
ON COMMUTING RINGS OF ENDOMORPHISMS 

C. W. CURTIS 

1. Introduction. Various problems concerning the general theory of 
centralizers of modules which are not assumed to be completely reducible have 
been discussed by Fitting (3), Brauer (2), and Nakayama. In this paper we 
present a new approach to some of these questions, which has its origin in 
Weyl's discussion (15) of the centralizer of a finite group of collineations. 

Let S3 be a ring with an identity element, and let 9ft' and 9ft be unital1 left 
and right S3-modules, respectively. We assume that there exists a function 
T ( ^ , X) on 9ft' X 9ft —> S3 which is bilinear with respect to S3, and non-
degenerate. The set b of all finite sums ]Lr (^ , Xi) is a two-sided ideal in S3, 
called the nucleus of the pairing (9ft', 9ft, r). Let @ be the ring of all S3-
endomorphisms of 9ft. Then @ contains the right ideal 9ft'O 9ft consisting of all 
finite sums of the endomorphisms \f/ O u of 9ft, where x(yp O u) = ur($, x), 
x Ç 9ft. By a centralizer Ê of 9ft relative to S3 we mean a subring S of (g 
containing the right ideal 9K' O 9ft. 

Our basic assumption is that the nucleus b contain a two-sided identity 
element. Then it is proved in §5 that the ring of S-endomorphisms of 9ft is 
precisely the set of endomorphisms Rb: x —» xb determined by the elements of 
S3. Let 9Î be a Ë-direct summand of 9ft; then r(9ft', 9Î) is a left ideal in b, and 
the mapping 3Î —-> r(9ft', dt) is a (1-1) mapping, preserving direct sums, 
intersections, and isomorphism relations, between the set of S-direct sum-
mands of 9ft and the set of left ideal direct components of b. Dually, if 9ft' O 9ft 
contains the identity operator on 9ft, and if the pairing \f/ Q u is non-degenerate, 
then the mapping 9Î —» 9ft' O 9Ï defines a (1-1) mapping between the set of 
S3-direct summands of 9ft and the set of left ideal direct components of the 
centralizer S. If 33 satisfies the minimum condition for left ideals, then every 
indecomposable ©-direct summand 9Ï of 9ft contains a unique maximal 
Ê-submodule, and if dti and 9î2 are indecomposable 6-direct summands, then 
9?i and 9Î2 are S-isomorphic if and only if 9îi/©i and 9Î2/@2 are S-isomorphic, 
where ©* is the unique maximal submodule of 9îf, i = 1, 2. 

The principal application of this theory is to projective (or ray) representa
tions of a finite group ® by s.l.t. (semi-linear transformations) of a vector 
space 9ft over a division ring A. If S3 = A(®, H, p) is the crossed product 
associated with the projective representation, then it is proved in §2 that a 
space 9ft', and a pairing r of 9ft' X 9ft —> S3 which satisfies our hypotheses, 
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*A left or right S3-module 9ft is called unital if the identity element of S3 acts as identity 
operator on 9ft. 
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can be constructed if and only if the normalized factor set p satisfies the 
condition pStS~

l = 1 for all 5 in @. In §3 the pairing considered by Weyl (15) 
is defined, and shown to satisfy our hypotheses, so that Weyl's results are 
consequences of the theorems proved in §5. In §4 and §8 some special results 
are derived which concern the pairings obtained in §2 from projective repre
sentations of finite groups. A few remarks are included in §9 on the applications 
of the results on projective representations to the Galois theory of primitive 
rings with minimal ideals. A direct proof is given in §10 of the fact that the 
centralizer of a symmetric algebra 3Ï of l.t. in a finite dimensional vector space 
2ft which is a projective 3l-module is a symmetric algebra. 

2. Projective representations of finite groups2. Let 5DÎ be a commuta
tive group, and A a division ring consisting of endomorphisms £: x —• x£ of 9JÏ, 
such that A contains the identity mapping. Then 2JÎ is a right vector space 
over A. Two non-singular s.l.t. T\ and T<L in 9JÎ over A are said to be equivalent 
if T\ = T2fJLj where \x is a non-zero element of A. An equivalence class {T\ of 
non-singular s.l.t. is called a projective transformation. Multiplication of 
projective transformations is defined in the obvious way, and the projective 
transformations form a group $($!#, A). 

