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EQUIVALENCE CLASSES OF
INVERSE ORTHOGONAL AND UNIT HADAMARD MATRICES

R. CRAIGEN

In 1867, Sylvester considered nx n matrices, (oj,-), with nonzero complex-valued
entries, which satisfy (ao )^;" 1 ) = nl. Such a matrix he called inverse orthog-
onal. If an inverse orthogonal matrix has all entries on the unit circle, it is a unit
Hadamard matrix, and we have orthogonality in the usual sense. Any two inverse
orthogonal (respectively, unit Hadamard) matrices are equivalent if one can be
transformed into the other by a series of operations involving permutation of the
rows and columns and multiplication of all the entries in any given row or column
by a complex number (respectively a number on the unit circle). He stated with-
out proof that there is exactly one equivalence class of inverse orthogonal matrices
(and hence also of unit Hadamard matrices) in prime orders and that in general
the number of equivalence classes is equal to the number of distinct factorisations
of the order. In 1893 Hadamard showed this assertion to be false in the case of unit
Hadamard matrices of non-prime order. We give the correct number of equivalence
classes for each non-prime order, and orders ^ 3, giving a complete, irredundant
set of class representatives in each order $C 4 for both types of matrices.

1. INTRODUCTION

Recall that the determinant of a matrix with entries from the unit disc in C achieves
the Hadamard bound if and only if the rows are pairwise orthogonal and all entries have
absolute value 1 [4].

DEFINITION: A complex valued n x n matrix A with entries on the unit circle
whose rows are pairwise orthogonal is a unit Hadamard matrix of order n.

A warning to the reader: A unit Hadamard matrix is not the same as what Butson
and others have called a generalised Hadamard matrix (in spite of this being perhaps the
most natural generalisation—Hadamard matrices, we recall, arose at first as a restriction
of the notion of what we have termed unit Hadamard matrices). Butson [1] refers only
to those matrices whose entries are nth roots of unity; others [3, 6] use the term
generalised Hadamard matrix to refer to matrices with entries taken from a group,
satisfying certain combinatorial constraints.
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DEFINITION: A monomial matrix is a unitary matrix with precisely one nonzero
entry in each row and column. Two unit Hadamard matrices A and B are equivalent
provided there are monomial matrices M and N such that A = MBN.

Clearly the nonzero entries of a monomial matrix lie on the unit circle, and such
matrices form a group. Thus we have defined an equivalence relation on the set of unit
Hadamard matrices. Sylvester studied these equivalence classes in 1867, pointing out
that there is at least one class in each order n, given by the Vandermonde, Vn, of
the nth roots of unity [7]. Using the Kronecker product he constructed distinct unit
Hadamard matrices in each order, one for each factorisation of the order. For example
in order 4, he constructed the matrices

(1)

(2) V, =

He seemed sure that this procedure would give inequivalent matrices representing all
equivalence classes in each order. [His precise words were, " . . . the problem . . . admits
of a general and complete solution . . . what I have scarcely a doubt is true (but which
I have not yet attempted to demonstrate), that such a matrix [the Vandermonde in
prime orders] . . . contains the complete solution . . . I now proceed to state [the rule for
arbitrary orders]... there will be as many distinct types of solutions [equivalence classes]
as there are distinct modes of breaking up n into factors."] (Actually his statement
was slightly more general than this, as we shall see in Section 4.) In 1893 Hadamard
[4] demonstrated this to be false in the case of non-prime orders. We shall give a slight
variant of his method in Sections 2 and 3 and consider the analogous problem for the
more general case of inverse orthogonal matrices (the problem originally considered by
Sylvester) in Section 4.

There has been considerable work on the problem of enumerating the equivalence
classes of Hadamard matrices [8, Chapter 9]. Unit Hadamard matrices whose entries
are all real are just Hadamard matrices, and equivalence classes of Hadamard matrices
are the same, whether our definition or the usual one (involving only real monomial
matrices) is used. Sylvester's claim is contradicted even in this setting, for there are
sixty Hadamard equivalence classes in order 24 (Kimura, [5]), while there are only
seven distinct factorisations of 24. Moreover, we see that among those constructed
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by Sylvester, the only matrices equivalent to real matrices would be those formed by
applying the Kronecker product repeatedly to V2, and so the order would necessarily be
a power of 2. Hence, a Hadamard matrix existing in any other order is a counterexample.
Butson [1] pointed out that Sylvester was even incorrect in claiming that the matrices
corresponding to two different factorisations of the order are inequivalent, for if (i,j) =
1 > V\®Vj is equivalent to Vij. This is easy to see if we consider the fact that the
matrices constructed by Sylvester are precisely the character tables of abelian groups,
each Kronecker product reflecting a decomposition of the group into direct factors. The
rest follows from the primary decomposition theorem for abelian groups.

