Bull. Aust. Math. Soc. 88 (2013), 453–459 doi:10.1017/S0004972713000026

ON THE *p*-LENGTH AND THE WIELANDT LENGTH OF A FINITE *p*-SOLUBLE GROUP

NING SU and YANMING WANG [∞]

(Received 28 October 2012; accepted 13 November 2012; first published online 7 March 2013)

Abstract

The *p*-length of a finite *p*-soluble group is an important invariant parameter. The well-known Hall–Higman *p*-length theorem states that the *p*-length of a *p*-soluble group is bounded above by the nilpotent class of its Sylow *p*-subgroups. In this paper, we improve this result by giving a better estimation on the *p*-length of a *p*-soluble group in terms of other invariant parameters of its Sylow *p*-subgroups.

2010 *Mathematics subject classification*: primary 20D10. *Keywords and phrases*: *p*-length, Wielandt length, nilpotent class, permutable.

1. Introduction

All groups considered in this paper are finite and the terminology and notation are standard; see [8]. For a finite group *G*, we use |G| and $\pi(G)$ to denote the order of *G* and the set of all primes dividing |G|, respectively; for a prime $p \in \pi(G)$, let G_p be a Sylow *p*-subgroup of *G*.

The celebrated Hall-Higman *p*-length theorem [7] establishes a connection between the *p*-length of a *p*-soluble group *G* and the nilpotent class of its Sylow *p*-subgroup G_p , showing that the *p*-length of *G* is bounded above by the nilpotent class of G_p .

For a finite group G, the Wielandt subgroup $\omega(G)$, introduced by Wielandt [12] in 1958, is the intersection of the normalisers of all subnormal subgroups of G. In that paper, Wielandt defined a series of normal subgroups

$$\omega_0(G), \omega_1(G), \ldots, \omega_\ell(G) = G$$

for a group *G* as follows:

First, set $\omega_0(G) = 1$, and then if $\omega_i(G)$ is defined, set $\omega_{i+1}(G)/\omega_i(G) = \omega(G/\omega_i(G))$.

Project supported by NSFC(11171353).

© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

He showed that $\omega(G)$ contains all minimal normal subgroups of *G*. Obviously, for a finite group *G*, $\omega_n(G) = G$ for some positive integer *n*. The smallest such value of *n* is called the *Wielandt length* of *G*, and is denoted by $w^*(G)$ in this paper.

Several authors have investigated relations between the Wielandt length and other invariant parameters of G; see [3, 4, 9] for instances. Let p be a prime and P a p-group. It is easy to see that $\omega(P)$ contains the centre of P, and the Wielandt length of P is not greater than the nilpotent class of P. For a p-group P, the Wielandt length may be less than the nilpotent class; for example, the quaternion group of order eight has nilpotent class 2 and Wielandt length 1. Furthermore, it is shown in [9] that a metabelian p-group of odd order has Wielandt length at most its nilpotent class minus one. An example in [9] of a 5-group has nilpotent class 6 and Wielandt length 4.

Let *G* be a *p*-soluble group and let $c(G_p)$ denote the *nilpotent class* of G_p . As mentioned above, the *p*-length of *G* is bounded above by $c(G_p)$, and $w^*(G_p) \le c(G_p)$. This motivates the following question.

QUESTION 1.1. For a *p*-soluble group, is the *p*-length bounded above by the Wielandt length of its Sylow *p*-subgroups?

The main purpose of this paper is to give an affirmative answer to this question. We will prove a more general result. To state our main result, we need to introduce a few more definitions.

A subgroup *H* of a group *G* is said to be *permutable* if for any subgroup *K* of *G*, we have HK = KH. The *normaliser* of a subgroup *H* in *G* consists of the elements *x* such that xH = Hx, and the *permutiser* of a subgroup *H* in *G* consists of the elements *x* such that $\langle x \rangle H = H \langle x \rangle$; see [10]. A normal subgroup series is called a *central series* if every member is in the centre of the corresponding quotient group. The *nilpotent class* of a nilpotent group is the shortest length of its central series. We introduce the following definition.

