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Abstract

We show that the massless particle spectrum in a four-dimensional conformal Haag–Kastler net is
generated by a free field subnet. If the massless particle spectrum is scalar, then the free field subnet
decouples as a tensor product component.
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1. Introduction

Conformal field theories have been extensively studied in two-dimensional
spacetime. There are many examples; certain exact computations are available,
and they provide also interesting mathematical structures. On the other hand,
from a mathematical point of view, no nonperturbative construction of a single
interacting quantum field theory in four-dimensional spacetime is available today.
In this paper, instead of constructing models, we try to understand general
restrictions on models with a large spacetime symmetry. We prove that, if a
conformal field theory in four spacetime dimensions in the operator-algebraic
approach (Haag–Kastler net) contains massless particles, then there is a free
subnet generating the massless particles. Furthermore, if the massless particles
are scalar, then they decouple as a tensor product component. Therefore, massless
particles in conformal field theory cannot interact.

Actually, Buchholz and Fredenhagen already proved more than 30 years ago
that the S-matrix of a dilation-invariant theory is trivial [12]. Based on this result,
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Baumann [3] has shown that any dilation-invariant scalar field (in the sense
of Wightman) where a complete particle interpretation is available (asymptotic
completeness with respect to massless particles) is the Wick product of the
free field. Compared to these, our results are not necessarily stronger because
we assume conformal invariance. On the other hand, there are more general
aspects: our framework is Haag–Kastler nets, and we do not assume either the
existence of Wightman fields or asymptotic completeness. In two-dimensional
spacetime, triviality of the S-matrix does not necessarily imply that the net is free
(second quantized). Indeed, in our previous work [36], we have seen that a two-
dimensional conformal net is asymptotically complete with respect to massless
waves if and only if it is the tensor product of its chiral components. Hence
one may consider the tensor product subnet as the ‘particle-like’ (or ‘wave-like’)
part. However, chiral components can be highly nontrivial (different from the
second quantized net, the U(1)-current net). In comparison, in four dimensions,
we prove that the particle spectrum is generated by the free, second quantized net.
In particular, if the particles are scalar, the free field subnet which we construct
cannot have any nontrivial extension, and hence it must decouple in the full net.
This is the operator-algebraic version of the argument given in [2, Section 1].
Relaxing the assumption of asymptotic completeness (with respect to massless
particles) is important, because while there are many physical arguments that
dilation invariance should imply conformal invariance [16, 28], conformal field
theory may contain a massive spectrum (the meaning of ‘massive’ will be clarified
in Section 2.1.4), as one would expect from the maximally supersymmetric Yang–
Mills theory, which should be conformal [26].

We stress that our approach is nonperturbative. We make an assumption that
there is a nonperturbatively given model as a conformal Haag–Kastler net. The
existence of massless particles à la Wigner is defined in the sense that the
representation of the spacetime translations has nontrivial spectral projection on
the surface of the positive lightcone. In this case, Buchholz has established the
existence of asymptotic fields [10]. Besides, operator-algebraic scattering theory
has been successfully applied to many massive models in low dimensions. The
theory was able to reconstruct the factorizing S-matrix as an invariant of the net
[23, 37].

There are more claims that conformal fields with massless particles are free
with different assumptions [38, 39]. An advantage of our approach is to avoid any
field-theoretic calculation. One of the main tools is the Tomita–Takesaki modular
theory applied to conformal nets [7]: Brunetti, Guido, and Longo have shown
that the modular group of a double cone is certain conformal transformations
which preserve the double cone. This renders the central idea of our arguments
geometric, combined with the construction of asymptotic fields by Buchholz [10].
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Let us recall a technical conjecture in [10]. In order to obtain asymptotic
fields, one had to choose local operators with a certain regularity condition in the
momentum space, although Buchholz conjectured that this construction should
extend to any local operator. In our application, this restriction is a problem
because the regularity condition is not stable under conformal transformations.
We remove this restriction and show that the asymptotic fields are covariant under
the conformal transformation of the given net.

This paper is organized as follows. In Section 2, we summarize the foundations
of conformal nets and the massless scattering theory. The technical conjecture
above is proved there. We first state and prove our results on the existence
of a free subnet for globally conformal nets in Section 3. This additional
assumption greatly reduces the problem and emphasizes the geometric nature of
our proof. Section 4 treats the general case, not necessarily globally conformal
but conformal. We also prove the decoupling of the free scalar subnet. Finally, we
discuss open problems and future directions in Section 5.

2. Preliminaries

2.1. Conformal field theory. A model of quantum field theory is realized as a
net of von Neumann algebras. A conformal field theory is a net with the conformal
symmetry. We collect here the definitions and results necessary for our analysis.

2.1.1. The conformal group and the extended Minkowski space. We consider
R4, the Minkowski space. A conformal symmetry is a transformation of R4 which
preserves the Lorentz metric a · b = a0b0−

∑
akbk up to a function. Actually, we

allow a symmetry to take a meager set out of R4. Hence we need to consider local
actions, following the work by Brunetti, Guido, and Longo [7].

Let G be a Lie group, and let M be a manifold. We say that G acts locally
on M if there is an open nonempty set B ⊂ G × M and there is a smooth map
T : B → M such that the following hold.

(1) For any a ∈ M , Va := {g ∈ G : (g, a) ∈ B} is an open connected
neighborhood of the unit element e of G.

(2) Tea = a for any a ∈ M .

(3) For (g, a) ∈ B, it holds that VTga = Vag−1 and, for h ∈ G such that hg ∈ Va ,
one has Th Tga = Thga.

In the following, we only consider M = R4. The conformal group C
is generated by the Poincaré group, dilation, and the special conformal
transformations: a special conformal transformation is of the form ρτ(a)ρ,
where τ(a) is a translation by a ∈ R4 and ρ is the relativistic ray inversion
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Figure 1. The global space M̃ projected on the two-dimensional cylinder. The
region surrounded by thick lines is a copy of the Minkowski space.

ρa = − a
a · a .

This action is quasi global in the sense that for any g ∈ C the open set {a ∈ M :
(g, a) ∈ B} is the complement of a meager set Sg and it holds for a0 ∈ Sg that
lima→a0 Tga = ∞. In other words, the set of points in M which are taken out of
M by g is meager. This action T is transitive. It has been shown [7, Propositions
1.1, 1.2] that there is a manifold M̄ such that M is a dense open subset of M̄ and
the action T extends to a transitive global action on M̄ . Furthermore, the action
of T lifts to a transitive global action T̃ of the universal covering group G̃ of G
on the universal covering M̃ of M̄ .

We can realize M̄ concretely in R6 as follows:

N := {(ξ0, . . . , ξ5) ∈ R6 \ {0} : ξ 2
0 − ξ 2

1 − · · · − ξ 2
4 + ξ 2

5 = 0}/R∗,
where R∗ = R \ {0} acts on R6 by multiplication. For a ∈ M = R4, we
define the embedding by ξk = ak for k = 0, 1, 2, 3 and ξ4 = (1− a · a)/2,
ξ5 = (1+ a · a)/2. The group PSO(4, 2) acts on N , and this corresponds to the
action of the conformal group C . Since the image of M in N is dense, it follows
that N = M̄ [7]. One observes that N is diffeomorphic to (S3× S1)/Z2; hence its
universal covering is S3 × R (see Figure 1).

