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ONE SIDED SF-RINGS 
WITH CERTAIN CHAIN CONDITIONS 

YUFEI XIAO 

ABSTRACT. We prove that with some weak chain conditions, left SF-rings are semi-
simple Artinian or regular. We also prove that MERT left SF-rings are really regular. 

A Ring R is called a left {right) SF-ring if all simple left (right) ̂ -modules are flat. This 
paper investigates left SF-rings with certain chain conditions. It shows that with some 
weak chain conditions, left SF-rings are semisimple Artinian rings or regular rings. The 
rest of this paper settles some open questions. Yue Chi Ming asked if MERT right SF-
rings are regular. J. Zhang and X. Du [12] answered it recently in the positive. The next 
question is if MELT right SF-rings are regular. J. Zhang and X. Du [12] assert that this is 
still open. Some recent papers show that these rings are regular if some weak conditions 
are added (see [9] and [12]). Here we point out that these conditions are unnecessary 
because MELT right SF-rings are really regular. Finally, we give an example of a left 
hereditary non-semisimple ring which contains an injective maximal left ideal. This set
tles a question proposed by Yue Chi Ming [9]. 

All rings throughout this paper are associative and have identities. A ring R satisfies 
PDCC1 (the descending chain condition on the principal right annihilators) if there does 
not exist a properly descending infinite chain: r(x\ ) > r(x2) > • • • > r(xn) > • • •, for any 
sequence {jcn}?° C R. Similarly we may define PACC1, x PDCC and x PACC. A ring 
R satisfies left PACC (the ascending chain condition on the principal left ideals) if there 
does not exist a properly ascending infinite chain: Rx\ < Rx2 < • • • < Rxn < • • •, for 
any sequence {xn}i° C R. Similarly we may define right PACC and left (right) PDCC. 
Clearly the rings satisfying left (right) PDCC are just right (left) perfect rings. When 
RR is /7-injective (i.e. any /^-homomorphism from a principal right ideal of R to RR can 
be extended to an /Miomomorphism from RR to RR). It is easy to show that R satisfies 
PACC1 (resp. PDCC1) if and only ifR satisfies left PDCC (resp. right PACC). Therefore, 
speaking roughly, we say that PACC1 is the dual of left PDCC etc. A ring R is called left 
(right) quasi-duo if all maximal left (right) ideals oïR are two-sided. R is called an MELT 
(resp. MERT) ring if all essential maximal left (resp. right) ideals are two-sided. R is 
called (Von Neumann) regular if for every x G R, there exists a y G R, such that x = xyx. 
J(R), Z(RR) and SOC(RR) denote, respectively, the Jacobson radical, the right singular 
ideal and the right socle ofR. For any subset X ofR, we define r(X) — {r G R\ Xr = 0}. 
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1. Left SF-rings with certain chain conditions. 

LEMMA 1.1. Let Rbe a ring and I is a left ideal ofR; then the following are equiv
alent: 

(1) R{R/I) is flat. 
(2) For every x £ I, x E xl. 

PROOF. See [1,19.18]. • 

REMARK. This lemma implies that all quotient rings of left SF-rings are left SF-
rings. 

LEMMA 1.2. Let Rbe a left SF-ring; then 
(1) For every x G R, Rr(x) + Rx = R. 
(2) Z(RR) Ç J(R). 

PROOF. ( 1 ) If Rr(x) +Rx ^ R, then there must exist a maximal left ideal MofR such 
that Rr(x) +Rx<M < RR. This would yield 1 G M from Lemma 1.1. 

(2) For every x G Z(RR), r{\ — x) = 0. Thus from (1) we have R(l — x) = R, which 
implies that Z(RR) is a left quasi-regular ideal of R. Therefore Z(RR) Ç J(R). m 

THEOREM 1.3. For a left SF-ring R, the following are equivalent: 
(1) R is semisimple Artinian. 
(2) R is left or right Noetherian. 
(3) R/J(R) is semisimple Artinian. 
(4) R is semiprimitive andRR has finite rank. 
(5) R satisfies ^PACC. 
(6) R satisfies PDCCX. 
(7) R satisfies left PACC. 