Now let © = {1, 5, /, . . .} be a finite group. A homomorphism of © into 
$(9Jf, A) is called a projective representation of ©. Evidently a projective 
representation is determined by a mapping s —> Ts of © into the set of non-
singular s.l.t. of 3D? such that 

(1) T8Tt = Tst p S t t , 

where the pSft are certain non-zero elements of A. From the associative law 
and (1) we obtain 

(2) è1 = P,.rl?P,„ 
where s: £ —» £? and t are the automorphisms of A determined by the s.l.t. Tg 

and TtJ and 

( 3 ) Ps,tuPt,u — Pst.uPs.t-

If we denote the inner automorphism £ —• ps,r
l£ps,t by ps,u then (2) becomes 

(20 st = 7tpStt. 

A set {ps,t'j û}, where the pStt are non-zero elements of A, and the û are 
automorphisms of A, is called a, factor set of © (in A) if the equations (2) and 
(3) hold. Thus the transformation Ts satisfying (1) determine a factor set 
{ps,t\ù\. If we replace the representatives Ts of the projective transformations 
corresponding to the elements of © by new representatives T's = Tsp.s, then 
we obtain 

s1 t — 1 stP s,t 

2For the terminology introduced in the first part of this section, see (6, Chap. 4, §17, 18). 
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where the automorphisms s', associated with T'8 satisfy 

(4) s' = s ms, 

where fns is the inner automorphism £ —» MS
-1£JUS, and 

( 5 ) p's,t = MsT Ps. «Ms M«-

Thus it is natural to say that two factor sets {ps,t',û} and {ps<t\U
r\ are 

equivalent if there exist elements /JLS 9e 0 such that (4) and (5) hold. Then a 
projective representation determines a class of equivalent factor sets. 

Now let {pStt;û} be a factor set, and let {bs} be a set of elements in (1-1) 
correspondence with the elements in ©. The set S3 of formal expressions 
EMs> £s £ A, 5 6 @ becomes an associative ring if we define two expressions 
to be equal if and only if they have the same coefficients, and if addition is 
defined componentwise, and multiplication using the distributive laws and 
the rules 

bsbt = bst ps,u 

Then S3 is called a crossed product A(®, H, p) with correspondence 5 —» s = sH, 
and factor set p. If {p's,ù û'} is a factor set equivalent to \ps,t\ û}y and if S3' 
is a crossed product A(@, H\ p') with correspondence 

5 —> sH' = s 

and factor set p', then it is easily verified that S3 and S3' are isomorphic. 
As Jacobson observes (6, p. 82), the element ^ipi,i -1 is an identity 1 for S3, 

and if we identify A with the division subring 1A of S3, then every element of 
S3 can be expressed uniquely in the form £ bs£si where the term bs£s is now the 
product of bs = bsl with £s. It follows that S3 is a two-sided vector space of 
finite left and right dimension over A, and consequently S3 satisfies both chain 
conditions for left and right ideals. 

If 5 —> Ts defines a projective representation of @ with correspondence H 
and factor set p, then 

E b£* -* E T£s 

defines a representation of S3 by endomorphisms of the representation space 
2)? such that the identity element of S3 is mapped onto the identity mapping 
in 5ft, while conversely any such representation of S3 by endomorphisms of 93? 
gives rise to a projective representation of @ with the same correspondence 
and factor set. 