2. ENUMERATING THE CLASSES IN ORDERS < 4

fa b\
There is clearly only one class of unit Hadamard matrices of order 1. Let I I

\c dj
be a unit Hadamard matrix of order 2. Any unit Hadamard matrix may be normalised
so that the first row and column consist of all 1 's by multiplying by appropriate diagonal
monomial matrices. So without loss of generality, we may take a — b = c = 1, and this
clearly forces d = — 1. Thus there is only one class in order 2.

/ I 1 IX
Now let A = I 1 a b I be a normalised unit Hadamard matrix of order 3. The

\1 c d)
condition of orthogonality between the first row and column and the others gives us the
relations b = c = — 1— a and d = a. Thus orthogonality between rows 2 and 3 yields
1 + a(—1 — a) + (—1 — a)li = 0. Thus 1 + a + a2 — 0, and so a is a cube root of unity.
It follows that there is exactly one class in order 3, represented by V3.

We shall now demonstrate that the set of such classes in order 4 has the same
cardinality as the continuum. Let A G C, |A| = 1. Then

(
1 1 1 1

\ -\ 'I :l
1 - 1 -A

is a unit Hadamard matrix (equivalent to that considered by Hadamard [4]). We claim
that -A(A) is equivalent to A(\') if and only if A' = ±A or ±A:

On the one hand, when we transpose the last two rows, we see that A(X) is equiv-
alent to A(—A), and by multiplying the third row by A and the last row by —A,
transposing the first and second columns with the third and fourth, we see that it is
equivalent to A(X). It follows that yi(±A), -A(±A) are all equivalent.

On the other hand, if A(A) is equivalent to A(A'), we can multiply A(X) on the
left and right by appropriate monomial matrices and so obtain a matrix whose entries
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are ± 1 , ± A ' , and which has one row and one column whose entries are all equal to 1.
If we ignore the sign of the entries of the resulting matrices for the moment we have
essentially three cases, corresponding to attempts to "normalise" A(X) in this way with
respect to a row and column, neither of which intersects the lower right block, as in (4);
one of which intersects this block, as in (5); or both of which intersects this block, as
in (6):

(4) A(X)

(5)

(6) A(X)

Clearly, after replacing the missing signs and performing appropriate permutations
on the rows and columns, in (4) and (6) we have A' = ±A, and in (5), A' = ±A. This
shows that we have an uncountably infinite number of inequivalent matrices A(A).

We now show that these are in fact the only equivalence classes in order 4.
Let A be a 4 x 4 unit Hadamard matrix, normalised so that the first two rows are

f1 * \ 1 , ) . Then we must have | - l - o - 6 | 2 = (1 + a + 6)(l + o +6) =
\ 1 a b —1 — a — bJ
1, and so (o + 6)(1 + o)(l + 6) = 0. So one of a + b or (without loss of generality) 1 + 6
equals zero. In either case, by suitably arranging the columns we can put the first two
rows of A into the form

1
1
1
1

1

1
A'
A'

A'
A'
1
1

1
1

I-H
I-H

1

1
A'
A'

A'
A'
1

1-H

1

I-H
A'
A'

1-H

1
1
1

1
1
1
1

1
I-H

A'
A'
1

I-H

1
1

1—
1

1
1

I-H

and so we have

1
1

1

1
1
1

1
- 1

1
- 1

c
—c

1
a

1
a

d

f

1
- a

1

—a
e

9

(8) A =

We may assume that neither a nor c is ±1, for otherwise, it would follow immediately
that A is equivalent to A{X) for some A. Now since the first and third rows must
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be equivalent to (7), one of d and e must equal —c —let us say d, without loss of
generality. Then e = — 1. But since the first and third columns must also be equivalent
to (7), we have c — a. Applying the condition of orthogonality to the second and third
rows, we have 1 — a — 1 + a = 0, and so a2 = 1, which contradicts our assumption
about a.

We summarise the results of this section with the following theorem:

THEOREM 1 . There is exactly one equivalence class of unit Hadamard matrices

in each of the orders 1, 2 and 3 , and an uncountably infinite number of equivalence

classes in order 4 . More precisely, {Vi}, {V2}, {V3} and {A(eie),0 ^ 9 < w/2}, are

complete sets of representatives of the equivalence classes in these orders.

3. T H E NUMBER OF CLASSES IN COMPOSITE ORDERS

We have verified Sylvester's claim for orders 1 , 2 , and 3, but shown it to be false
for order 4. It follows immediately that the result is false for every order containing a
factor of 4, by use of the Kronecker product. However, we now demonstrate that the
same holds for every composite order.