DEFINITION 1.2. Let G be a nilpotent group. A normal series

$$1 = H_0 \le H_1 \le \dots \le H_n = G$$

is called a *permutable series* of *G* if, for any $1 \le i \le n$ and any element *x* of H_i , $\langle x \rangle H_{i-1}/H_{i-1}$ is permutable in G/H_{i-1} . In this case, the integer *n* is called the *length* of this series.

Let G be a nilpotent group. Then a central series of G is a permutable series of G. It follows that a nilpotent group has a permutable series.

DEFINITION 1.3. Let G be a nilpotent group, and let

 $p(G) = \min\{n \mid n \text{ is the length of some permutable series of } G\}.$

Then p(G) is called the *permutable length* of *G*.

The main result of this paper is stated as follows.

2. Observations and examples

Let *p* be a prime and *P* a *p*-group. From the definition, one can see that the permutable length of *P* is determined only by the structure of *P*. Since the upper central series of *P* is a permutable series of *P* and c(P) is equal to the length of the upper central series of *P*, we have $p(P) \le c(P)$. Now let us consider the relationship between the permutable length of *P* and the Wielandt length of *P*.

PROPOSITION 2.1. Let p be a prime and P a p-group. We have $\mathfrak{p}(P) \leq w^*(P)$.

PROOF. We only need to show that $1 = \omega_0(P) \le \omega_1(P) \le \cdots \le \omega_n(P) = P$ is a permutable series of *P*. Let *i* be an integer such that $1 \le i \le n$ and let *x* be an element of $\omega_i(P)$. Let $K/\omega_{i-1}(P)$ be a subgroup of $P/\omega_{i-1}(P)$. Since every subgroup of $P/\omega_{i-1}(P)$ is subnormal in $P/\omega_{i-1}(P)$, $\omega_i(P)/\omega_{i-1}(P) = \omega(P/\omega_{i-1}(P))$ is the intersection of the normalisers of all subgroups of $P/\omega_{i-1}(P)$. In particular, $\langle x \rangle \omega_{i-1}(P)/\omega_{i-1}(P) \le N_{P/\omega_i(P)}(K/\omega_{i-1}(P))$. Hence $K\langle x \rangle/\omega_{i-1}(P)$ is a subgroup of $P/\omega_{i-1}(P)$. Because $K/\omega_{i-1}(P)$ is chosen arbitrarily, one can see that $\langle x \rangle \omega_{i-1}(P)/\omega_{i-1}(P)$ is permutable in $P/\omega_{i-1}(P)$. It follows that $1 = \omega_0(P) \le \omega_1(P) \le \cdots \le \omega_n(P) = P$ is a permutable series of *P*.

Let *p* be a prime. The following example indicates that the permutable length of a *p*-group can be less than its Wielandt length.

EXAMPLE 2.2 [11, p. 65, Example 2.3.19]. Let p > 2 and $P = \langle a, x | a^{p^3} = 1$, $x^{p^3} = a^{p^2}$, $a^x = a^{1+p}\rangle$. Since a^{p^2} is centralised by the automorphism σ of $\langle a \rangle$ with $a^{\sigma} = a^{1+p}$, P is an extension of $\langle a \rangle$ by a cyclic group of order p^3 . By Iwasawa's theorem [11, p. 55, Theorem 2.3.1] and [11, p. 55, Lemma 2.3.2], every subgroup of P is permutable in P. Thus, we have $\mathfrak{p}(P) = 1$. On the other hand, since P is a nonabelian p-group of odd order, it follows from [11, p. 60, Theorem 2.3.12] that not every subgroup of P is normal in P. Hence $\omega(P) < P$ and $w^*(P) > 1$. Therefore, $\mathfrak{p}(P) < w^*(P)$.

As observed above, $\mathfrak{p}(P) \leq w^*(G_p) \leq c(G_p)$, and we also see that there are examples with the strict relations $w^*(P) < c(P)$ and $\mathfrak{p}(P) < w^*(P)$. Let $l_p(G)$ denote the *p*-length of a *p*-soluble group *G*. Hall–Higman's *p*-length theorem states that the *p*-length of *G* is bounded by the nilpotent class of G_p . The main result of this paper is to improve Hall–Higman's *p*-length theorem by a better bound. Actually, we will prove that $l_p(G) \leq \mathfrak{p}(G_p)$.