PROOF. (2) => (3). When R is left Noetherian, from the well-known fact that finitely 
related flat modules are projective, we see that all simple left /^-modules are projective. 
Therefore R must be semisimple Artinian. Now assume that R is right Noetherian; then 
the semiprime ring R/J(R) is also a left SF and right Noetherian ring. Let Q denote 
the semisimple Artinian quotient ring. Take a b~l G Q where b G R/J(R); then b is 
regular, so from Lemma 1.2(1) we see b~l G R/J(R). Therefore R/J(R) coincides with 
its semisimple Artinian quotient ring. 

(3) => (1). If R/J(R) is semisimple Artinian, then/?(/?//(/?)) is also semisimple. This 
implies that R(R/J(R^j is flat. Take an x G J(R); from Lemma 1.1 there is a y G J(R) 
such that x = xy, and so x(l — v) = 0. This implies x = 0 because 1 — y is invertible. 
Therefore, J(R) = 0. 

(4) => (1). In this case Z(RR) = 0 and so the maximal right quotient ring QofR exists 
and has also a finite rank. Therefore Q must be semisimple Artinian because it is regular. 
This implies that R has ACC1 and so R is a semiprime Goldie ring. Thus by the same 
argument as (2) implies (1) we see that R must be semisimple Artinian. 
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(5) => (1). Let M be a maximal left ideal of R. From Lemma 1.1 we have x G xM for 
every xGM. NOW take a n ^ G M such that 1(1 — e) is maximal among all 1(1—x) where 
JCGM. 

CLAIM. /(I - e) = M, i.e., M = /te, am/ e2 = e. 

If there is a y G M such that y( 1 — e) ^ 0: Noting v( 1 — e) G M, there exists an e' G M, 
such that v(l — e) = y(l —e)ef, so y = y(e + e' — ee'). Denote/ = e + e' — ee' £ M. Since 
(1 - / ) = (1 - e)(l - *'), XI - / ) = 0 andy(l -e)?0, we get /(l - e) C /(l - / ) , a 
contradiction. Therefore, the claim is true. 

Now from the above claim, R(R/M) is projective for every maximal left ideal M of 
R, so R must be semisimple Artinian. 

NOTE. This proof is essentially the same as [8, p. 237]. 
(6) => (1). Take a maximal left ideal M of R. 

CLAIM 1. For every x G M, r/zere ejc/sta an idempotent ex G M, swc/z that x = jce*. 

From Lemma 1.1 we have a sequence {*n}ï° C M such that 

X = XX\, X\ — X\X2, • . . , -Xjt = xkxk+\-> • • • • 

This yields 

K*)>K*i )>K* 2 ) > • • • > * * * ) > • • • • 

Therefore, there exists a positive integer n, such that r(jcn) = r(xn+\). Denote ex — xn+\, 
then ex is an idempotent in M and 

x = xx\ = XX2X3 — - - - = xx\ - • -xn = xx\ • • -xnex = xex. 

This completes the proof of Claim 1. 
Now take an e G M such that r(e) is minimal among all r(x) where x G M. From 

Claim 1 we may assume, without loss of generality, that e is an idempotent. 

CLAIM 2. M = Re. 

If M ^ /te, then there exists a n / E M, such that/(l — e) ^ 0. Again from Claim 1 
we may assume, without loss of generality, that/ is an idempotent and r(f) is minimal 
like r(e). Noting/(l — e) G M, there is an ^ G M such that/(l — e) — f(\ — e)e', 
i.e. f — f(e + e' — ee'). Since e + e' — ee' G M, from the above assumption we have 
Kf) — Ke + e' — ee')' But clearly r(e + e' — ee') Ç r(», so we get /"(/") Ç r(e) and 
K/") = r(e) which implies /?(/) = Re, a contradiction. Therefore, M = Re. 