Now let 9ft be a unital right S3-module, and hence, in particular, a right vector 
space over A. Let W be a left vector space dual to 9ft with respect to a non-
degenerate bilinear form (4/,x) on W X 9ft —> A, such that the s.l.t. Rs: 
x —> xbs determined by the elements of ® all have transposes i?s* relative to 
the form (^, x). Thus Rs* is a s.l.t. of 2ft' with automorphism s~l such that 

https://doi.org/10.4153/CJM-1956-032-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-032-7


274 C. W. CURTIS 

(if we write operators on W to the left), 

(6) <*, xRtf-1 = (R* f, x) 

for all \p and x. 
We prove first that if we set ( £ bs£s) \p = £ Rs*(£s\[/), then 9D?' becomes a 

unital left S3-module. For all x and ^, we have, since 1 = ôipi.f1, 

<i*. *> = <iei*(pi,rV), *> = <Pi,rV, *#i>T~l = <*, *> 

by (2'), and hence l\p = ^. In order to prove that 93?' is a left S3-module, it is 
sufficient to prove that (ab)\f/ = a(b\p). For all x and ^, we have 

< ( M M <£,*> = (Rst\ps,t^),x) 

= < ^ * ( ^ ; ( ^ ^ ) ) , x ) I ^ - - 1 H - 1 = (bsH(btV+),x) 

by (2'), and the conclusion follows from the non-degeneracy of the form. 
We wish to study the centralizer of 5DÎ relative to S3. Neither the centralizer, 

nor the projective representation corresponding to 9JÎ, nor the crossed product 
S3 = A(®, H, p) is changed if we change the basis (bs) of S3 to (bsfjLs), where 
the fis are non-zero elements of A. In particular, if we set JLH = pi,i and /xs = 1 if 
55^ 1, then the equivalent factor set {p'5,*î^'} corresponding to the new 
basis (bsfjis) has the property that p'i,i = 1, and by an application of (3) 
(see [6]) it follows that p'i>5 = p'5ti = 1. There is no loss of generality in 
assuming that our original factor set is normalized in this way, and in the rest 
of the paper, this normalization will be tacitly assumed. 

PROPOSITION 1. The mapping 

(7) r ( * , * ) = Z W f ^ - i f , 

on 5D?' X 9JÎ —» S3 is homogeneous, in the sense that the equations 

(8) r( ty , x) = &T(*> x) and rtys xb) = r(^, x)b, b 6 S3, 

hold, if and only if the {normalized) factor set of S3 satisfies the condition p8tS-i = 1 
for all s in &. 

Proof. In the proof of this result, we shall use the abbreviation u' for ur1, 
u 6 ®. It is an easy matter to verify that the equations (8) hold if b is an 
element of A. From (7) it follows that T (^ , X) is biadditive, and consequently 
the homogeneity is equivalent to the equations 

(8') r(Jbuyp,x) = &Mr(^, x), r (^ , xbu) = r (^ , x)5w, # Ç ©. 

The coefficient of 6* in r(6w^, x) is 

(RSfrxRf)1 = (frxRw.uf1 = (f,xRt.uf
J
P%. 
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T h e coefficient of bt in &wr(^, x) is 

Pu,u'tU',xRt'u)U't = Pu,u'tPu',t(4',xRt'u)U lp'u'tt 

= PI, tpLu'ty, ocRfuYPu,u V*', « = (^i xRfuY ^Lu'p'u'. u 
by (2') and (3), and the facts t h a t pi>t = 1, and a ' = UfpUtU> by (2') . T h u s the 
first equat ion in (8') holds if and only if 

( 9 ) pUf,u = Pu,u'Pu',t-

T h e coefficient of &, in T ( ^ , X&M) is (^, xRUfpu,t')\ while the coefficient of 6, 
in r ( ^ , x)&w is 

Ptu'.ui^i xRut') U = Plu',uP tu^ui^, xRut') Ptu'.u 

by (2). Hence the second equation in (8') holds if and only if 

(10) pu, t' = Ptu'.u-

Sett ing / = u in (10) we obtain 

Pu>u' = pi.u = 1» 

and hence pUtU> = 1, so t h a t the condition is necessary. 
Assume now t h a t pM>w> = 1 for all u. By (3) we have 