3. The proof of the main theorem

We first present some basic facts about the *p*-length and the permutable length.

LEMMA 3.1 [8, p. 689, Hilfssatz 6.4]. Let G be a p-soluble group.

- (1) If $N \leq G$, then $l_p(G/N) \leq l_p(G)$.
- (2) If $U \le G$, then $l_p(U) \le l_p(G)$.

(3) Let N_1 and N_2 be two normal subgroups of G. Then

$$l_p(G/(N_1 \cap N_2)) = \max\{l_p(G/N_1), l_p(G/N_2)\}$$

(4) $l_p(G/\Phi(G)) = l_p(G).$

LEMMA 3.2 [5, 1.3 and 1.4]. Let N be a normal subgroup of G and K a subgroup of G containing N. Then K/N is permutable in G/N if and only if K is permutable in G.

LEMMA 3.3. Let G be a nilpotent group.

(1) If $N \leq G$, then $\mathfrak{p}(G/N) \leq \mathfrak{p}(G)$.

(2) If $U \leq G$, then $\mathfrak{p}(U) \leq \mathfrak{p}(G)$.

PROOF. Let $1 = H_0 \le H_1 \le \cdots \le H_n = G$ be a permutable series of *G* with length $n = \mathfrak{p}(G)$. To prove (1), we only need to show that $1 = H_0 N/N \le H_1 N/N \le \cdots \le H_n N/N = G/N$ is a permutable series of G/N. Since all H_i are normal in *G*, all $H_i N/N$ are also normal in G/N. Let *i* be an integer such that $1 \le i \le n$. Let *x* be an element of $H_i N/N$. It is easy to see that there exists an element *y* of H_i such that $\langle x \rangle = \langle y \rangle N/N$. Let K/N be a subgroup of G/N. By definition, $\langle y \rangle H_{i-1}/H_{i-1}$ is permutable in G/H_{i-1} . It follows that $\langle y \rangle H_{i-1}$ is permutable in *G* by Lemma 3.2. Hence $\langle y \rangle H_{i-1}K$ is a subgroup of *G*. Therefore, $(\langle y \rangle N/N)(H_{i-1}N/N)(K/N) = (\langle y \rangle H_{i-1}KN)/N$ is a subgroup of G/N. The arbitrary choice of K/N implies that $(\langle y \rangle N/N)(H_{i-1}N/N) = [(\langle y \rangle N/N)(H_{i-1}N/N)]/(H_{i-1}N/N)$ is permutable in G/N. Again by Lemma 3.2, we know that $[\langle x \rangle (H_{i-1}N/N)]/(H_{i-1}N/N) = [(\langle y \rangle N/N)(H_{i-1}N/N)]/(H_{i-1}N/N) = [(\langle y \rangle N/N)(H_{i-1}N/N)]/(H_{i-1}N/N)]/(H_{i-1}N/N) = H_0N/N \le H_1N/N \le \cdots \le H_nN/N = G/N$ is a permutable series of G/N.

To prove (2), we need to show that $1 = (H_0 \cap U) \le (H_1 \cap U) \le \cdots \le (H_n \cap U) = U$ is a permutable series of U. It is evident that $H_i \cap U$ is normal in U for any i. Let ibe an integer such that $1 \le i \le n$. Let x be an element of $H_i \cap U$ and K be a subgroup of U. By definition, $\langle x \rangle H_{i-1}/H_{i-1}$ is permutable in G/H_{i-1} . It follows that $\langle x \rangle H_{i-1}$ is permutable in G, by Lemma 3.2. Hence $\langle x \rangle H_{i-1}K$ is a subgroup of G. Since $K \le U$ and $\langle x \rangle \le U$, we have $\langle x \rangle (H_{i-1} \cap U)K = \langle x \rangle (H_{i-1}K \cap U) = \langle x \rangle H_{i-1}K \cap U$ and thus $\langle x \rangle (H_{i-1} \cap U)K$ is a subgroup of U. The arbitrary choice of K implies that $\langle x \rangle (H_{i-1} \cap U)$ is permutable in U. Again by Lemma 3.2, $\langle x \rangle (H_{i-1} \cap U)/(H_{i-1} \cap U)$ is permutable in $U/(H_{i-1} \cap U)$. Therefore, $1 = (H_0 \cap U) \le (H_1 \cap U) \le \cdots \le (H_n \cap U) =$ U is a permutable series of U.