From these two claims, we see that R must be semisimple Artinian. 
(7) => (1). Again, we show that every maximal left ideal of R is generated by an 

idempotent. Let M be a maximal left ideal and x G M. From Lemma 1.1 there is a 
sequence {xw}^° C M such that 

X = XX\, X{ = X\X2, • • . , Xfc — xkxk+\> • • • • 
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Since the chain 

RxÇRxi QRx2Ç:"'QRxkQ'" 

stops for some n, we have xn+\ = yxn for some y G R. Thus xn — xnyxn and it is easy 
to verify that x = xex, where ex — yxn G M and ex is an idempotent. This shows that 
Claim 1 is also true in this case. Now take an e G M such that Re is maximal among 
all Rx where x G M. From the above discussion, we can choose e to be an idempotent. 
If there is a n / G M such that/ ^ /?, then from the above discussion we may assume, 
without loss of generality, that/ is an idempotent and Rf is maximal like Re. Thus by 
exactly dualizing the proof of Claim 2 we have Re — Rf, a contradiction. This shows 
Re = M. Therefore R is semisimple Artinian. This completes the proof of the theorem. • 

Goursand and Valette [7] show that for a regular ring R, all primitive factor rings of 
R are Artinian if and only if all homogeneous semisimple right /^-modules are injective. 
We generalize this to the left SF-rings. 

PROPOSITION 1.4. For a left SF-ring R, the following are equivalent: 
(1) All right primitive factor rings ofR are Artinian. 
(2) All homogeneous semisimple right R-modules are injective. 

If either of these two conditions holds, then R is a regular and V-ring. 

PROOF. (1) => (2). Take a maximal right ideal M ofR, and let P = r((R/M)R). From 
the given condition and that R/P is also a left SF-ring, R/P must be semisimple Artinian 
by Theorem 1.3. This implies that R(R/P) is also semisimple, so R(R/P) is flat and so 
(R/M)R is injective because (R/M)R/P is (see [5,6.17]). Thus R is a right V-ring, and so 
from a result of G. Baccella [2] R is regular. Therefore (2) is true from [5, 6.18]. 

(2) =̂> (1). Take a right primitive ideal P ofR. 

CLAIM. (R/P)R/P has finite rank. 

Assume that there exists a sequence {xn}f C R/P such that each xn ^ 0 in R/P and 
©£Lj xnR C R/P. Take a faithful simple right tf/P-module A; then for every xn there 
exists an an G A, such that anxn ^ 0. Now let B — ®%L\ An where each An = A; then BR 

is injective. The rest of the proof is the same as [5, 6.18] which yields a contradiction. 
Therefore R/P must have a finite rank. 

From Theorem 1.3 we see that R/P must be (semisimple) Artinian. • 

2. Answering some questions. 

LEMMA 2.1. IfR is a left SF-ring and (j(R))2 = 0, then J(R) = Z(RR). 

PROOF. If there exists an x in J(R) which is not in Z(RR), then there is a 0 ^ y G R 
such that 

r(x)nyR = 0. 

Since (J(R)) = 0, y is not contained in J(R). Therefore there is a maximal left ideal 
M of R such that y is not contained in M. But xy G M implies there is an m such that 
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xy = xym so that jcy(l — m) = 0. This means v(l — m) — 0 and so y = yra G M, a 
contradiction. 

Therefore, together with Lemma 1.2, /(/?) = Z(RR). m 

With this lemma, we answer the following open question (see [9, Proposition 2] and 
[12, Theorem 4 and 5]): 

PROPOSITION 2.2. An MERT left SF-ring is regular. 

PROOF. Let R be such a ring; then R/ Soc(RR) is a right quasi-duo and left SF-ring. 

