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Abstract

The p-length of a finite p-soluble group is an important invariant parameter. The well-known Hall–
Higman p-length theorem states that the p-length of a p-soluble group is bounded above by the nilpotent
class of its Sylow p-subgroups. In this paper, we improve this result by giving a better estimation on the
p-length of a p-soluble group in terms of other invariant parameters of its Sylow p-subgroups.
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1. Introduction

All groups considered in this paper are finite and the terminology and notation are
standard; see [8]. For a finite group G, we use |G| and π(G) to denote the order of G
and the set of all primes dividing |G|, respectively; for a prime p ∈ π(G), let Gp be a
Sylow p-subgroup of G.

The celebrated Hall–Higman p-length theorem [7] establishes a connection
between the p-length of a p-soluble group G and the nilpotent class of its Sylow p-
subgroup Gp, showing that the p-length of G is bounded above by the nilpotent class
of Gp.

For a finite group G, the Wielandt subgroup ω(G), introduced by Wielandt [12] in
1958, is the intersection of the normalisers of all subnormal subgroups of G. In that
paper, Wielandt defined a series of normal subgroups

ω0(G), ω1(G), . . . , ω`(G) = G

for a group G as follows:

First, set ω0(G) = 1, and then if ωi(G) is defined, set ωi+1(G)/ωi(G) =

ω(G/ωi(G)).
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He showed that ω(G) contains all minimal normal subgroups of G. Obviously, for a
finite group G, ωn(G) = G for some positive integer n. The smallest such value of n is
called the Wielandt length of G, and is denoted by w∗(G) in this paper.

Several authors have investigated relations between the Wielandt length and other
invariant parameters of G; see [3, 4, 9] for instances. Let p be a prime and P a p-
group. It is easy to see that ω(P) contains the centre of P, and the Wielandt length of
P is not greater than the nilpotent class of P. For a p-group P, the Wielandt length
may be less than the nilpotent class; for example, the quaternion group of order eight
has nilpotent class 2 and Wielandt length 1. Furthermore, it is shown in [9] that a
metabelian p-group of odd order has Wielandt length at most its nilpotent class minus
one. An example in [9] of a 5-group has nilpotent class 6 and Wielandt length 4.

Let G be a p-soluble group and let c(Gp) denote the nilpotent class of Gp. As
mentioned above, the p-length of G is bounded above by c(Gp), and w∗(Gp) ≤ c(Gp).
This motivates the following question.

Q 1.1. For a p-soluble group, is the p-length bounded above by the Wielandt
length of its Sylow p-subgroups?

The main purpose of this paper is to give an affirmative answer to this question. We
will prove a more general result. To state our main result, we need to introduce a few
more definitions.

A subgroup H of a group G is said to be permutable if for any subgroup K of G,
we have HK = KH. The normaliser of a subgroup H in G consists of the elements x
such that xH = Hx, and the permutiser of a subgroup H in G consists of the elements
x such that 〈x〉H = H〈x〉; see [10]. A normal subgroup series is called a central series
if every member is in the centre of the corresponding quotient group. The nilpotent
class of a nilpotent group is the shortest length of its central series. We introduce the
following definition.

D 1.2. Let G be a nilpotent group. A normal series

1 = H0 ≤ H1 ≤ · · · ≤ Hn = G

is called a permutable series of G if, for any 1 ≤ i ≤ n and any element x of Hi,
〈x〉Hi−1/Hi−1 is permutable in G/Hi−1. In this case, the integer n is called the length of
this series.

Let G be a nilpotent group. Then a central series of G is a permutable series of G.
It follows that a nilpotent group has a permutable series.

D 1.3. Let G be a nilpotent group, and let

p(G) = min{n | n is the length of some permutable series of G}.

Then p(G) is called the permutable length of G.

The main result of this paper is stated as follows.
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T 1.4. Let G be a p-soluble group. Then the p-length of G is no larger than the
permutable length of Gp.

2. Observations and examples

Let p be a prime and P a p-group. From the definition, one can see that the
permutable length of P is determined only by the structure of P. Since the upper
central series of P is a permutable series of P and c(P) is equal to the length of the
upper central series of P, we have p(P) ≤ c(P). Now let us consider the relationship
between the permutable length of P and the Wielandt length of P.

P 2.1. Let p be a prime and P a p-group. We have p(P) ≤ w∗(P).