PROOF OF THEOREM 1.4. Assume that this theorem is not true and let *G* be a counterexample of minimal order. Then we have the following steps to the proof. (1) $O_{p'}(G) = \Phi(G) = 1$.

Assume that $O_{p'}(G) \neq 1$ or $\Phi(G) \neq 1$. Then, by the minimal choice of G, $l_p(G/O_{p'}(G)) \leq \mathfrak{p}(G_pO_{p'}(G)/O_{p'}(G))$ or $l_p(G/\Phi(G)) \leq \mathfrak{p}(G_p\Phi(G)/\Phi(G))$. By the definition of *p*-length, $l_p(G/O_{p'}(G)) = l_p(G)$. By Lemma 3.1(4), $l_p(G/\Phi(G)) = l_p(G)$. On the other hand, $\mathfrak{p}(G_pO_{p'}(G)/O_{p'}(G)) = \mathfrak{p}(G_p/(G_p \cap O_{p'}(G))) \leq \mathfrak{p}(G_p)$ and $\mathfrak{p}(G_p\Phi(G)/\Phi(G)) = \mathfrak{p}(G_p/(G_p \cap \Phi(G))) \leq \mathfrak{p}(G_p)$ from Lemma 3.3(1). Hence $l_p(G) \leq \mathfrak{p}(G_p)$, a contradiction.

(2) G has a unique minimal normal subgroup N.

456

Suppose that *G* has two different minimal normal subgroups N_1 and N_2 . From the minimal choice of *G*, $l_p(G/N_1) \le \mathfrak{p}(G_pN_1/N_1)$ and $l_p(G/N_2) \le \mathfrak{p}(G_pN_2/N_2)$. Without loss of generality, we may assume that $\mathfrak{p}(G_pN_1/N_1) \ge \mathfrak{p}(G_pN_2/N_2)$. Obviously, $N_1 \cap N_2 = 1$. From Lemmas 3.1(3) and 3.3(1),

$$l_p(G) = l_p(G/(N_1 \cap N_2)) \le \max\{l_p(G/N_1), l_p(G/N_2)\} = l_p(G/N_1)$$

$$\le \mathfrak{p}(G_pN_1/N_1) = \mathfrak{p}(G_p/(G_p \cap N_1)) \le \mathfrak{p}(G_p),$$

a contradiction.

(3) $N = C_G(N) = O_p(G)$.

Since $\Phi(G) = 1$, $O_p(G)$ is the direct product of some minimal normal subgroups of *G*. But *N* is the unique minimal normal subgroup of *G*, so $N = O_p(G)$. Because *G* is *p*-soluble and $O_{p'}(G) = 1$, we have $C_G(O_p(G)) \le O_p(G)$ by [6, p. 228, Theorem 3.2]. Since $O_p(G) = N$ is abelian, $N = C_G(N)$.

(4) There exists a maximal subgroup M of G such that G = [N]M.

This follows directly from the fact that $\Phi(G) = 1$ and N is an abelian minimal normal subgroup of G.

(5) Suppose that $1 = H_0 \le H_1 \le \cdots \le H_n = G_p$ is a permutable series of G_p with length $n = \mathfrak{p}(G_p)$. Then $H_1 \cap M = 1$.

Assume that $H_1 \cap M \neq 1$. Let *x* be an element of $H_1 \cap M$ of order *p*, and let *y* be an element of *N*. Clearly *y* is also of order *p*. By definition, $\langle x \rangle$ is permutable in G_p . Since $\langle y \rangle \leq O_p(G) \leq G_p$, $\langle x \rangle \langle y \rangle$ is a subgroup of G_p . Note that |x| = |y| = p and $\langle x \rangle \cap N \leq M \cap N = 1$, and $\langle x \rangle \langle y \rangle$ is a group of order p^2 . Therefore, $\langle x \rangle \langle y \rangle$ is an abelian group and $x \in C_G(\langle y \rangle)$. Since *y* is chosen arbitrarily, we have $x \in C_G(N)$. But then $x \in C_G(N) \cap M = N \cap M = 1$, a contradiction. (6) Final contradiction.