Therefore R/ Soc(RR) is a strongly regular ring from [11, 4.10]. Thus J(R) Ç Soc(RR), 

which implies (/(/?)) = 0. 

Assume Z(RR) ^ 0. Take a nonzero JC G Z(7?#) and a maximal right ideal M of R 
which contains r(jc). Since JC G r(jc) and M is also a maximal left ideal oiR, there is an 
m G M such that JC = JCW so that JC(1 — m) = 0 and 1 — m G r(x) Ç M so 1 G M, 
which is impossible. So Z(RR) = 0, and from Lemma 2.1 J(R) = 0. Therefore, from the 
well-known fact, which says that SOC(RR) is a regular ideal of R for a semiprime ring /?, 
/? must be regular. • 

PROPOSITION 2.3. IfR is a left SF-ring and R/ Soc(RR) satisfies one of seven con
ditions listed in Theorem 1.3, then R is regular. 

PROOF. Let S — SOC(RR). Then R/S is semisimple Artinian which implies R(R/S) 

is flat and (j(R))2 = 0. 

Assume that there is an JC G Z{RR) which is not zero. Since (R/S)R is Artinian, 
S <e RR, and so there is an r G R such that 0 ^ jcr G S. Thus from Lemma 1.1 there is 
an s G S such that jcr = (jcr)s" = x(rs) = 0, because rs G S. This contradiction shows that 
Z(RR) = 0. Therefore R must be semiprime and so R must be regular. • 

A ring R is called a right Sl-ring if all singular right J?-modules are injective. 

COROLLARY 2.4. A left SF right Sl-ring R must be regular. 

PROOF. R/ SOC(RR) is right Noetherian from [6,3.6]. • 

EXAMPLE 2.5. Let R be upper triangular matrix ring over a division ring D. R is 
Artinian and hereditary (see [4, 4.8]). Denote e — ^2,2»/ = 1̂,1 • Now we can easily 
verify that both e and/ are primitive idempotents and 

Soc(RRe) 9É R{Rf/Jf\ Soc(fRR) * {eR/eJ)R. 

Therefore Re is an injective left ideal ofR from Fuller-theorem [3, 31.3]. Clearly Re is 
also a maximal left ideal ofR. This answers a question of Yue Chi Ming [9]. 

The author expresses his sincere appreciation to Victor Camillo for his helpful advice. 

https://doi.org/10.4153/CMB-1994-040-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-040-8


SF-RINGS WITH CERTAIN CONDITIONS 277 

REFERENCES 

1. F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag, 1974. 
2. G. Baccella, Von Neumann regularity of V-rings with Artinian primitive factor rings, Proc. Amer. Math. 

Soc. (3) 103(1988), 747-749. 
3. K. R. Fuller, Artinian rings, Murcia, Universidad, Secretariado de Publicaciones, 1989. 
4. K. R. Goodearl, Ring theory, Nonsingular rings and modules, 1976. 
5. , Von Neumann regular rings, Pitman, London-San Francisco-Melbourne, 1979. 
6 , Singular torsion and the splitting properties, Mem. Amer. Math. Soc. 124, (1972). 
7. J. M. Goursaud and J. Valette, Sur l'enveloppe injective des anneaux de groupes régulier, Bull. Soc. Math. 

France 103(1975), 91-102. 
8. A. Kertesz, Vorlesungen iiber artinsche ringe, Budapest, 1968. 
9. Y. C. Ming, On biregularity and regularity, Comm. Algebra (3) 20(1992), 749-759. 

10. V. S. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc. 
48(1975), 21-25. 

11. M. K. Rege, On Von Neumann regular rings and SF-rings, Math. Japon. 31(1986), 927-936. 
12. Z. Zhang and X. Du, Von Neumann regularity of SF-rings, Comm. Algebra, to appear. 

Department of Mathematics 
University of Iowa 
Iowa City, Iowa 52242 
U.S.A. 

https://doi.org/10.4153/CMB-1994-040-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-040-8