2.1.2. Conformal nets. An operator-algebraic conformal field theory, or a
conformal net, is a triple (A,U,Ω) of a map A from the family of open double
cones in M into the family of von Neumann algebras on H, a local unitary
representation (the group structure is respected only locally) U of the conformal
group C , and a unit vector Ω ∈ H such that the following hold.
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(1) Isotony. If O1 ⊂ O2, then A(O1) ⊂ A(O2).

(2) Locality. If O1 and O2 are spacelike separated, then A(O1) and A(O2)

commute.

(3) Local conformal covariance. For each double cone O ⊂ M , there is a
neighborhood VO of the identity of C such that VO ×O ⊂ B, where B is the
domain of the local action of C on M , such that Ad U (g)(A(O)) = A(gO).

(4) Positivity of energy. The spectrum of the subgroup of translations in C in the
representation U (this is well defined although the action U is local, since the
group of translations is simply connected) is included in the closed positive
lightcone V+ := {a ∈ R4 : a0 > 0, a · a > 0}.

(5) Vacuum. The vector Ω is invariant under the action of U . Such a vector is
unique up to a scalar.

(6) Reeh–Schlieder property. The vector Ω is cyclic and separating for each
local algebra A(O).

Note that the Reeh–Schlieder property is usually proved under additivity. We take
it here as an assumption for simplicity (see the discussion in [40, Section 2]).

A conformal net can be extended to M̃ with the action of C̃ [7, Proposition
1.9]. Indeed, the representation U lifts to C̃ , and the local algebra A(O) for O
which is not included in M̃ is defined by covariance.

A (conformal) subnet A0 of a net (A,U,Ω) is a family of von Neumann
subalgebras A0(O) ⊂ A(O) such that isotony and covariance with respect to the
same U hold. In this case, A0(O)Ω is a Hilbert subspace of H independent of O .

2.1.3. Bisognano–Wichmann property. Certain regions play a special role in the
study of conformal field theory. Here, we pick the standard wedge in the a1-
direction, the unit double cone, and the future lightcone:

• W1 := {a ∈ M : a1 > |a0|},

• O1 :=
{

a ∈ M : |a0| +
√

a2
1 + a2

2 + a2
3 < 1

}
,

• V+ := {a ∈ M : a0 > 0, a · a > 0}.
To each of these regions O in M̃ we associate a one-parameter group ΛO

t

in C̃ which preserves O and commutes with all O-preserving conformal
transformations.
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• For the wedge W1, we take the boosts in the a1-direction. They are linear
transformations, and their actions on (a0, a1) components can be written, in

a matrix form, as ΛW1
t =

(
cosh 2π t − sinh 2π t
− sinh 2π t cosh 2π t

)
.

• For the unit double cone, by rotation invariance the action is determined by the
action on the (a0, a1)-plane:

ΛO1
t a± = (1+ a±)− e−2π t(1− a±)

(1+ a±)− e−2π t(1+ a±)
,

where a± = a0 ± a1.

• For the future lightcone V+, we take the dilation: ΛV+
t a = e2π t · a.

These regions are mapped to each other by conformal transformations (on M̃),
and the associated transformations are coherent, in the sense thatΛO

t = g−1ΛO ′
t g,

where O = gO ′, g ∈ C̃ , and O, O ′ = W1, O1, V+. One can define ΛO
t for any

other double cone, wedge, or lightcone by coherence.
For a conformal net, the modular group of a local algebra with respect to the

vacuum has been completely determined [7].

THEOREM 2.1 (Bisognano–Wichmann property). Let (A,U,Ω) be a conformal
net, and consider its natural extension to M̃. Then, for any image O of a double
cone by a conformal transformation in C̃ , one has ∆i t

O = U (ΛO
t ), where ∆O is

the modular operator of A(O) with respect to Ω .

The following duality has been also proved [7].

THEOREM 2.2 (Haag duality on M̃). Let (A,U,Ω) be a conformal net, and
consider its natural extension to M̃. Then, for a wedge W , it holds that A(W )′ =
A(W ′).

Since a conformal transformation can bring a wedge to a double cone O ,
a similar duality holds for double cones. In that case, we need the causal
complement Oc on M̃ rather than the usual spacelike complement O ′ (see
Figure 2).

2.1.4. Representation theory of the conformal group. The conformal group
is locally isomorphic to SU(2, 2), and its unitary positive-energy irreducible
representations have been classified [25]. Using the dimension d > 0 and half-
integers j1, j2 > 0, they are parameterized as follows. When restricted to the
Poincaré group, one can consider the mass parameter m and spin s or helicity.
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Figure 2. Regions in the global space M̃ . The left and right sides are identified.
The white square: a copy of the Minkowski space. Black: a double cone O . Dark
gray: the spacelike complement O ′ of the double cone in the Minkowski space.
Light gray + dark gray: the causal complement Oc in M̃ .

• Trivial representation. d = j1 = j2 = 0.
• j1 6= 0 6= j2, d > j1 + j2 + 2. In this case, m > 0 and s = | j1 − j2|, . . . j1 + j2

(integer steps).
• j1 j2 = 0, d > j1 + j2 + 1. m > 0 and s = j1 + j2.
• j1 6= 0 6= j2, d = j1 + j2 + 2. m > 0 and s = j1 + j2.
• j1 j2 = 0, d = j1 + j2 + 1. m = 0 and helicity s = j1 − j2.

Hence, the only massless representations are the last family. In this paper,
when we say that a conformal net contains massless particles, it means that the
representation U has a subrepresentation in this family.

In [39], the following has been proved: if there is a quantum field (an operator-
valued distribution) which transforms as a vector in one of the above massless
representations, then it is free. This implicitly assumes that the massless particles
are generated by such a field. This is apparently a stronger assumption than the
one in the operator-algebraic approach (see Section 2.2) that local observables
generate states which contain massless particles.

The other nontrivial representations have mass m > 0. One can call them
massive, although there is no mass gap because of the action of dilations.

2.2. Massless scattering theory. In the operator-algebraic approach, the
concept of a particle is not given a priori, but has to be defined through
operational process. Such a theory for massless particles has been established
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in [10] for a Poincaré covariant net under the assumption that the representation
of the translation has nontrivial spectral projection corresponding to the cone
m = 0. In such a case, we say that the net contains massless particles (following
Wigner).

