diagram of cauldron geometry.
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stresses are higher than the basal shear stress beyond the
lake, while the surface rate coefficient may be much lower:
for example, in Antarctica. If we suppose that the beam ice
is much stiffer than the ice-sheet ice, then this also suggests
conditions of zero longitudinal stress at the margins, i.e.
�1 ¼ 0.

None of these arguments are watertight, and the issue of
the correct choice of effective boundary conditions is one of
difficulty. We do not pursue the issue further in this paper,
but to be specific we will choose conditions of zero
longitudinal stress at the margins, based on the idea that
the ice-sheet ice is very weak in comparison to the beam ice.

Neglecting terms in � makes it unlikely that we can satisfy
this pointwise, but we can certainly suppose that this
condition can be applied in a vertically integrated sense. We
therefore prescribe

M ¼ T ¼ 0 at x ¼ x�: ð28Þ
We solve Equations (26) by formally assuming �� � �2. This
is useful for exposition, but in fact the resulting approxima-
tions are still valid even if �� � �2, as is easily checked. The
only term we retain on the right hand sides of Equations (26)
is therefore the forcing term for S. Neglecting terms of
relative O(�), we then have that T ¼ T (t ) and the boundary
conditions (28) imply that T ¼ 0. A consequence of this
from Equation (23) is that

vx ¼ zmwxx ð29Þ
where zm is the mid-depth point, defined as

zm ¼ s þ h
2

: ð30Þ

From this it follows that

M ¼ Dnwxx

wxxj jðn�1Þ=n
, ð31Þ

where

Dn ¼ nHð2nþ1Þ=n

ð2nþ 1ÞA1=n , H ¼ s � h ð32Þ

and the beam equation takes the resultant form

Dnwxx

wxxj jðn�1Þ=n
 !

xx

¼ � ��N
�2

ð33Þ

subject to

w ¼ wxx ¼ 0 at x ¼ x�: ð34Þ
An expression for N results from the hydrostatic equa-
tion (17), together with the approximate kinematic equations

st � �ðw þ a�Þ, ht � �ðw þm�Þ: ð35Þ
Let us suppose for simplicity that a� and m� are negligible.
Then the depth H ¼ s – h depends only on x. If we suppose
that it is constant, then sx ¼ hx and the integral of
Equation (17) is, from the definition of � in Equation (20),

s ¼ sþ þ �fN �NþðtÞg ð36Þ
where s ¼ sþ (constant, since w ¼ 0 at xþ) and N ¼ Nþ at
x ¼ xþ. Differentiating, we finally have

Nt ¼ _Nþ þw: ð37Þ
In the assumptions made in choosing scales t0, N0 and ws,
the terms in Equation (37) are all O(1), and it is this which
motivates the choice made in Equation (20).

2.4. An approximate solution
An approximate solution to the beam equation (33) and the
lake refilling equation (37) can be obtained using a
boundary layer theory. For details, see Evatt (2006). Here
we summarize the results. We first estimate the size of the
term ��=�2 for the cauldron in Figure 1. The ice depth is
about 500m and the cauldron width �2 km, so we take
� � 0:2. The product �� ¼ N0=�A is the ratio of the channel
effective pressure scale to the beam stress. Typical values of
ws � 105ma–1 (12mh–1), As � 10–2 bar–3 a–1 (based on a
surface temperature of –108C; see Paterson, 1994) and n ¼ 3
are employed; with these values, we find �A � 20bar. This is
comparable to typical estimates of channel effective pres-
sure (Evatt, 2006), and then �� � Oð1Þ and ��=�2 � 1. In
this case, the solution becomes of singular perturbation type,
and supports boundary layers near the lake margins.

There is a central flat portion of the ice beam in which
N � 0, i.e. the ice is essentially floating. The refilling
equation together with Equation (19) then implies that the
boundary condition for the flow in the channel is

_Nþ ¼ Q
xþ � x�

, ð38Þ

which is essentially the same refilling condition that has
been used in the past (Fowler, 1999). This is the first
conclusion of the present study.