Let M_p be a Sylow *p*-subgroup of *M* such that $M_p \leq G_p$. By (4), $G_p = NM_p$ and $N \cap M_p = 1$. By (5), $M_p = M_p/(M_p \cap H_1) \cong M_pH_1/H_1$. Hence $G_p/N = NM_p/N \cong M_p/(N \cap M_p) \cong M_p \cong M_pH_1/H_1$ and $\mathfrak{p}(G_p/N) = \mathfrak{p}(M_pH_1/H_1)$. But M_pH_1/H_1 is a subgroup of G_p/H_1 and thus $\mathfrak{p}(M_pH_1/H_1) \leq \mathfrak{p}(G_p/H_1)$ by Lemma 3.3(2). As a result, $\mathfrak{p}(G_p/N) = \mathfrak{p}(M_pH_1/H_1) \leq \mathfrak{p}(G_p/H_1)$.

From the proof of Lemma 3.3(1), we know that the normal series $1 = H_1/H_1 \le H_2/H_1 \le \dots \le H_n/H_1 = G_p/H_1$, whose length is $n - 1 = \mathfrak{p}(G_p) - 1$, is a permutable series of G_p/H_1 . As a result, $\mathfrak{p}(G_p/H_1) \le \mathfrak{p}(G_p) - 1$. From (1), (3) and the definition of the *p*-length, we know that $l_p(G/N) = l_p(G) - 1$. From the minimal choice of *G*, $l_p(G/N) \le \mathfrak{p}(G_p/N)$. Hence $l_p(G) - 1 = l_p(G/N) \le \mathfrak{p}(G_p/N) \le \mathfrak{p}(G_p/H_1) \le \mathfrak{p}(G_p) - 1$ and it follows that $l_p(G) \le \mathfrak{p}(G_p)$, a final contradiction.

4. Some applications

The following corollary is an immediate consequence of Proposition 2.1 and Theorem 1.4. It gives an affirmative answer to Question 1.1.

COROLLARY 4.1. Let G be a p-soluble group. Then the p-length of G is no larger than the Wielandt length of G_p .

Let G be a p-soluble group. As a special case of Theorem 1.4, we know that if the permutable length of G_p is at most 1, then the p-length of G is also at most 1. By definition, the permutable length of G_p is at most 1 if and only if every subgroup of G_p is permutable in G_p . By [11, p. 55, Lemma 2.3.2], G_p satisfies such properties if and only if G_p is a modular p-group. As a result, we have the following corollary.

COROLLARY 4.2. Let G be a p-soluble group. If the Sylow p-subgroups of G are modular p-subgroups, then $l_p(G) \le 1$.

A Hamiltonian group is a group all of whose subgroups are normal. From this definition, one can see that a Hamiltonian p-group must be a modular p-group. (The converse is not true, see Example 2.2.) By Corollary 4.2, we have the following further corollary.

COROLLARY 4.3 [2]. Let G be a p-soluble group. If the Sylow p-subgroups of G are Hamiltonian p-subgroups, then $l_p(G) \leq 1$.

The well-known Burnside's theorem tells us that if $N_G(G_p) = C_G(G_p)$, then *G* is *p*-nilpotent. In other words, if G_p is an abelian *p*-group and $N_G(G_p)$ is *p*-nilpotent, then *G* is *p*-nilpotent. In [1, Theorem 1], this result was extended to show that if G_p is a modular *p*-group, then *G* is *p*-nilpotent if and only if $N_G(G_p)$ is *p*-nilpotent. An interesting question is whether we can get an analogous result for the case of *p*-supersoluble. That is, suppose that G_p is a modular *p*-group, can we obtain that *G* is *p*-supersoluble provided $N_G(G_p)$ is *p*-supersoluble? The answer to this question is no. For instance, the alternating group A_5 has modular Sylow 5-subgroups and the normalisers of its Sylow 5-subgroups are also 5-supersoluble, but A_5 itself is not 5-supersoluble. However, the following theorem indicates that in the class of all *p*-soluble groups, the modularity of the Sylow *p*-subgroups and the *p*-supersolvability of $N_G(G_p)$ do yield the *p*-supersolvability of *G*.