2.2.1. Convergence of asymptotic fields for regular operators. Let (A,U,Ω)
be a Poincaré covariant net (a net for which the covariance is only assumed for
the Poincaré group). Let x be an operator in A(O) which is smooth in norm
under the group action g 7→ Ad U (g)(x). There are sufficiently many such
operators. Indeed, if x is localized in a slightly smaller region than O , then one
can smear x with a smooth function with compact support in the group (note that
the conformal group C is finite dimensional). For a vector a ∈ M , we denote
x(a) = Ad U (τ (a))(x). For t ∈ R, we define

Φ t(x) := −2t
∫

S2
dω(n) ∂0x(t, tn),

where dω is the normalized rotation-invariant measure on S2 and ∂0 is the
derivative with respect to the time translation (which is independent from t). By a
straightforward calculation, one finds that

Φ t(x)Ω = 1
|P| (e

i t (H−|P|) − ei t (H+|P|))H xΩ,

where P = (H,P) is the generator of translation: U (τ (a)) = ei t P·a . Furthermore,
we need to take suitable time averages. We fix a positive, smooth, and compactly
supported function h with

∫
R h(t)dt = 1 and hT (t) = 1

log |T | h
(

t−T
log |T |

)
. We set

ΦhT (x) =
∫
R

dt hT (t)Φ t(x).

Then, by the mean ergodic theorem, one obtains [11]

s- lim
T→∞

ΦhT (x)Ω = P1xΩ,

where P1 is the projection onto the massless one-particle space, where H = |P|
holds (see Figure 3).

For any double cone O , we denote by VO,+ the future tangent of O , the set
of all points separated by a future-timelike vector from any point of O . For a
fixed double cone O+ in VO,+, there is a sufficiently large T such that ΦhT (x) is
contained in the causal complement of O+. In particular, for sufficiently large T ,
there is a large commutant for ΦhT (x), and one can define the operator Φout(x)
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Figure 3. This figure shows how asymptotic fields are constructed. A local
observable in a dark gray region is taken in the region between the cones indicated
by dotted lines.

by Φout(x)yΩ = s- lim T→∞yΦhT (x)Ω = y P1xΩ , where y ∈ A(O+). Let us
denote F(VO,+) =

⋃
O+⊂VO,+ A(O+) (the union, not the weak closure, and O+ are

bounded). The choice of O+ was arbitrary in VO,+; hence Φout(x) can be defined
on F(VO,+)Ω . It is easy to see that Φout(x) is closable. We denote the closure by
the same symbol, and its domain by D(Φout(x)). For N ∈ N, let AN (O) be the
linear span of the operators∫

R
dt ϕ(t)Ad U (τ (ta))(x),

where x ∈ A(Ǒ), a is a timelike vector, and ϕ is a test function with compact
support which has a Fourier transform ϕ̃(p) with an N -fold zero at p = 0, and
Ǒ + (suppϕ)a ⊂ O .

The following has been proved [10, Lemma 1, Lemma 6, Theorems 7, 8, 9].

THEOREM 2.3 (Buchholz). Let x = x∗ be an element of AN0(O), where N0 > 15,
O is a double cone, and VO,+ be the future tangent of O. Then the following hold.

(1) For an arbitrary y ∈ A(O+), where O+ ⊂ VO,+ is bounded, y ·D(Φout(x)) ⊂
D(Φout(x)), and one has [Φout(x), y] = 0 on D(Φout(x)).
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(2) The operator Φout(x) is self-adjoint and depends only on P1xΩ . The
subspace F(VO,+)Ω is a core of Φout(x).

(3) The sequence ΦhT (x) is convergent to Φout(x) in the strong resolvent sense.

(4) The operatorΦout(x) can be applied to the vacuumΩ arbitrarily many times.
We denote the vectors generated in this way recursively (the first term on the
right-hand side which contains n + 1 product is defined in this way):

Φout(x) · ξ1
out×ξ2

out× · · · out×ξn = ξ
out×ξ1

out×ξ2
out× · · · out×ξn

+
n∑

k=1

〈ξ, ξk〉ξ1
out× · · · ξ̌k · · ·

out×ξn,

where ξ = P1xΩ = P1x∗Ω and ξ̌k means the omission of the kth element.

Then the symbol
out× is compatible (unitarily equivalent) with the normalized

symmetric tensor product on the Fock space with the one-particle space
P1H. The domain ofΦout(x) includes the set Hout

prod of all linear combinations

(without closure) of product states ξ1
out×ξ2

out× · · · out×ξn , where ξk is an arbitrary
vector in P1H.

(5) It holds that Ad U (g)(Φout(x)) = Φout(Ad U (g)(x)) if g is a Poincaré
transformation.

(6) For the resolvent R±i(y) = (y ± i)−1 of y, it holds that

[R±i(Φ
out(x1)), R±i(Φ

out(x2))]
= 〈Ω, [Φout(x1),Φ

out(x2)]Ω〉 · R±i(Φ
out(x1))R±i(Φ

out(x2))
2 R±i(Φ

out(x1))

= Re 〈P1xΩ, P1x2Ω〉 · R±i(Φ
out(x1))R±i(Φ

out(x2))
2 R±i(Φ

out(x1)),

where Re denotes the real part of the following number.

(7) For x ∈ AN0(O) and y ∈ F(VO,+), it holds that [R±i(Φ
out(x)), y] = 0.

We note that by Claims (1) and (3), the domain of Φout(x) includes
F(VO,+)Hout

prod.
The restriction to AN0 is essential in the original proof [10]. The technical issue

is that the set AN0(O) is covariant under Poincaré transformations and dilations
but not under conformal transformations. We will extend these results to each
smooth operator in a local algebra A(O). This has been expected by Buchholz
himself in the same paper [10, P.157, footnote].
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2.2.2. Extension to general smooth operators. We exploit the arguments of [32,
Chapter VIII.7] and [31, Chapter X.10]. Let {An} be a sequence of (unbounded)
operators. The following is an adaptation of [31, Theorem X.63] to the case of
our interest.

LEMMA 2.4. Let {An} be a sequence of self-adjoint operators on H, whose
domains have a dense intersection D, and suppose that their resolvents R±i(An)

are strongly convergent, whose limits we denote by R±, and that, for each ξ ∈ D,
Anξ is convergent in norm, whose limit we denote by Aξ . Then there is a self-
adjoint extension Ã of A, and An is convergent to Ã in the strong resolvent sense.

Proof. We claim that ker R± = {0}. Let ξ ∈ ker R+ and let η ∈ D. It is clear that
R∗+ = R−. It holds that

〈ξ, η〉 = 〈ξ, R−i(An)(An − i)η〉
= 〈R+i(An)ξ, (An − i)η〉
= lim

n
〈R+i(An)ξ, (An − i)η〉

= 〈R+ξ, (A − i)η〉
= 0.

As D is dense, ξ = 0. Similarly, ker R− = {0}, and it follows that Ran R± are
dense in H since R± = R∗∓. Then, by the Trotter–Kato theorem [32, Theorem
VIII.22], there is a self-adjoint operator Ã, and An → Ã in the strong resolvent
sense.

The domain of Ã is exactly R±H, and for ξ ∈ D it holds that

R± · (A ± i)ξ = lim
n

R±i(An)(An ± i)ξ = ξ,

by the uniform boundedness of R±i(An); hence ξ is in the range of R±, and D is
included in the domain of Ã.

We do not know whether D is a core of Ã in general. We will prove this in the
case of asymptotic fields.