(11) 1 = Pu,lPt',t = Put',tPu,t' 

a n d 

A = Pl.cPw'c.w == Pu' tuvPu,v 

Upon subst i tu t ing w —» /w' and z> —» w in the last equat ion we obtain 

(12) Put',tPtu',u = 1, 

and by comparing (11) and (12) we obtain (10). T h e condition implies t h a t 
u' = û'> and we have 

^ v _ _ -, 
Pt',uPu',t — Pu' t,t'Pt'u,t' — -1 

by (10) and (12), proving (9). This completes the proof. 
For an example of a projective representat ion whose factor set satisfies the 

condition of Proposition 1, b u t is not equivalent to one, see (17, p . 182). 
T h e pairing r ( ^ , x) defined in (7) is non-degenerate in the sense t h a t 

r(9D?', X) = 0 implies x = 0, and T ( ^ , 9ft) = 0 implies yp = 0. Th is remark 
follows from the fact t h a t T ( 2 R ' , x) = 0 implies <2»', xRt) = <9T, x) = 0 
since R\ is the ident i ty operator, and the non-degeneracy of the form (\f/f x). 

An endomorphism C of 9JÎ is said to belong to the centralizer £ of 9ÎÎ relative 
to S3 if (x6)C == (xC)ô for all b in S3, x in 5DÎ, and if there exists an endomor
phism C* of SD?' such t h a t (C*^, x) = (^, xC) for all x and ^ . An element of 
6 is necessarily a l.t. in 5DÎ over A, and it follows t h a t C*, which is uniquely 
determined, is also a l.t. in 2)?' over A. 
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PROPOSITION 2. An endomorphism C ofSEXÎ is an element of S if and only if 
there exists an endomorphism C** on 90?' such that T(C**\I/, X) = T(T/S xC) for 
all x and \f/. 

Proof. If C € Ê then evidently the transpose C* of C relative to the form 
(ypy x) satisfies the equation T(C*\[/, X) = r(\f/, xC). Conversely, if C** is given, 
then upon comparing the coefficients of bu we obtain (C**^, x) = (t/s xC). 
For all £ <G A, 

r(*, (*£)0 = r(C*V, *) £ = r( ,̂ (*C)£), 
and by the non-degeneracy of the form r, C is linear. Similarly C** is a l.t., 
and hence C** is the uniquely determined transpose of C relative to the form 
(yp, x). Then for all s in ®, comparison of the coefficients of bs-i yields 
(C*V> xRs) = (\p, xCRs), and hence (\//f xCRs) = (^, xRsC) so that CRS = RSC 
since 2)?' and 90? are dual. It follows that C is a 33-endomorphism of 90?, and the 
proof is complete. 

We shall call the system (90?', 90?, r) a pairing in case r is bilinear and non-
degenerate (r is bilinear if r is biadditive and homogeneous relative to right 
and left multiplication by elements of 33). Necessary and sufficient conditions 
for the bilinearity of r are given in Proposition 1. From the bilinearity of r 
it follows that 

b = T(2»', a») = {E Tit* x%) \ft e aw, ** e m\ 

is a two-sided ideal in 33, which we shall call the nucleus of the pairing. 
With a pairing (2)?', 93Î, r), we shall associate a dual pairing (\f/, u) —+ \p O u 

of 90?' X 90? —• Ê, where ^ 0 w is the endomorphism of 90? defined by 

(13) xty O «) = « T ( ^ , *)> x G 2». 

I t is easily verified that if (\f/ O u)* is the endomorphism of 90?' defined by 

(14) (tA O uY<t> = T ( 0 , «) *, 0 G 90?', 

then r(0, x(^ O #)) = r ( ( ^ O u)*<f>, x), and by Proposition 2, it follows that 
the mappings \f/ O u are in £. The action of S upon 90? makes 90? a right 
6-module, while 90?' becomes a left 6-module if we set C\f/ = CV, where C* 
is the transpose of C relative to the forms r, and (\[/, x). It is immediate that 
the pairing \p O u is bilinear, that is, it is biadditive, and 

C(i£ Ou) = (CVO Ou; (f O u)C = $ O «C, C G Ê. 

