CORRIGENDUM

KERNEL FUNCTIONS OF THE TWISTED SYMMETRIC SOUARE OF ELLIPTIC MODULAR FORMS

(Mathematika 64 (2018), 184–210)

HAYATO KOHAMA AND YOSHINORI MIZUNO

We give a list of corrections for the paper.

- p. 186, line 12: when v = 0, r^{v} should be understood to be $r^{v} = 1$ (even if r = 0). Similarly, when v = 0, the following values should be understood to be 1:
 - 0 p. 188, λ^{ν} in line 16;
 - p. 188, r^{ν} in line 2 from the bottom;
 - p. 189, λ^{ν} in line 2;

 - p. 190, $(z+q)^{\nu}$ in line 9 from the bottom; p. 190, z^{ν} and $\left(-\frac{r}{2\alpha}\tau\right)^{\nu}$ in line 6 from the bottom; p. 190 $\left(\frac{r}{2\alpha}\right)^{\nu}$ in line 3 from the bottom;

 - p. 195, $r^{\bar{\nu}}$ in line 3. 0
- p. 187, line 8: insert "a(n, s) is holomorphic on the same region." after " $s \neq 1$."
- p. 195, line 11: "all $s \in \mathbb{C}$ " should be " $\Re s > \frac{1}{2}$ ".
- p. 198, Lemma 10(2)(ii) and p. 199, Proposition 3(1)(ii): " $f_*^{1+\eta}$ " should be " $f_{*}^{1+2\eta}$ ".
- p. 199, line 15 from the bottom: add " $M = |D_K| = M_1$, L = 1 and" after "In this case."
- p. 200, line 3: " $v^{(s-k+1+\nu)/2}$ " should be " $v^{(\sigma-k+1+\nu)/2}$ ". •
- p. 200, line 8: delete π from the exponent in the power with base e.
- p. 200, line 10: "e^{$-\pi(v/2)$}" should be "e^{-v/2}". p. 200, line 11: " $K_1 := 2^{\sigma-(1/2)} |\Gamma((s-k+\nu+1)/2)|^{-1}$ " should be " $K_1 := \pi^{\sigma/2+(1/4)} 2^{\sigma+(1/2)} |\Gamma((s-k+\nu+1)/2)|^{-1}$ ".
- p. 200, line 9 from the bottom: " $N_1 \mid r, N_2 \nmid r$ " should be "gcd $(r, N) = N_1$ ". •
- p. 204, line 3 from the bottom, insert the following sentence after the formula of $A(1, \pm 10, s)$: "Similarly, if $r^2 - 100 = 5f^2$ with some $f \in \mathbf{N}$, then by Propositions 2, 3(2) and Lemma 3(a)(2-2), one has

$$A(1, r, s) = \sqrt{5} \frac{\Upsilon_{5,\chi_5}^s(f)\zeta(s)}{(1+5^{-s})\zeta(2s)} F_{r/5,1}^1(5^{-s}),$$

$$F_{r/5,1}^1(5^{-s}) = \frac{-\chi_5(2r/5)5^{-s}}{1-5^{1-2s}} (1-5^{1-s})(1+5^{1-s}-5^{m+1-(2m+1)s}(1+5^{-s})),$$

where *m* is the integer such that 5^m is the highest power of 5 dividing f/5."

Received 8 April 2018, published online 30 August 2018. MSC (2010): 11F67 (primary), 11F50 (secondary).

CORRIGENDUM

Hayato Kohama,	Yoshinori Mizuno,
Graduate School of Technology,	Graduate School of Technology,
Industrial and Social Sciences,	Industrial and Social Sciences,
Tokushima University,	Tokushima University,
2-1, Minami-josanjima-cho,	2-1, Minami-josanjima-cho,
Tokushima, 770-8506,	Tokushima, 770-8506,
Japan	Japan
E-mail: 2h756he9c78gj642s1jnv3@gmail.com	E-mail: mizuno.yoshinori@tokushima-u.ac.jp