Let N0 > 15. For a smooth x ∈ A(O), where O is a double cone, there is a
sequence xn ∈ AN0(On) such that P1xΩ = lim P1xnΩ and P1x∗Ω = lim P1x∗nΩ
by the argument of [10, Remark, p.155], where {On} is growing to the past of O .
Namely, for n ∈ N, one can take ϕn(t), whose Fourier transform is

ϕ̃n(ω) = (1+ (e−iωn − 1)/ iωn)N0 · ϕ̃(ω/n),
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where ϕ is a test function which vanishes for t > 0 and
∫

dt ϕ(t) = 1. We define
xn =

∫
dt ϕn(t)Ad U (τ (t, 0))(x), where τ denotes the translation. If x is self-

adjoint, we may consider xn + x∗n , and assume that xn are self-adjoint as well.
It is clear that xn are contained in the union of past translations of O . Let On

be their localization regions. Let VO,+ be the future tangent of O; then it is the
future tangent of the finite union O ∪ O1 ∪ · · · ∪ On . By [10, Theorem 7] cited
above, all {Φout(xn)} are self-adjoint. In addition, F(VO,+)Ω , and accordingly
F(VO,+)Hout

prod, are common cores.

LEMMA 2.5. The sequence {Φout(xn)} is convergent in the strong resolvent sense.

Proof. Let us denote R±,n = R±i(Φ
out(xn)). On the subspace {yΩ : y ∈ F(VO,+)},

which is a common core for {Φout(xn)}, it holds that R±,n yΩ = y R±,nΩ and
y ∈ F(VO,+) is bounded. Since {R±,n} is uniformly bounded, it is enough to show
that {R±,nΩ} is convergent.

We know from [10] that Φout(xn) acts on Hout
prod like the free field. Since the

problem is now reduced to the vacuum Ω and the free fields, we can restrict
ourselves to Hout

prod and its closure, namely the Fock space generated fromΩ by the
fields. Let us denote ξn := P1xnΩ . The action of the exponentiated field eiΦout(xn)

on the vacuum Ω is given by eiΦout(xn)Ω = e−
1
2 〈ξn ,ξn〉eξn , where we introduced a

vector (cf.[24])

eη := Ω
⊕

k

1√
k!η

⊗k .

It is easy to see that 〈eη, eζ 〉 = e〈η,ζ 〉. Now it is obvious that η 7→ eη is continuous.
This implies the convergence eξn → eξ when ξn → ξ . The exponentiated field
acts by eiΦout(xn)eη = e−

1
2 〈ξn ,ξn〉e−〈ξn ,η〉eξn+η, and {eη} is total in the Fock space. The

whole argument applies to tξn for arbitrary t ∈ R, and hence {ei tΦout(xn)} is strongly
convergent to W (tξ) on the Fock space (because this sequence is uniformly
bounded), where W (ξ) is an operator which acts by W (ξ)η = e−

1
2 〈ξ,ξ〉e−〈ξ,η〉eξ+η.

Hence we obtain the convergence in the strong resolvent sense [31, Theorem
VIII.21]; in particular, {R±,nΩ} is convergent.

As seen from Theorem 2.3(3), {Φout(xn)} is convergent on Hout
prod, and hence on

F(VO,+)Hout
prod.

By Lemma 2.4, there is a self-adjoint operator, which we denote by Υ (ξ), such
that Υ (ξ) is the limit of {Φout(xn)} in the strong resolvent sense. Accordingly,
Υ (ξ) commutes with F(VO,+) on its domain. Importantly, we have shown that
Υ (ξ) is a self-adjoint extension of the limit of the sequence {Φout(xn)} on a
common domain F(VO,+)Hout

prod. Furthermore, the action of Υ (ξ) is determined
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by ξ as in Theorem 2.3(3). This implies thatΩ is in the domain of Υ (ξ)m for any
m ∈ N.

LEMMA 2.6. Any vector yΩ ∈ F(VO,+)Ω is an analytic vector for Υ (ξ). In
particular, F(VO,+)Hout

prod is a core of Υ (ξ).

Proof. We have to estimate Υ (ξ)k yΩ . The operator Υ (ξ) commutes with y and
acts on Ω as the free field. Hence we have

‖Υ (ξ)m yΩ‖ 6 ‖y‖ ·
(√
(2m)! 2−m(m!)−1

)
· ‖ξ‖m .

Then it is easy to see that
∑

m ‖Υ (ξ)m yΩ‖tm/m! is finite for any t , and, since
the subspace F(VO,+)Hout

prod of the domain is stable under Φout(ξ), by Nelson’s
analytic vector theorem [31, Theorem X.39, Corollary 2] (the stability of the
domain is important; We thank D. Buchholz for pointing out this assumption.),
F(VO,+)Hout

prod is a core of Υ (ξ).

LEMMA 2.7. The subspace F(VO,+)Ω is a core of Υ (ξ).

Proof. In [10, Lemma 6], it was shown that, if x0 ∈ AN0(O), N0 > 15, then the
domain D(Φout(x0)) of Φout(x0), which is defined as the closure of the operator
on F(VO,+)Ω , includes Hout

prod, and the action of Φout(x0) on Hout
prod is exactly same

as that of the free fields. Actually, the only properties of Φout(x0) used there are
those that Ω is in the domain of Φout(x0)

∗Φout(x0) and Φout(x0) commute with
F(VO,+), which are true also for Υ (ξ), as we have seen.

For the reader’s convenience, we review the proof of [10, Lemma 6]. Let
x0 ∈ AN0(O). There is an N (depending on n which appears later) such that there
is a sequence {yk} which belongs to AN (Ok), where Ok ⊂ VO,+ (the localization

region Ok depends on k), ykΩ → ξ1
out× · · · out×ξn weakly, and y∗k ykΩ is uniformly

bounded. To see that ξ1
out× · · · out×ξn is in the domain of Φout(x0), one needs to

estimate 〈Φout(x0)
∗η, ykΩ〉 for an arbitrary vector η ∈ D(Φout(x0)

∗). By using the
fact that Φout(x0) commutes with yk (which is also valid for Υ (ξ)), one obtains

|〈Φout(x0)
∗η, ykΩ〉|2 6 ‖η‖2 · ‖Φout(x0)ykΩ‖2

6 ‖η‖2 · ‖y∗k ykΩ‖ · ‖Φout(x0)
∗Φout(x0)Ω‖,

if Φout(x0)Ω is in the domain of Φout(x0)
∗. (This follows in the original proof

from the assumption that x0 ∈ AN0(O), and this is the only point where N0 > 15
is required. For Υ (ξ), we already know that that one can repeat its action on
Ω arbitrarily many times.) This expression is uniformly bounded by the choice
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of yk ; hence 〈Φout(x0)
∗η, ξ1

out× · · · out×ξn〉 is bounded by ‖η‖ times a constant, and

ξ1
out× · · · out×ξn belongs to D(Φout(x0)).