A sufficient condition that \p O u be non-degenerate is that # ^ 0, ^ ^ 0 
imply xb 9e 0, 6^ ^ 0, where t) = r(90?', 90?) is the nucleus of the original 
pairing. Indeed, suppose that ^ © 90? = 0. Then 

TO O 90?) = 90?r(^, 90?) = 0. 

Therefore r(b^, 90?) = 0, and b\f/ = 0 by the non-degeneracy of r. Therefore 
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\p = 0. Similarly 9W © x = 0 implies x = 0. We have proved the following 
result. 

PROPOSITION 3. Let (9ft', 93?, T) be a pairing. Then (\p,u) -*\p O u defines a 
pairing of W X 9K —» S which is bilinear. The pairing \p Q u is non-degenerate 
if x ?± 0, \f/ y£ 0 imply xb ^ 0 a?z<2 b^ ^ 0, where b is the nucleus of the pairing r. 
77ze se/ c = 99?' © 99? consisting of all finite sums Y^^Pi © utis a two-sided ideal 
in (L 

The mappings \p Q u belonging to the nucleus of the pairing defined by (13) 
can be characterized quite simply if we use the formalism of finite valued l.t. 
(8, Chap. VIII) . Every finite valued l.t. X in 9JÎ over A which possesses a 
transpose X* relative to (^, x) can be expressed in the form 

X = ZtiXuu t i t W , Ui£M, 

where x(Y, $ % X Ui) = £ UihPu x), x Ç 93?. We wish to prove the formula 

(15) *Gu = ZRs-ittXu)Rs. 
s 

We have for all x, 

* Z ) *R.-i(^ Xu) Rs = X su(t, xRs-i) Rs = Z) suRs(xl/,xRs-iY 

= wr(^, x) = x (^ © w). 

Various special cases of the situation considered in this section are of 
importance. We should like to mention especially the applications to affine 
representations of finite groups (6, p. 81), where all ps>t — 1, and consequently 
the pairing r is bilinear in all cases, by Proposition 1 ; and to ordinary repre
sentations of groups, where all pSft = 1, all s = 1, and A is a field. 

3. A pairing constructed by Weyl. We shall discuss a pairing introduced 
by Weyl (15) which differs from the one we have defined in §2 in that its 
bilinearity depends upon the existence of an involution in the crossed product 
58. We consider an affine representation 5 —> Us of a finite group ® by s.l.t. 
in a vector space 99? over a field <ï>; then all pStt = 1, and 5 —» s is a homo-
morphism. Let 58 = <ï>(®, H, 1) be the crossed product constructed as in §2. 
In this case we have bsbt — bst, and £bs = b£s

y £ 6 $. Since <ï> is commutative 
it follows that the mapping 

is an involution in 58. We obtain a representation of 58 by endomorphisms of 
93? by setting 

xU(Esbsis) = Hs(xUs)£s. 

Then 93? becomes a left 58-module (and a left vector space over 3>) if we define 
bx = xU(bJ), x Ç 93?, 6 Ç 58. The right vector space 99?* of all linear functions 
on 93? becomes a right 58-module if we define 
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iKE b&) = E 4>u*(bt-i)s„ 4, e aw*, 
where 

U*(ba-i) 

is the transpose of the s.l.t. U(bs). 
We introduce a pairing a on 3Cft X 9)2* —» 53 by means of the following 

formula: 
(16) a{x,f) = Zsbs(xUs,t), 

where (x, \f/) is the bilinear form on SO? X 90Î* —> $. It is not difficult to verify 
that <T is bilinear: 

<r(xi + x2, $) = <r(xu \p) + <r(x2, ip) 
<r(x, \pi + fa) = cr(x, fa) + cr(x, ^2), 
a(bx, fa = 6cr(x, ^ ) , <r(x, \f/b) = a(xy fab, 6 Ç 93, 

and that a is non-degenerate: o-(9Jî, <A) = 0 implies \p — 0, and o-(x, TO*) = 0 
implies x = 0. 