P. We only need to show that 1 = ω0(P) ≤ ω1(P) ≤ · · · ≤ ωn(P) = P is a
permutable series of P. Let i be an integer such that 1 ≤ i ≤ n and let x be an element of
ωi(P). Let K/ωi−1(P) be a subgroup of P/ωi−1(P). Since every subgroup of P/ωi−1(P)
is subnormal in P/ωi−1(P), ωi(P)/ωi−1(P) = ω(P/ωi−1(P)) is the intersection of the
normalisers of all subgroups of P/ωi−1(P). In particular, 〈x〉ωi−1(P)/ωi−1(P) ≤
NP/ωi(P)(K/ωi−1(P)). Hence K〈x〉/ωi−1(P) is a subgroup of P/ωi−1(P). Because
K/ωi−1(P) is chosen arbitrarily, one can see that 〈x〉ωi−1(P)/ωi−1(P) is permutable in
P/ωi−1(P). It follows that 1 = ω0(P) ≤ ω1(P) ≤ · · · ≤ ωn(P) = P is a permutable series
of P. �

Let p be a prime. The following example indicates that the permutable length of a
p-group can be less than its Wielandt length.

E 2.2 [11, p. 65, Example 2.3.19]. Let p > 2 and P = 〈a, x | ap3
= 1, xp3

=

ap2
, ax = a1+p〉. Since ap2

is centralised by the automorphism σ of 〈a〉 with aσ = a1+p,
P is an extension of 〈a〉 by a cyclic group of order p3. By Iwasawa’s theorem [11, p. 55,
Theorem 2.3.1] and [11, p. 55, Lemma 2.3.2], every subgroup of P is permutable in P.
Thus, we have p(P) = 1. On the other hand, since P is a nonabelian p-group of odd
order, it follows from [11, p. 60, Theorem 2.3.12] that not every subgroup of P is
normal in P. Hence ω(P) < P and w∗(P) > 1. Therefore, p(P) < w∗(P).

As observed above, p(P) ≤ w∗(Gp) ≤ c(Gp), and we also see that there are examples
with the strict relations w∗(P) < c(P) and p(P) < w∗(P). Let lp(G) denote the p-length
of a p-soluble group G. Hall–Higman’s p-length theorem states that the p-length
of G is bounded by the nilpotent class of Gp. The main result of this paper is to
improve Hall–Higman’s p-length theorem by a better bound. Actually, we will prove
that lp(G) ≤ p(Gp).

3. The proof of the main theorem

We first present some basic facts about the p-length and the permutable length.

L 3.1 [8, p. 689, Hilfssatz 6.4]. Let G be a p-soluble group.

(1) If N EG, then lp(G/N) ≤ lp(G).
(2) If U ≤G, then lp(U) ≤ lp(G).
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(3) Let N1 and N2 be two normal subgroups of G. Then

lp(G/(N1 ∩ N2)) = max{lp(G/N1), lp(G/N2)}.

(4) lp(G/Φ(G)) = lp(G).

L 3.2 [5, 1.3 and 1.4]. Let N be a normal subgroup of G and K a subgroup of G
containing N. Then K/N is permutable in G/N if and only if K is permutable in G.

L 3.3. Let G be a nilpotent group.

(1) If N EG, then p(G/N) ≤ p(G).
(2) If U ≤G, then p(U) ≤ p(G).

P. Let 1 = H0 ≤ H1 ≤ · · · ≤ Hn = G be a permutable series of G with length
n = p(G). To prove (1), we only need to show that 1 = H0N/N ≤ H1N/N ≤ · · · ≤
HnN/N = G/N is a permutable series of G/N. Since all Hi are normal in G, all
HiN/N are also normal in G/N. Let i be an integer such that 1 ≤ i ≤ n. Let x be
an element of HiN/N. It is easy to see that there exists an element y of Hi such
that 〈x〉 = 〈y〉N/N. Let K/N be a subgroup of G/N. By definition, 〈y〉Hi−1/Hi−1 is
permutable in G/Hi−1. It follows that 〈y〉Hi−1 is permutable in G by Lemma 3.2. Hence
〈y〉Hi−1K is a subgroup of G. Therefore, (〈y〉N/N)(Hi−1N/N)(K/N) = (〈y〉Hi−1KN)/N
is a subgroup of G/N. The arbitrary choice of K/N implies that (〈y〉N/N)(Hi−1N/N) is
permutable in G/N. Again by Lemma 3.2, we know that [〈x〉(Hi−1N/N)]/(Hi−1N/N) =

[(〈y〉N/N)(Hi−1N/N)]/(Hi−1N/N) is permutable in (G/N)/(Hi−1N/N). By definition,
1 = H0N/N ≤ H1N/N ≤ · · · ≤ HnN/N = G/N is a permutable series of G/N.