In order to get the explicit action ofΦout(x0) on ξ1
out× · · · out×ξn (see Theorem 2.3),

one takes a sequence {x (m)}, where each member belongs to AN (O (m)), double
cones growing to the past of O as in the construction before Lemma 2.5 (it is not
explicitly written in the original proof, but N must be chosen corresponding to
2(n + 1); see also [10, Lemmas 2, 3]). In this computation, the only point is that
{Px (m)Ω} can approximate Px0Ω , which is true also for ξ .

Although {ξk} are not completely arbitrary since ξ1
out× · · · out×ξn must be the limit

of ykΩ , they form a total set in the free Fock space. Once one has obtained
the action of Φout(x0) on a dense subspace, an arbitrary n-particle vector can be
approximated in the n-particle subspace, and the action of Φout(x0) is continuous
there; hence, by the closedness of Φout(x0), it follows that any vector in Hout

prod is
in the domain of Φout(x0). The same argument is valid for Υ (ξ).

Altogether, the closure of the restriction of Υ (ξ) to F(VO,+)Ω includes
F(VO,+)Hout

prod, and hence the full domain of Υ (ξ) by Lemma 2.6. This was what
we had to prove.

As Φout(x) is defined as the closure of the operator F(VO,+)yΩ 3 η 7−→
y P1xΩ , we can infer that Φout(x) = Υ (ξ).

THEOREM 2.8. For any x = x∗ ∈ A(O) smooth, Φout(x) is self-adjoint with a
core F(VO,+)Ω , where VO,+ is the future tangent of O. The sequence ΦhT (x) is
convergent to Φout(x) in the strong resolvent sense.

Proof. By definition, Φout(x) is the closure of the operator yΩ 7→ y P1xΩ on
F(VO,+)Ω . But sinceΥ (ξ)(= Υ (P1xΩ)) is self-adjoint and F(VO,+)Ω is its core,
it follows that Υ (ξ) = Φout(x), as their actions coincide on their cores.

As for the convergence, we follow the proof of [10, Theorem 9]. We know that
F(VO,+)Ω is a core for Φout(x), and that it is self-adjoint. For y ∈ F(VO,+),

s- lim
T→∞

(ΦhT (x)+ λ)−1(Φout(x)+ λ)yΩ
= s- lim

T→∞
(ΦhT (x)+ λ)−1(ΦhT (x)+ λ)yΩ = yΩ

by the uniform boundedness of (ΦhT (x) + λ)−1 for a fixed λ /∈ R. By the self-
adjointness of Φout(x), {(Φout(x) + λ)yΩ, y ∈ F(VO,+)} is dense in H, and
we obtain the convergence in the strong resolvent sense, again by the uniform
boundedness of the sequence.
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LEMMA 2.9. Let (A,U,Ω) be a conformal net. For x = x∗ ∈ A(O) smooth,
there is an O+ whose closure is contained in the future tangent VO,+ of O such
that A(O+)Ω is a core for Φout(x).

Proof. We work on the extension of A on M̃ and the lift of U to C̃ .
Recall that VO,+ is a translation of the future lightcone. Then there is a region

D in M̃ such that the inclusion VO,+ ⊂ D is conformally equivalent to O+ ⊂ V+,
where O+ is a double cone whose past apex is the point of origin. Then the
conformal transformations associated to V+, dilations, shrink O+. Accordingly,
the conformal transformations associated to D shrink VO,+ to double cones whose
past apex is the apex of VO,+ (see Figure 2). In this situation, such a transformation
also shrinks O .

Let g be a conformal transformation as in the previous paragraph. Now the
operator Φout(Ad U (g)(x)) has a core F(VO,+)Ω , and Ad U (g)(Φout(x)) has a
core U (g)F(VO,+)Ω = F(gVO,+)Ω , where F(gVO,+) is defined analogously
as F(VO,+). Their actions coincide on F(gVO,+)Ω; namely, for y ∈ F(gVO,+),
they give yΩ 7→ yU (g)P1xΩ = y P1U (g)xΩ (the conformal group preserves
P1H from the classification of unitary positive-energy representations; see
Section 2.1.4). The operator Φout(Ad U (g)(x)) is a self-adjoint extension of
Ad U (g)(Φout(x)) which is also self-adjoint; hence they must coincide.

In the discussion above, the domain of Φout(Ad U (g)(x)) naturally includes
A(gVO,+)Ω (note that A(gVO,+) is a von Neumann algebra). Reversing the
argument, for any x ∈ A(O) there is a sufficiently large double cone O+ in VO,+,
whose past apex is the future apex of O , such that A(O+)Ω is a core of Φout(x).

Until now, in this proof, and in Theorem 2.8, regarding the localization, we
have used only the assumption that, x is localized in O , a double cone in the past
tangent of VO,+. By considering Ad U (τ (−a))(x), which is localized in O − a
for a future-timelike vector a, and translating everything by a after the argument,
we see actually that A(O+ + a)Ω is a core of Φout(x). In other words, if x is
localized in a double cone, then there is another double cone in the future tangent,
separated by a nontrivial timelike vector, whose local operators can generate a
core for Φout(x).

COROLLARY 2.10. Let (A,U,Ω) be a conformal net. For x = x∗ ∈ A(O)
smooth and g ∈ C̃ sufficiently near to the unit element such that gO is still
a double cone in the Minkowski space M, it holds that Ad U (g)(Φout(x)) =
Φout(Ad U (g)(x)).

Proof. We may assume that x is localized in Ǒ , whose closure is still in O . Let
O+ + a be a double cone in VO,+ separated from the future apex of O such that
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A(O+ + a)Ω is a core for Φout(x) (Lemma 2.9). If g ∈ C̃ is sufficiently near to
the unit, we may assume the following.

• gǑ ⊂ O .

• gO and g(O+ + a) are included in R4.

• There is a double cone Ô+ which includes (O++ a)∪ g(O++ a) such that Ô+
and g−1 Ô+ are in the future tangent VO,+ of O .

The set A(Ô+)Ω is a core of Ad U (g)(Φout(x)) and Φout(Ad U (g)(x)). But their
actions on Ω coincide and they commute with A(Ô+); hence the operators must
coincide. This concludes the desired local covariance ofΦout(x)with respect to U .

We can now define the outgoing free field net by

Aout(O) := {Rλ(Φout(x)) : x = x∗ ∈ A(O) smooth, λ /∈ R}′′.
By Corollary 2.10, this net Aout is covariant with respect to the unitary
representation U for the original net A. The vacuum Ω is in general not
cyclic for Aout.

This free field net can be defined for any given net which contains massless
particles. We will show that it is a subnet for a given conformal net, namely
Aout(O) ⊂ A(O).

3. A proof under global conformal invariance

In this section, we show that a globally conformal net (defined below) contains
the second quantization (free) net if it has nontrivial massless particle spectrum.
Of course these two assumptions are very strong. We can actually drop global
conformal invariance as we will see in Section 4, but here we present a simpler
proof in order to clarify the ideas involved. This result should thus be considered
as a simplification in the operator-algebraic formulation of [3] with an additional
assumption, namely global conformal invariance (GCI). It is a strong property,
under which there are indications that the stress–energy tensor is the same as that
of the free field [33].