Near the margins, there are boundary layers of thickness

	 ¼ �2Dn

��

� � n
2ðnþ1Þ

: ð39Þ

The governing boundary layer equation has a similar
solution if we assume that the rising limb of the flood
hydrograph is given by a power law of the form

Nþ ¼ c
ðt� � tÞ� , Q ¼ �c

ðt� � tÞ�þ1 ð40Þ

where c and � are positive constants. This was demonstrated
by Nye (1976) with � ¼ 3. Here t is time and t� is a constant
chosen to fit the numerically computed form of the
hydrograph. An essentially analytic solution for w can thus
be obtained, and from this the surface deformation history
can be computed by integrating Equation (35). The result of
doing this is shown in Figure 3, which shows a theoretical
subsidence sequence above a lake whose discharge follows
the Nye rising hydrograph equation (40). The parameter
choices for this lake are chosen to be appropriate for a sub-
Antarctic lake.

3. CAULDRONS AND RING FRACTURES
It is of interest to calculate the maximum stress in the beam.
From Equation (23), the maximum stress is at the surface and
base of the ice, and is given by

�1j jmax¼
Hwxx

A

����
����
1=n

ð41Þ

We can use the boundary layer theory to estimate the
maximum stress. After some algebra, we find that the
maximum dimensional stress is

�max � ��

�2
Nþ _Nþ

� �1=4

�A, ð42Þ
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where we take n ¼ 3. This occurs at a distance from the
margin of

�x �
_Nþ
N3þ

 !1=8
�1=2 l

ð��Þ1=4
ð43Þ

where l is the lake width. If �max reaches the yield stress �c of
ice, then the ice will fracture forming a crevasse and the
overlake ice will reset itself to the application of effective
boundary conditions at the position of this ring fracture.
Thereafter, continued rise of effective pressure will allow a
new ring fracture to occur in-lake of the old fracture, and in
this way a sequence of such fractures may form, with a
spacing indicated by Equation (43) as seen in Figure 1. If we
equate �max ¼ �c and use Equation (42) to eliminate _Nþ, we
find that the fracture spacing should be

�x � �c
�A

� �1=2 �2

��

� �3=8 l

N1=2
þ

: ð44Þ

If �A � �c and ��=�2 � 1, as we surmise for the cauldron of
Figure 1, then we see that �x � l (clearly observed in
Fig. 1). However, it is not easy to get good quantitative
agreement with observed fracture spacing for which a
consideration of viscoelastic effects may be necessary.

4. FLOODS IN THE ANTARCTIC
Recently, Wingham and others (2006) observed subsidence
of the Antarctic ice sheet surface of the order of 4m
occurring over a period of �3 years. They ascribe these local
deflations to small lake flooding events (one lake floods into
another 300 km away, above which the ice surface rises
several metres). Our theory can be applied to these floods
provided the value of � in Equation (35) is appropriate;
specifically, we need �d � 4m. From Equations (20)
and (16), � � � ¼ N0=�igd, so we see that the depth of
subsidence is of the order N0=�ig. Assuming this is 4m, we
infer that N0 � 0.4 bar. This is essentially the value that was
inferred for the effective pressure under ice stream B
(Whillans ice stream) (Blankenship and others, 1987), where
the ice overlies marine sediment (Kamb, 2001). The lake
described by Wingham and others (2006) lies in the
Adventure subglacial trench, which was presumably a large
lake even before Antarctic glaciation (Drewry, 1983,
sheet 6), and thus likely to be bedded with glaciolacustrine
sediments. We interpret the small subsidence observed by
Wingham and others (2006) as indicative of a high-pressure
canal-type drainage system (Walder and Fowler, 1994),
although jökulhlaups in such drainage systems have not
previously been described. Other interpretations are pos-
sible: for example, that the lake was small and simply
emptied.