To prove (2), we need to show that 1 = (H0 ∩ U) ≤ (H1 ∩ U) ≤ · · · ≤ (Hn ∩ U) = U
is a permutable series of U. It is evident that Hi ∩ U is normal in U for any i. Let i
be an integer such that 1 ≤ i ≤ n. Let x be an element of Hi ∩ U and K be a subgroup
of U. By definition, 〈x〉Hi−1/Hi−1 is permutable in G/Hi−1. It follows that 〈x〉Hi−1

is permutable in G, by Lemma 3.2. Hence 〈x〉Hi−1K is a subgroup of G. Since
K ≤ U and 〈x〉 ≤ U, we have 〈x〉(Hi−1 ∩ U)K = 〈x〉(Hi−1K ∩ U) = 〈x〉Hi−1K ∩ U and
thus 〈x〉(Hi−1 ∩ U)K is a subgroup of U. The arbitrary choice of K implies that
〈x〉(Hi−1 ∩ U) is permutable in U. Again by Lemma 3.2, 〈x〉(Hi−1 ∩ U)/(Hi−1 ∩ U) is
permutable in U/(Hi−1 ∩ U). Therefore, 1 = (H0 ∩ U) ≤ (H1 ∩ U) ≤ · · · ≤ (Hn ∩ U) =

U is a permutable series of U. �

P  T 1.4. Assume that this theorem is not true and let G be a
counterexample of minimal order. Then we have the following steps to the proof.
(1) Op′(G) = Φ(G) = 1.

Assume that Op′(G) , 1 or Φ(G) , 1. Then, by the minimal choice of G,
lp(G/Op′(G)) ≤ p(GpOp′(G)/Op′(G)) or lp(G/Φ(G)) ≤ p(GpΦ(G)/Φ(G)). By the
definition of p-length, lp(G/Op′(G)) = lp(G). By Lemma 3.1(4), lp(G/Φ(G)) =

lp(G). On the other hand, p(GpOp′(G)/Op′(G)) = p(Gp/(Gp ∩ Op′(G))) ≤ p(Gp) and
p(GpΦ(G)/Φ(G)) = p(Gp/(Gp ∩ Φ(G))) ≤ p(Gp) from Lemma 3.3(1). Hence lp(G) ≤
p(Gp), a contradiction.
(2) G has a unique minimal normal subgroup N.
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Suppose that G has two different minimal normal subgroups N1 and N2. From
the minimal choice of G, lp(G/N1) ≤ p(GpN1/N1) and lp(G/N2) ≤ p(GpN2/N2).
Without loss of generality, we may assume that p(GpN1/N1) ≥ p(GpN2/N2).
Obviously, N1 ∩ N2 = 1. From Lemmas 3.1(3) and 3.3(1),

lp(G) = lp(G/(N1 ∩ N2)) ≤max{lp(G/N1), lp(G/N2)} = lp(G/N1)

≤ p(GpN1/N1) = p(Gp/(Gp ∩ N1)) ≤ p(Gp),

a contradiction.
(3) N = CG(N) = Op(G).

Since Φ(G) = 1, Op(G) is the direct product of some minimal normal subgroups
of G. But N is the unique minimal normal subgroup of G, so N = Op(G). Because G is
p-soluble and Op′(G) = 1, we have CG(Op(G)) ≤ Op(G) by [6, p. 228, Theorem 3.2].
Since Op(G) = N is abelian, N = CG(N).
(4) There exists a maximal subgroup M of G such that G = [N]M.

This follows directly from the fact that Φ(G) = 1 and N is an abelian minimal
normal subgroup of G.
(5) Suppose that 1 = H0 ≤ H1 ≤ · · · ≤ Hn = Gp is a permutable series of Gp with length
n = p(Gp). Then H1 ∩ M = 1.

Assume that H1 ∩ M , 1. Let x be an element of H1 ∩ M of order p, and let y be
an element of N. Clearly y is also of order p. By definition, 〈x〉 is permutable in
Gp. Since 〈y〉 ≤ Op(G) ≤Gp, 〈x〉〈y〉 is a subgroup of Gp. Note that |x| = |y| = p and
〈x〉 ∩ N ≤ M ∩ N = 1, and 〈x〉〈y〉 is a group of order p2. Therefore, 〈x〉〈y〉 is an abelian
group and x ∈CG(〈y〉). Since y is chosen arbitrarily, we have x ∈CG(N). But then
x ∈CG(N) ∩ M = N ∩ M = 1, a contradiction.
(6) Final contradiction.