A conformal net (A,U,Ω) is said to be globally conformal if the extension
to M̄ (the compactified Minkowski space; see Section 2.1.1) already admits a
global action of C̃ (cf. [29, 30], where GCI is defined in terms of Wightman
functions). Namely, the action of C̃ factors through the action of C . For example,
the massless free fields with odd integer helicity are globally conformal, while
other free fields are not [19, Corollary 3.12].
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In this case, any two operators x, y localized in timelike-separated regions
commute. Indeed, any pair of timelike-separated regions can be brought into
spacelike-separated regions by an action of C .

The first consequence of GCI is the following.

PROPOSITION 3.1. For a net A with GCI, it holds that A(V+) = A(V−)′, where
V± are the future and past lightcones.

Proof. As remarked above, it holds that A(V+) ⊂ A(V−)′ by GCI. The modular
group for A(V−) with respect to Ω is the dilation [7] (see Section 2.1.3), and
thus the modular group for A(V−)′ with respect to Ω is again dilation (up to a
reparameterization). It is clear that A(V+) is invariant under dilation.

Let us recall the following simple variant of Takesaki’s theorem [34, Theorem
IX.4.2]. Assume that N ⊂M is an inclusion of von Neumann algebras, thatΩ is
a cyclic separating vector for M, and that the modular group Ad∆i t for M with
respect to Ω preserves N. Then there is a conditional expectation E : M → N

which preserves the state 〈Ω, ·Ω〉, and this is implemented by the projection P
onto the subspace NΩ: E(x)Ω = PxΩ . In particular, E(x) = x if and only if
x ∈ N.

In our situation, from Takesaki’s theorem it follows that A(V+) = A(V−)′

because Ω is cyclic for both algebras by the Reeh–Schlieder property (cf. [36,
Appendix A]). Therefore the projection above is trivial, and the two von Neumann
algebras must coincide.

LEMMA 3.2. For a net A with GCI, the outgoing free field net Aout is a subnet
of A.

Proof. Let O ⊂ V−, and let O+ ⊂ V+. In particular, O+ is in the future
tangent of O . By the construction of asymptotic fields, ΦhT (x) is in the spacelike
complement of A(O+) if x ∈ A(O); hence we have Rλ(Φout(x)) ∈ A(V+)′ by the
convergence in the strong resolvent sense, and by Proposition 3.1 this is equal to
A(V−). This implies that Aout(V−) ⊂ A(V−).

By conformal covariance with respect to the same representation U (see the
end of Section 2.2.2), with the conformal group C which takes V− to any double
cone O , we obtain Aout(O) ⊂ A(O).

We summarize the result.

THEOREM 3.3. Let (A,U,Ω) be a globally conformal net, and assume that the
massless particle spectrum of U is nontrivial. Then there is a subnet Aout of A,
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which is isomorphic to the free field net associated to the massless representation.
The free subnet Aout generates the whole massless particle spectrum of U.

Proof. Almost all statements have been proved above. The whole massless
particle spectrum of U is generated by Aout since {P1xΩ : x ∈ A(O)} is dense
in P1H by the Reeh–Schlieder property of A, and we only have to consider the
asymptotic fields for self-adjoint elements x+ = (x+x∗)/2 and x− = (x−x∗)/2i .
The exponentiated fields eiΦout(x±) are localized in Aout(O), and the one-particle
vectors are obtained by d

dt ei tΦout(x±)Ω .

One can analogously define Ain by taking the limit T → −∞. Now that we
know that the net A includes a free field subnet, it follows that Aout = Ain,
because we can choose local operators x which create one-particle states from
the free subnet. For the free field net, the asymptotic field net is of course itself,
so we obtain Aout = Ain. Accordingly, although one can define the S-matrix on the

subspace generated by Aout = Ain, roughly as the difference between ξ1
out× · · · out×ξn

and ξ1
in× · · · in×ξn (see [12], and [9] for its two-dimensional variant), it is trivial.

4. A general proof

Finally, let us prove the existence of a free subnet under conformal invariance
but not necessarily under global conformal invariance. If a net is not globally
conformal, it does not necessarily hold that A(V+)′ = A(V−), and our previous
argument does not work. Instead, here we use directed asymptotic fields defined
below. As already suggested by Buchholz himself [11, Section 4], Theorem 2.3
can be extended for asymptotic fields with a function f which specifies a direction
in which a local observable proceeds asymptotically. Such a directed asymptotic
field still has a certain local property, and we can construct a subnet.

4.1. Directed asymptotic fields. For a smooth function f on the unit sphere
S2 such that f (n) > 0 and

∫
S2 dω(n) f (n) = 1, we define

Φ t
f (x) := −2t

∫
S2

dω(n) f (n)∂0x(t, tn), Φ
hT
f (x) =

∫
R

dthT (t)Φ t
f (x),

where the notation is as in Section 2.2.1. In [10], the case where f = 1 has been
worked out, and it has been suggested in [11] that the whole theory works for a
general f . As we need certain extended results, let us discuss the proofs and how
they should be modified when f is nontrivial.
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First, we explain the following claim [11, Equation (4.3)]:

s- lim
T→∞

Φ
hT
f (x)Ω = P1 f

(
P
|P|
)

xΩ,

where P is the 3-momentum operator of the given representation U of the net (see
Section 2.2.1) and f (P/|P|) is defined by functional calculus. This follows from
the mean ergodic theorem analogously as in [10, Section 2]. Indeed, this time we
have

Φ t
f (x)Ω = −

i t
2π

∫
d EP

∫ π

0
sin θdθ

∫ 2π

0
dϕ f (θ, ϕ)ei t (H−n·P)H(xΩ)P ,

where P = (H,P),n = (sin θ cosϕ, sin θ sinϕ, cosϕ), and the integral is about
n (on the unit sphere) and the joint spectral decomposition with respect to P , and
accordingly (xΩ)P is the P-component with respect to it. Since the support of P
is included in the closed positive lightcone V+, the t-dependent phase vanishes
ei t (H−n·P) only on the surface of the cone H = |P|. Instead, on this surface the
integral with respect to θ, ϕ gives 2π

−i t |P| f
(

P
|P|
)

ei t (H−|P|) with additional terms
which tend to zero when the limit in the mean ergodic theorem is taken. (This
can be explicitly demonstrated by considering a function f which is z-rotation
symmetric. A general function can be approximated by sums of such functions
with different axis of symmetry in the L1-norm.) Hence we obtain the formula
above.

