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Abstract

Let ve be a sequence of DiPerna-Majda approximate solutions to the 2-d incompressible Euler equations.
We prove that if the vorticity sequence is weakly compact in the Hardy space H'(R2) then a subsequence
of ve converges strongly in the energy norm to a solution of the Euler equations.
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The convergence of approximate solutions v( of the 2-d inviscid Euler equations
as the regularization parameter e goes to zero has been studied by DiPerna and Majda
in a series of papers ([4, 5, 6]). In [4, 5] they give several examples of sequences
of compactly supported approximate solutions ve (as defined in [4, Definition 1.1])
whose vorticity of is bounded in L1 which fail to be compact in L2 so that in the limit
concentration phenomena occur. Moreover in [4, Theorem 1.3] a criterion which rules
concentrations out is proposed: it is shown that a uniform bound on a logarithmic
Morrey norm of of yields strong L2-convergence of the velocity field.

In this note a different criterion for compactness is introduced: we show that
strong L2-compactness of v€ follows from weak compactness of of in the Hardy
space Hl(R2). Since Hl(R2) is not rearrangement invariant the fine structure of the
vorticity plays a crucial role in getting strong L2-convergence. We recall that by
the Dunford-Pettis theorem (see [7, VIII, Theorem 1.3]) a necessary and sufficient
condition for a subset A of V{R2) to be weakly pre-compact in L'(^) is that

(1) lim (sup / \f\dx) = 0
*-+°° V/eA J\x\>s J
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and that there exists a positive function G(s) :/?+—> R+ such that

lim G(s)/s = +00
5->+OO

and

(2) sup / G(\f\)dx <+oo .
/6A Jit*

Let Rj,i = I, 2, denote the Riesz transforms:

We adopt both notation and terminology of [4]. We formulate our result as follows.

THEOREM 1. Let v( be a sequence of approximate solutions such that of e // '(/?2)
n C™(R2) and that for t > 0

(3) \\co((.,t)\\HI <C, 0<€<€0.

Moreover let there be a function G(s) : R+ —*• R+ such that (1) and (2) hold for
A = {a/}, {/?,*/}, i = l, 2.

Then there is a subsequence of ve which converges strongly in L]oc to a weak
classical solution v of the Euler equations. Moreover v e WlA(R2).

We recall (see [8, Ch. XIV]) that a function / belongs to the Hardy space Hl(R2)
if and only if there is a sequence of numbers Xj satisfying J ^ |A; | < oo and a series
of functions (atoms) a, such that

(4)

where the a'jS have the following properties:

(a) aj is supported on a ball Bj and ||a; ||oo < l/\Bj\;
(b) fR1aj(x)dx = 0.

The //'-norm of / can be defined as the infimum of the expressions ^ f \kj\ on all
possible representations of / as in (4).

If Condition (b) were dropped the resulting space would be L'(/?2). The subtle
cancellation effect due to (b) (cf. 'phantom vortices' in [4, l.A]) is crucial in obtaining
strong L2-compactness.

PROOF OF THEOREM 1. To prove the theorem we introduce the stream function ^
such that
(5)
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and we proceed as in the proof of [4, Theorem 3.1]. It is known (see [8, Chapter XV])
that for every / in BMO(R2) there are g, in L°°(R2), i = 0, 1, 2, such that

Hence

fat dx = f
JRI

of (g0 +
\

dx = f «?8o ~ Y, giRi^dx.

By our Assumption (2) the sequence {cof} and its Riesz transforms admit a weakly
convergent subsequence in Ll(R2). Therefore there is a subsequence such that

(6) to - ^ co weakly in / / ' ( /?) -

The statement of Theorem 1 is guaranteed (see [4, (3.6)]) by showing that for all
P € C~(*2)

(7) lim / p\v(\2dx= I p\v\2dx.

Indeed after integrating by parts (7) is seen to hold if and only if (see [4, (3.7H3.10)])

(8) lim I prfr^af dx = I pxjrdco
e~>°jRl jRl

where \js is the stream function corresponding to co in (5).
We recall that

Hence

= -RjRkAf.

= -RjRkco\

Since the Riesz transform maps Hl(R2) continuously into itself we obtain

(9)
dxjdxk

<
L<

d2

dXjdxk
<C\\coe\\H,

and \fr( remains bounded in W21(R2).
We recall that for any bounded domain Q in R2, by the Gagliardo-Sobolev imbed-

ding theorem, W21(R2) is continuously imbedded in C(Q).
Therefore by (9),

(10) \\r
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Moreover (see [1, Lemma 5.8]) if u e W2i(R2) for any Po e R2 we have that for
8 > 0 , and|A/>| < 8/2

(11) \u(Po+AP)-u(Po)\ < c(^

\JLU(P+AP)-^-U(P)\
dxi axi I

a2

u{P)
L<(BS(PO))

By (weak) continuity of the Riesz transforms from HX{R2) into itself there is a
subsequence of d2^ /dxjdxk that converges weakly in //'(/?2) to a </>,,, e Hl(R2).
On the other hand weak convergence in Hl(R2) implies weak convergence in Lx (Q.)
(indeed L°° c BMO) so that we have

-\fr( -^ (j>tj weakly in L' (R2).

By the full version of the Dunford-Pettis Theorem, for every K > 0 there is a 5 > 0
such that for any P e £2

32

< *

uniformly in e.
We observe that if | AP\ < 8,

Therefore for every Po, given «„ > Owe can find a 80 > 0 such that if | AP| < 80/2

32

E
7.*

Ko_

3

uniformly in e. Moreover since W]A (f2) is compactly imbedded in Lp for any p < 2,
by (9) both {i/^} and [di/r'/dxi] are compact in L1. Hence by the Kondratchev
compactness criterion (see [1]) there is a 8i > 0 such that if | AP| < Si,

1 K
77||«(P + AP) - u(P)\\LHBsAPo)) < -f,
b0 5

< —,
I L1 («,(/>„)) 3
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and by (11)
(12) We(Po + &P)-u(P0)\ <KO

uniformly in e. The sequence \fre is equicontinuous by (12) and by Ascoli's theorem
we can extract a subsequence such that

(13) fe^-\jf strongly in C{0.)

By (6) we have that of -^ to weakly in the space of Radon measures M (Q) so
that (8) holds and the same argument as in [4, Theorem 1.3] yields the statement of
the theorem.

REMARK. The first example in [4, (1, § A)] (phantom vortices) shows a sequence
of vorticities which stays bounded in Hl(R2) whose velocity field fails to converge
strongly in L2; in the second example one has strong L'(£2) convergence of the
vorticity but the sequence does not lie in / / ' (R2) and again concentrations occur. By
looking at the proof of Delort's recent deep result [3] a condition weaker than weak
convergence of of in Ll (£2) is sufficient to pass to the limit in the quadratic terms of the
Euler equations, due to their special structure, although concentrations may occur. It
is interesting that every bounded sequence in Hl(R2) admits a weakly (*) convergent
subsequence whose limit stays in HX(R2) (see [2, Lemma (4.2)]). However, since
(VMO)* = HX{R2) and L°° <£ VMO, this does not yield weak L1-convergence.

It is worth observing that Condition (2) for of is rearrangement invariant and so in
the time dependent case it is conserved by the particle trajectory map. On the other
hand, as for the bounds of [4, Theorem 3.1, (3.4)], it is not clear what happens to the
//'-norm as time goes by, since HX(R2) is not rearrangement invariant. It would be
interesting to have a less cumbersome characterization of weak compactness in / / '
than the one given here.
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