THEOREM 4.4. Let G be a p-soluble group with modular Sylow p-subgroups. Let \mathcal{F} be a formation satisfying $\mathcal{E}_{p'}\mathcal{F} = \mathcal{F}$ (where $\mathcal{E}_{p'}$ denotes the class of all groups with order coprime to p). If $N_G(G_p) \in \mathcal{F}$, then $G \in \mathcal{F}$. In particular, under the circumstances that G is a p-soluble group and G_p is a modular p-group, G is p-supersoluble if and only if $N_G(G_p)$ is p-supersoluble.

PROOF. By Corollary 4.2, we know that $l_p(G) \leq 1$. Hence $G_p O_{p'}(G) / O_{p'}(G)$ is normal in $G/O_{p'}(G)$. It follows that $G_p O_{p'}(G)$ is normal in G and $N_G(G_p O_{p'}(G)) = G$. Since any two Sylow p-subgroups are conjugated, we have $N_G(G_p O_{p'}(G)) = N_G(G_p) O_{p'}(G)$. Consequently, $G/O_{p'}(G) = N_G(G_p O_{p'}(G)) / O_{p'}(G) =$ $N_G(G_p) O_{p'}(G) / O_{p'}(G) \cong N_G(G_p) / (N_G(G_p) \cap O_{p'}(G)) \in \mathcal{F}$. This implies that $G \in$ $\mathcal{E}_{p'}\mathcal{F}$ and the hypothesis that $\mathcal{E}_{p'}\mathcal{F} = \mathcal{F}$ guarantees that $G \in \mathcal{F}$.

Acknowledgement

We are grateful to the referee for helpful suggestions.

458

References

- A. Ballester-Bolinches and R. Esteban-Romero, 'Sylow permutable subnormal subgroups of finite groups', J. Algebra 251(2) (2002), 727–738.
- [2] S. Bauman, '*p*-normality and *p*-length of a finite group', *Math. Z.* 87(2) (1965), 345–347.
- [3] R. A. Bryce and J. Cossey, 'The Wielandt subgroup of a finite soluble group', J. Lond. Math. Soc. 2(2) (1989), 244.
- [4] A. R. Camina, 'The Wielandt length of finite groups', J. Algebra 15(1) (1970), 142–148.
- [5] W. E. Deskins, 'On quasinormal subgroups of finite groups', *Math. Z.* 82(2) (1963), 125–132.
- [6] D. Gorenstein, *Finite Groups* (Chelsea Publishing Company, New York, 1980).
- [7] P. Hall and G. Higman, 'On the *p*-length of *p*-soluble groups and reduction theorems for Burnside's problem', *Proc. Lond. Math. Soc.* **3**(1) (1956), 1–42.
- [8] B. Huppert, Endliche Gruppen, I (Springer, Berlin-Heidelberg-New York, 1967).
- [9] E. A. Ormerod, 'On the Wielandt length of metabelian *p*-groups', Arch. Math. **57**(3) (1991), 212–215.
- [10] S. Qiao, G. Qian and Y. Wang, 'Influence of permutizers of subgroups on the structure of finite groups', J. Pure Appl. Algebra 212(10) (2008), 2307–2313.
- [11] R. Schmidt, Subgroup Lattices of Groups, Vol. 14 (Walter de Gruyter, Berlin, 1994).
- [12] H. Wielandt, 'Über den Normalisator der subnormalen Untergruppen', Math. Z. 69(1) (1958), 463–465.

NING SU, School of Mathematics, Sun Yatsen University, Guangzhou, 510275, PR China e-mail: mc04sn@mail2.sysu.edu.cn

YANMING WANG, Lingnan College and School of Mathematics, Sun Yatsen University, Guangzhou, 510275, PR China e-mail: stswym@mail.sysu.edu.cn