Only in this paragraph, the propositions and sections refer to those in [10].
Now, Lemma 1 can be modified straightforwardly. Lemma 2 is the main technical
ingredient and has been proved in the Appendix. Now, among the statements in
the Appendix, the only one in which the spherical integral matters is the Lemma,
in which commutators of spherically smeared operators are estimated. Here,
the only property essentially used in the estimate is locality of operators and
the integrand gets bounded by norm. This means that, if one has to smear the
integrand with f , it changes the weight of localization. However, as the integrand
is bounded by a norm and no other technique is required, one can simply bound
f by a constant in order to adapt the proof. By this bound, the estimate gets
simply multiplied by a constant depending on f . This does not affect the rest
of the arguments at all. Indeed, this Lemma is used later in the Corollary, and
indirectly in Proposition II, where the overall constant is unimportant. Finally,
Lemma 2 is proved in Section d), and the overall constant in the estimate
does not play any role; hence we obtain the modified Lemma 2. In the rest of
the paper, the spherical integral appears only through the correspondence from
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x to P1 f (P/|P|)xΩ . Accordingly, one can modify all the propositions of the
paper.

Thereafter, one can repeat our argument in order to extend the results from
AN0(O) to A(O). In summary, we obtain the following.

THEOREM 4.1. Let x = x∗, x1 = x∗1 , x2 = x∗2 be smooth elements (with respect to
C̃ ) of A(O), let O be a double cone, and let f, f1, f2 be smooth functions on S2.

(1) For arbitrary y ∈ A(O+), where O+ ⊂ VO,+ is bounded, y ·D(Φout
f (x)) ⊂

D(Φout
f (x)), and one has [Φout

f (x), y] = 0 on D(Φout
f (x)).

(2) The operator Φout
f (x) is self-adjoint and depends only on P1 f (P/|P|)xΩ .

The subspace F(VO,+)Ω is a core of Φout
f (x).

(3) The sequence ΦhT
f (x) is convergent to Φout

f (x) in the strong resolvent sense.
(4) The domain D(Φout

f (x)) includes the set Hout
prod of all product states

ξ1
out×ξ2

out× · · · out×ξn , and its action is

Φout
f (x) · ξ1

out×ξ2
out× · · · out×ξn = ξ

out×ξ1
out×ξ2

out× · · · out×ξn

+
n∑

k=1

〈ξ, ξk〉ξ1
out× · · · ξ̌k · · ·

out×ξn,

where ξ = P1 f (P/|P|)xΩ = P1 f (P/|P|)x∗Ω .
(5) For the resolvent R±i(y) = (y ± i)−1 of y, it holds that

[R±i(Φ
out
f1
(x1)), R±i(Φ

out
f2
(x2))]

= 〈Ω, [Φout
f1
(x1),Φ

out
f2
(x2)]Ω〉 · R±i(Φ

out
f1
(x1))R±i(Φ

out
f2
(x2))

2 R±i(Φ
out
f1
(x1))

= Re
〈

P1 f1

(
P
|P|
)

x1Ω, P1 f2

(
P
|P|
)

x2Ω

〉
·R±i(Φ

out
f1
(x1))R±i(Φ

out
f2
(x2))

2 R±i(Φ
out
f1
(x1)).

(6) For x ∈ A(O) and y ∈ F(VO,+), it holds that [R±i(Φ
out
f (x)), y] = 0.

Other propositions in [10, Section 4] can be appropriately modified, but we
state here only what we need.

4.2. Conformal free subnet. Let A be a conformal net with massless
particles. We consider the standard double cone O1. The following is an easy
geometric observation (c.f. [11, P.60]).
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LEMMA 4.2. For a double cone O which is sufficiently spacelike separated from
O1, there is a compact set Σ in S2 such that {a + (t, tn) : a ∈ O,n ∈ Σ,
t sufficiently large} is spacelike separated from O1.

Let us explain what ‘sufficiently separated’ means. First, we consider for
simplicity the point of origin and a spacelike vector v. We may assume that
v = (v0, 0, 0, v3), where |v0| < v3. The vectors in question are of the form

{(v0 + t, t sin θ cosφ, t sin θ sinφ, v3 + t cos θ), t > 0}.

As one can check easily, these are spacelike for sufficiently large t if cos θ >
v0/v3. In general, even if O and O1 are open regions, if the difference O1 − O is
almost in one direction, then the above arguments works.

From this, we see that certain directed asymptotic fields still have certain
locality.

LEMMA 4.3. For x ∈ A(O), where O ⊥ O1 (spacelike separated), and for a
smooth function f such that O and the support of f satisfy the situation of Lemma
4.2, Φout

f (x) is affiliated to A(O1)
′ = A(Oc

1).

Proof. This follows immediately from the localization of approximants ΦhT
f (x)

and their convergence to Φout
f (x) in the strong resolvent sense.

We construct a subnet of A as follows. First, consider the following:

Adir(Oc
1) :={Ad U (g)(Rλ(Φout

f (x))) : Im λ 6= 0, g ∈ C̃ (O1),

x ∈ A(O), O ⊥ O1, f as Lemma 4.3}′′,

where C̃ (O1) is the stabilizer group of O1 in C̃ . This is clearly a subalgebra of
A(Oc

1) = A(O1)
′. For any other double cone O in the global space M̃ , we can find

g ∈ C̃ such that O = gOc
1 . With this g, we define Adir(O) = Ad U (g)(Adir(Oc

1)).
This is well defined, because in the definition of Adir(Oc

1) above g runs in the
stability group C̃ (O1).

LEMMA 4.4. The family {Adir(O)} is a conformal subnet of A, and it generates
Hout from the vacuum Ω .

Proof. Covariance of Adir holds by definition (and well-definedness). Adir(O) is
a subalgebra of A(O), and hence locality follows. Positivity of energy and the
properties of vacuum are inherited from those of U and Ω .

https://doi.org/10.1017/fms.2014.16 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.16


Y. Tanimoto 22

Note that the closed subspace Hout = Hout
prod is invariant under U (g). Indeed,

we know already that Aout is a net whose restriction to the Minkowski space M
generates the subspace Hout. Any local algebra Aout(O), where O is a double
cone in M , produces a dense subspace of Hout from Ω , and, if g is in a small
neighborhood of the unit element of C̃ , then Aout(gO) is again a local algebra
in M and it generates another dense subspace of Hout; thus Hout is invariant
under such U (g). A general element g can be reached as a finite product of such
elements, and the invariance follows.

For O ⊥ O1, the fields Φout
f (x), x ∈ A(O) can generate P1χΣ(P/|P|)H, where

Σ is the compact set in Lemma 4.2 and χΣ denotes the characteristic function
ofΣ . One can patch suchΣ to see that the whole one-particle space is spanned by
Φout

f (x) which are affiliated to Adir(Oc
1). Since the second quantization structure

is the same, Adir(Oc
1)Ω includes the whole free Fock space Hout. As Hout is

invariant under U (g), by the construction of Adir(Oc
1), H

out is the Hilbert subspace
generated by Adir(Oc

1) from Ω . Then the same holds for an arbitrary double cone
by the covariance of Adir and the invariance of Hout. This is the Reeh–Schlieder
property of Adir (as a subnet).

Now we consider the isotony of Adir. The modular group of A(O) acts
geometrically, and Adir(O) is invariant under that by construction. By Takesaki’s
theorem, there is a conditional expectation Edir from A(O) to Adir(O)
implemented by the projection Pout onto Hout. It is immediate that this defines a
coherent family of conditional expectations in the sense that Edir does not depend
on O , because it is implemented by the same projection Pout. With this, the
isotony of Adir follows from the isotony of A.