LEMMA 2 . If X = (xij) is any kxl matrix with entries from the unit circle in

C, X is a submatrix of a unit Hadamard matrix of order kl.

PROOF: By analogy with [2]. D

Now if k,l > 1 we may take x\\ = A and Xij = 1 when i > 1 or j > 1. As A
ranges over the unit circle, Lemma 2 gives embeddings of the matrices X so defined
into an uncountably infinite number of inequivalent unit Hadamard matrices of order
kl, as may be demonstrated analogously with Section 2.

THEOREM 3 . If n is composite, there are an uncountable number of equivalence

classes of unit Hadamard matrices of order n .

Unfortunately, the construction given in Lemma 2, combined with Vandermondes,
cannot produce representatives of all such classes. It is apparent, for example, that no
(real) Hadamard matrix of order 12 may be decomposed into a 6 X 2 array of 2 x 6
rank one submat rices or into a 3 x 4 array of 4 x 3 rank one submat rices, (if X is kxl,

the construction borrowed from [2] will produce a matrix in the form of a kxl array
of / x k rank one submatrices) and nor is it equivalent to V\2.

4. INVERSE ORTHOGONAL MATRICES AND THE REMAINING QUESTIONS

At no point in his exposition [7] does Sylvester demonstrate, let alone state, a result
that appears to be crucial to his whole discussion. He does not deal with orthogonality
of complex valued matrices as we would today, but rather introduces the following
concept:
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DEFINITION: An n x n matrix A = (aij) with all entries nonzero in the complex
plane which satisfies (o i^^ j i" 1 ) = nl shall be called inverse orthogonal.

Clearly, a matrix is unit Hadamard if and only if it is inverse orthogonal and
has all entries on the unit circle, so inverse orthogonal matrices are a generalisation
of unit Hadamard matrices. Multiplication of any row or column by a nonzero scalar
does not alter the property of inverse orthogonality, and nor does permutation of rows
and columns. Thus we may speak of equivalence classes of, and normalised, inverse
orthogonal matrices as we did with unit Hadamard matrices.

Sylvester actually claimed that the matrices he obtained form a complete set of
normalised representatives of equivalence classes of inverse orthogonal matrices. There
are two distinct elements to this statement: the first is that a normalised inverse orthog-
onal matrix is a unit Hadamard matrix; the second is that all unit Hadamard matrices
are equivalent to one of the representatives mentioned. I have dealt with the second
part up to this point; the first is assumed, but never explicitly mentioned in Sylvester's
paper. Surprisingly, the first part fails in much the same way as the second: if A is
any nonzero complex number off the unit circle, A(\) as described in the last section is
a normalised inverse orthogonal matrix with non-unit entries. Similarly, the first part
fails in every composite order.

The proofs of the following two theorems are practically identical to that of The-
orems 1 and 3, bearing in mind that we must substitute reciprocation for complex
conjugation wherever it arises:

THEOREM 4 . {Vi}, {V2}, {Vs} and {A(reie),0 < 9 < n/2,r > 0}, are com-
plete, irredundant sets of representatives of the equivalence classes of inverse orthogonal
matrices in orders 1,2,3 and 4 respectively.

THEOREM 5 . If n is composite, there is an uncountable number of equivalence
classes of inverse orthogonal matrices of order n which are not representable by unit
Hadamard matrices.

I have been unsuccessful so far in my attempts to confirm either part of Sylvester's
claim in prime orders greater than 3 or produce a counterexample. It seems reasonable
at this point to name the remaining cases:

CONJECTURE 4 . 1 . (Sylvester's first conjecture) Any normalised inverse orthog-
onal matrix of prime order is a unit Hadamard matrix.

CONJECTURE 4 . 2 . (Sylvester's second conjecture) Every unit Hadamard ma-
trix of order p, where p is prime, is equivalent to Vp.

In his notation, Butson [1] showed that for prime p, an H(p,n) can only exist if
p\n. A further decomposition of Sylvester's second conjecture would be:

(2a) Every unit Hadamard matrix of order p is an H(n, p).
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(2b) Every nontrivial (as in [1]) H(n,p) is an H(p,p).
(2c) Every H(p, p) is equivalent to Vp.

A proof of (2b) would provide a nice complement for Butson's result. It is easy to verify

(2c) for p = 5,7.

There still remains the question as to when in general two of the matrices con-

structed in Lemma 2 are equivalent, at least when one of m and n is greater than

2. A more difficult problem: give a complete, irredundant set of representatives of the

equivalence classes of unit Hadamard matrices in general. Of course, the corresponding

questions remain open for inverse orthogonal matrices as well.
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