Let S be the ring of 93-endomorphisms of 5DÎ. If C € 6, then C is a l.t. and, 
if C* is the transpose of C with respect to the form (x, fa, then 

or(#C, fa — <J(X, ypC*) 

for all x and ^. Conversely if C is a endomorphism of SDÎ, and if there exists 
an endomorphism C** of 9DÎ* such that o-(xC, ^) = a(x, \f/C**) for all x and î , 
then C** is also the transpose of C with respect to the form (x, fa, and C G 6. 

The endomorphisms fa u defined by x(fa u) = a{x, fau are elements of 6. 
If we introduce the action of (£ upon 3D?* by means of the formula C\f/ — \pC*, 
then 90Î* becomes a left (5-module, and (^, u) —> fa u defines a bilinear pairing 
of 9JÎ* X 5DÎ —> S. Finally it is possible to verify, as in §2, that for all \f/ and u, 

fau = E ^ - l ( ^ X M ) C7f. 

4. Remarks on the structure and representation theory of crossed 
products. Let 93 = A(®, H, p) be a crossed product. We shall prove that 
there exists a (1-1) order inverting correspondence between the lattices of 
left and right ideals of 93. Let r(@) and /(©) denote the right and left annihila-
tors, respectively, of an arbitrary subset © of 93. If r. and I are left and right 
ideals, respectively, then r(l) and l(v) are right and left ideals, respectively. 

PROPOSITION 4. / / 93 = A(®, H, p), /Aéw //*e correspondences r —• /(r) awd 
Ï —» r(l), w&ere r and I are ng/z/ and left ideals, respectively, are inverses of each 
other: r(l(x)) = r and l(r(V)) — t. Moreover, every indecomposable right or left 
ideal direct component of 93 contains a unique minimal non-zero subideal. 

Proof. Since A Ç 3Î, 93 is a two-sided vector space over A, and the elements 
[bu bs, . . .} corresponding to the elements of @ form both a left and right 
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basis of 93 over A. If b = ]£ bs£s is an arbitrary element of 93, then the mapping 

6->X(&) =£x 

is both a left and right A-linear function. It is easy to prove that the kernel 
of X contains no non-zero left or right ideal of 33 (12, p. 658). Therefore the 
associated bilinear form X defined by 

(17) X(M' ) = X(W). *. &' € 93. 
is non-degenerate. From these facts it follows that if r and I are right and left 
ideals, respectively, then 

/(r) = {b\ b e 93, X(M) = 0}, r(l) = [b \ b € 93, X(t,6) = 0}. 

Since 93 is finite dimensional over A, a well-known property of dual vector 
spaces implies the first statement of the theorem. 

Now let e93 9e 0 be an indecomposable right ideal, where e is an idempotent. 
Since 93 satisfies the minimum condition for left and right ideals, e93 contains a 
unique maximal subideal. Moreover 93tf is an indecomposable left ideal which 
also contains a unique maximal subideal (1, Chap. IX). Clearly Z(e93) = 93 (1 — e). 
Suppose that for some x £ 93tf, X(x, ̂ 93) = 0. Then, since xe$5 is a right 
ideal, we have xe93 = 0, and x Ç 93(1 — e). Therefore x = 0, and it follows 
that the restriction of X to 93e X e93 is non-degenerate. Because of the order 
inverting property of the annihilator correspondence, we conclude that both 
93e and e93 possess unique minimal non-zero subideals. 

We remark that 93 is a quasi-Frobenius ring (10, p. 8) by Theorem 6 of 
(10). 

Now we consider a pairing (2»', 2K, r) of 2K' X Tt -> 93 (see §2), together 
with the associated pairing (2K', 2», O) defined by (13) on 9DÎ' X 9tt to the 
centralizer Ë of 9JÎ relative to 93. Let c = 9ft' O 93Î be the nucleus of the pairing 
(Wl', SDÎ, O) ; then c is a two-sided ideal in Ê. We shall prove that the statement 
c = 6 is equivalent to certain structural properties of 9JÎ viewed as a 93-module. 
Later, in §8, we shall show how, when S = c, these properties of SDÎ can be used 
to prove certain ideal theoretic results concerning the ring £. 