PROPOSITION 4.5. Two nets Adir(O) and Aout(O) coincide, the latter being
defined in Section 2.2.2.

Proof. If x ∈ A(O) and y ∈ A(O1), where O ⊥ O1 and f is chosen for the pair
O, O1 as in Lemma 4.2, then Φout

f (x) and Φout(y), or their resolvents, commute
by the techniques of Jost–Lehmann–Dyson representation as in [22, Section 4]
[10, Theorem 9]. We know that Aout is covariant with respect to U . In particular,
Aout(O1) is invariant under Ad U (g), where g ∈ C̃ (O1). By definition of Adir, the
two nets Adir and Aout are relatively local.

We saw also in Lemma 4.4 that they generate the same Hilbert subspace Hout.
Both nets Aout and Adir are conformal with respect to U , relatively local, and span
the same Hilbert subspace. By the standard application of Takesaki’s theorem as
in Proposition 3.1, these local algebras coincide.

This concludes our construction. Any conformal net, global or not, contains a
free subnet Aout = Adir which generates the massless particle spectrum.
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Decoupling of the free field subnet. The next proposition works with Haag dual
(for double cones in M) nets with covariance with respect to the Poincaré group.
A net has the split property if, for each pair O1 ⊂ O2 such that O1 ⊂ O2,
there is a type I factor R such that A(O1) ⊂ R ⊂ A(O2). A DHR (Doplicher–
Haag–Roberts) sector of the net A is the equivalence class of a representation
π of the global C∗-algebra

⋃
O A(O)

‖·‖
, where O are double cones under certain

conditions [18]. Among others, the most important one is that there is a double
cone O such that the restriction of π to

⋃
O ′⊥O A(O ′)

‖·‖
(⊥ denotes the spacelike

separation) is unitarily equivalent to the identity representation (the vacuum
representation).

PROPOSITION 4.6. Let A be a Haag dual subnet of a Haag dual net F on
a separable Hilbert space, and assume that A has split property and has no
nontrivial irreducible DHR sector (if A ⊂ F is an inclusion of conformal nets, we
have the Haag duality on M̃, and we do not need the Haag duality on M). Then F

decouples: namely, F(O) = π̃0(A(O))⊗ C0(O), where C(O) = A(O)′ ∩ F(O)
is the coset net, C0 is the irreducible vacuum representation of C, and π̃0 is the
vacuum representation of A (the restriction of A to its cyclic subspace).

Proof. The argument here is essentially contained in the proof of [14, Theorem
3.4], and has been suggested to apply to globally conformal nets in [2].

The representation of A on the vacuum Hilbert space of F is a DHR
representation of A [14, Lemma 3.1] (this can be proved under the split property
of A only, from which it follows that local algebras are properly infinite, and
separability of the Hilbert space); hence by the split property it is the direct
integral of irreducible representations (see [21, Proposition 56], which is written
for nets on S1 but the arguments apply to nets on M), and by assumption it is
the direct sum of copies of the vacuum representation. Hence, on the Hilbert
space of F, an element x ∈ A(O) is of the form π̃0(x)⊗ C1 with an appropriate
decomposition H =HA⊗K. Since A is Haag dual on its vacuum representation
π̃0, we have A(O ′) = π̃0(A(O ′)) ⊗ C1 = π̃0(A(O))′ ⊗ C1. By the relative
locality of F to A, we have F(O) ⊂ A(O ′)′ = π̃0(A(O))⊗B(K). Now we have
an inclusion

A(O) = π̃0(A(O))⊗ C1 ⊂ F(O) ⊂ π̃0(A(O))⊗B(K).

This relation holds also for a wedge W ,

A(W ) = π̃0(A(W ))⊗ C1 ⊂ F(W ) ⊂ π̃0(A(W ))⊗B(K),

but the wedge algebra π̃0(A(W )) in the vacuum representation is a factor [4,
1.10.9 Corollary]. Now, by [17, Theorem A], there is C0(W ) ⊂ B(K) such that
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F(W ) = π̃0(A(W )) ⊗ C0(W ). It is clear that F(W ) = A(W ) ∨ C(W ), where
C(W ) = F(W ) ∩A(W )′.

By Haag duality of the both nets F and A, we have

F(O) =
⋂

O⊂W

F(W ) =
⋂

O⊂W

π̃0(A(W ))⊗ C0(W ) = π̃0(A(O))⊗
⋂

O⊂W

C0(W ).

By defining C(O) := F(O) ∩ A(O)′ = C1 ⊗ ⋂
O⊂W C0(W ) and C0(O) =⋂

O⊂W C0(W ), we obtain F(O) = π̃0(A(O))⊗ C0(O) = A(O) ∨ C(O).
If A ⊂ F is an inclusion of conformal nets, we can directly argue with double

cones O . Each A(O) is a factor, the modular group acts geometrically, and
Haag duality holds on M̃ (one should simply transplant the duality argument
to M̃) [7].

COROLLARY 4.7. Let (A,U,Ω) be a conformal net, and assume that the
massless particle subspace P1H of U consists only of the scalar representation
with finite multiplicity. Then the free subnet Aout decouples in A, namely A(O) =
Aout(O) ∨ C(O), where C(O) := A(O) ∩Aout(O)′ is the coset subnet.

Proof. The scalar free field net has no nontrivial DHR sector [1, 15], and has the
split property [8, 13]. These properties are inherited by any finite tensor product.
Thus the claim follows from Proposition 4.6.

5. Open problems

We have shown that massless particles in a conformal net are free. However,
massless representations are only one of the families of the irreducible
representations of the conformal group. Unfortunately, at the moment the
scattering theory, which extracts free fields, is not applicable to the rest of the
family. It would be interesting if one could extract other fields by a different
device. This would not be very easy, because in general they are expected to be
interacting (for example, the super Yang–Mills theory [26]).

As for decoupling, it relies on the split property and the absence of a DHR
sector of the scalar free field. As the proofs in the scalar case are based on
the arguments in one-particle space and the second quantization, we expect that
similar results should hold for each massless finite-helicity representation of the
conformal group.

Another interesting question is whether it is possible to prove conformal
covariance from scale invariance (under certain additional conditions). Some
results have been obtained in this direction [16, 28]. An operator-algebraic proof
is unknown (if we do not assume asymptotic completeness, compare with [36]).
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By comparing with the result that any massless asymptotically complete model
in two dimensions can be obtained by ‘twisting’ a tensor product net [35, Section
3] [5, Proposition 2.2], one may wonder whether such a structure is available
in four dimensions, too. This is not straightforward, because wedges are not
suited for the scattering theory in four dimensions. Neither are lightcones, because
the intersection of the shifted future and past lightcones does not give back
the algebra for a double cone even in the free field net [20]. Related to this
issue is whether the S-matrix is a complete invariant of a net under asymptotic
completeness. This is open also for massive theories, although partial results are
available [6, 27].
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