Figure 3 shows a sequence of the surface profiles s as time
increases, obtained by solving the surface kinematic equa-
tion (35). The two features of these shapes are their depth
and the sharpness of the boundary layers. The depth is
controlled by the parameter � ¼ � while the boundary layer
thickness is ð��=�2Þ1=4. The depression of the surface of
�3m (over an ice depth of 4000m) suggests that � � 10–3

and N0� 0.3 bar. To calculate �� ¼ N0=�A, we use the
definition of �A in Equation (9). With � �0.2, ws� 3ma–1,
d� 4000m, As� 10–4 bar–3 a–1 (at –508C; Paterson, 1994),
we find �A� 0.67 bar and thus �� � 0:45. With � � 0:2

(a 20 km wide lake), we have the boundary layer width
ð�2=��Þ1=4 � 0:55. In this case the boundary layers are quite
wide, as indicated in Figure 3, where they essentially extend
to the centre of the depression.

5. CONCLUSIONS
The formation of cauldrons on the surface of ice caps is
associated with the emptying of subglacial lakes. The rate of
subsidence is directly related to the rate of lake discharge,
but requires an underpressure in the lake in order to
drawdown the overlying ice. The underpressure in the lake is
therefore related to the rate of subglacial lake discharge. This
has consequences for theories of jökulhlaups, since this
relationship is an essential part of the flood hydrograph
theory. Previous theories (e.g. Nye, 1976) have in effect
simply assumed a flotation condition for the ice over the
lake, but it is not obvious that this will apply when the lake is
isolated from the atmosphere. In this paper we have
presented the elements of a theory which can be used to
predict the relationship between ice surface subsidence and
lake underpressure. The theory is that of a viscous beam
(Howell, 1996; Ribe, 2001), and is based on the assumption
of small aspect ratio (depth/length) of the ice above the lake.
Providing a further parameter �� ¼ N0=�A is not too small,
where N0 is the scale of the effective pressure at the entrance
to the lake drainage channel and �A is the size of the
deviatoric normal stress in the ice, a boundary layer theory
shows that the bulk of the ice can effectively be considered
to be approximately in flotation, thus vindicating the Nye
assumption for closed subglacial lakes.

For rapid channel drainage, such as occurs following
subglacial volcanic eruptions, the induced beam stresses
may be very large (of the order 10 bar), and will cause
closely spaced ring fractures to occur in the beam as it

Fig. 3. Solution of Equation (35) (beginning at t ¼ 0 days) at
times t ¼ 350 days (a), t ¼ 371 days (b), t ¼ 382 days (c) and
t ¼ 393 days (d) using Equation (40) for Nþ, with t� ¼ 1,
c ¼ 2.5	 10–3, � ¼ 3, ��=�2 ¼ 15.8, and a time scale of
t0 ¼ 416days. The units of vertical subsidence are in metres, and
the units of horizontal distance are km. The results in the figure
correspond to a choice of �d ¼ N0=�ig ¼ 3 m, and thus
N0 ¼ 0.3 bar. The results are plotted for a lake of width 20 km, in
which case if d ¼ 4 km and � ¼ 0.2, �� ¼ 0.63, corresponding to a
value of �A ¼ 0.48 bar. No surface fracture is expected in this case.
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collapses. The present theory can be used to predict an
approximate fracture spacing, but does not seem to give
good quantitative agreement with observation, perhaps
because the model is not sophisticated enough.

The recent observation of small subsidence events (of the
order of metres) on Antarctica is indicative of small floods.
The duration of these floods (with a time scale of a year) is
comparable to those of simulations using Nye’s (1976)
theory (Evatt and others, 2006), but the slight depressions
either indicate very shallow lakes, or may imply that such
floods occur in channelized flow over soft sediments at low
effective pressure. We consider this latter (tentative) explana-
tion to be more robust. It raises further questions concerning
the nature of hydraulic drainage under ice sheets.
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