Let Mp be a Sylow p-subgroup of M such that Mp ≤Gp. By (4), Gp = NMp and
N ∩ Mp = 1. By (5), Mp = Mp/(Mp ∩ H1) � MpH1/H1. Hence Gp/N = NMp/N �
Mp/(N ∩ Mp) � Mp � MpH1/H1 and p(Gp/N) = p(MpH1/H1). But MpH1/H1 is a
subgroup of Gp/H1 and thus p(MpH1/H1) ≤ p(Gp/H1) by Lemma 3.3(2). As a result,
p(Gp/N) = p(MpH1/H1) ≤ p(Gp/H1).

From the proof of Lemma 3.3(1), we know that the normal series 1 = H1/H1 ≤

H2/H1 ≤ · · · ≤ Hn/H1 = Gp/H1, whose length is n − 1 = p(Gp) − 1, is a permutable
series of Gp/H1. As a result, p(Gp/H1) ≤ p(Gp) − 1. From (1), (3) and the definition
of the p-length, we know that lp(G/N) = lp(G) − 1. From the minimal choice of G,
lp(G/N) ≤ p(Gp/N). Hence lp(G) − 1 = lp(G/N) ≤ p(Gp/N) ≤ p(Gp/H1) ≤ p(Gp) − 1
and it follows that lp(G) ≤ p(Gp), a final contradiction. �

4. Some applications

The following corollary is an immediate consequence of Proposition 2.1 and
Theorem 1.4. It gives an affirmative answer to Question 1.1.

C 4.1. Let G be a p-soluble group. Then the p-length of G is no larger than
the Wielandt length of Gp.

https://doi.org/10.1017/S0004972713000026 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000026


458 N. Su and Y. Wang [6]

Let G be a p-soluble group. As a special case of Theorem 1.4, we know that if the
permutable length of Gp is at most 1, then the p-length of G is also at most 1. By
definition, the permutable length of Gp is at most 1 if and only if every subgroup of
Gp is permutable in Gp. By [11, p. 55, Lemma 2.3.2], Gp satisfies such properties if
and only if Gp is a modular p-group. As a result, we have the following corollary.

C 4.2. Let G be a p-soluble group. If the Sylow p-subgroups of G are
modular p-subgroups, then lp(G) ≤ 1.

A Hamiltonian group is a group all of whose subgroups are normal. From this
definition, one can see that a Hamiltonian p-group must be a modular p-group. (The
converse is not true, see Example 2.2.) By Corollary 4.2, we have the following further
corollary.

C 4.3 [2]. Let G be a p-soluble group. If the Sylow p-subgroups of G are
Hamiltonian p-subgroups, then lp(G) ≤ 1.

The well-known Burnside’s theorem tells us that if NG(Gp) = CG(Gp), then G is
p-nilpotent. In other words, if Gp is an abelian p-group and NG(Gp) is p-nilpotent,
then G is p-nilpotent. In [1, Theorem 1], this result was extended to show that if
Gp is a modular p-group, then G is p-nilpotent if and only if NG(Gp) is p-nilpotent.
An interesting question is whether we can get an analogous result for the case of p-
supersoluble. That is, suppose that Gp is a modular p-group, can we obtain that G
is p-supersoluble provided NG(Gp) is p-supersoluble? The answer to this question
is no. For instance, the alternating group A5 has modular Sylow 5-subgroups and
the normalisers of its Sylow 5-subgroups are also 5-supersoluble, but A5 itself is not
5-supersoluble. However, the following theorem indicates that in the class of all p-
soluble groups, the modularity of the Sylow p-subgroups and the p-supersolvability of
NG(Gp) do yield the p-supersolvability of G.

T 4.4. Let G be a p-soluble group with modular Sylow p-subgroups. Let F be
a formation satisfying Ep′F = F (where Ep′ denotes the class of all groups with order
coprime to p). If NG(Gp) ∈ F , then G ∈ F . In particular, under the circumstances that
G is a p-soluble group and Gp is a modular p-group, G is p-supersoluble if and only
if NG(Gp) is p-supersoluble.

P. By Corollary 4.2, we know that lp(G) ≤ 1. Hence GpOp′(G)/Op′(G)
is normal in G/Op′(G). It follows that GpOp′(G) is normal in G and
NG(GpOp′(G)) = G. Since any two Sylow p-subgroups are conjugated, we have
NG(GpOp′(G)) = NG(Gp)Op′(G). Consequently, G/Op′(G) = NG(GpOp′(G))/Op′(G) =

NG(Gp)Op′(G)/Op′(G) � NG(Gp)/(NG(Gp) ∩ Op′(G)) ∈ F . This implies that G ∈
Ep′F and the hypothesis that Ep′F = F guarantees that G ∈ F . �
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