The results we require have been established recently by several authors 
(4; 5; 9), and it is unnecessary to include the details here. Let us assume that 
the (right) dimension of 9ÏÎ over A is finite; then every l.t. X in 9)î over A has 
the form X = £ $% X uu for some \pt in 9Ji' and ut in 9Jt. Our starting point 
is the observation ((15), §2) that c = 6 if and only if there exists a l.t. X in 9JI 
over A such that 
(18) £ # s- iXR3 = 1 , 5 G ®, 

s 

where 1 is the identity l.t., and Rs is the mapping x -*xbs in 2ft. 
Now we adopt some terminology due to Cartan and Eilenberg. A (right) 

93-module is called projective* (M0 in the sense of Gaschutz (4; cf. also 5 and 
3No connection between projective representations and projective modules is implied by 

this definition. 
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7) if whenever X and U are 33-modules such that U C X and X/VL = SDÎ, then 
there exists a 33-submodule U* of X such that X = U © U*. 93? is called 
infective (Mu in (4, 5, 9)) if whenever 93? is ^-isomorphic to a submodule 
S3 of £ , then there exists a 33-submodule 35* of £ such that X = 33 0 35*. 

PROPOSITION 5. Let (9T, 2», r) fc a £airmg of 93?' X 93? -» 33 = A(®, i7, P ) , 
and /e/ /Ae (right) dimension of 93? 0z>er A ôe finite. Then the following statements 
are equivalent. 

(i) c contains the identity 1.1.; 
(ii) 93? is a projective $B-module; 

(iii) 93? is an infective $B-module; 
(iv) 9JÎ is a direc/ sum of indecomposable $8-submodules which are ^-isomor

phic to right ideal direct components of 33. 

Proof. Theorem 1 of (9) states that (ii) and (iv) are equivalent (see also 
the remark on p. 107 of (9)). The equivalence of (i), (ii), and (iii) has been 
proved by Kasch (5, Theorem 12). To verify this statement, the following 
remarks may be helpful. We should observe first that 33 is a Frobenius exten
sion of A with Frobenius homomorphism b —>\(b) (5, p. 462). Then statement 
(i) is equivalent to the statement that (18) holds for some l.t. X} where we 
note that {bi, bs,bu...} and {bu bs-i, bt-j, . . .} are orthogonal left and right 
bases of 33 over A (5, p. 457) with respect to the bilinear form \(b, b') defined 
by (17). We now see that Kasch's theorem is indeed applicable to our situation. 

Remark 1. If it is not assumed that the dimension of 93? over A is finite, 
then not every l.t. X in 93? over A has the form ^xptXUi. The following implica
tions remain valid: (i) —» (18) —» [(ii) and (iii)] —> (iv). 

Remark 2. Assume (i) ; then from (18) we obtain 

/ v LS-\X Ls — 1, 

where 1 is now the identity mapping on 9}?', X* is a l.t. on 93?', and Ls is the 
mapping \p —> bsyf/ = Rs*$ in 93?'. Therefore we have the implications (i) —» 
(ii)' —» (iv)', where (ii)' and (iv)' are obtained from (ii) and (iv) by replacing 
m by 9)?', and "right" by "left" in (iv). 

Remark 3. It follows from the considerations of §3 that a result analogous 
to Proposition 5 can be established for the pairing a of 93? X 93?* —> 33 which 
was constructed in §3. We shall not include the details of this discussion. 

5. Abstract theory of regular pairings. Let 33 be an arbitrary ring with 
identity element 1, and let 33 admit a set of 0 of (left) operators. We shall assume 
that 1 acts as the identity operator on all 33-modules which we shall consider. 
Let 93?' and 93? be left and right 33-O-modules, which are paired to 33 by a 
function r(\p, x). We assume that r is bilinear, relative to both 33 and 12, in the 
sense that the equations 
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r{&\ + ^2, x) = T(^I , X) + T(^ 2 , X), r(\l/} Xi + X2) = rtys Xi) + «rtys x2) 
r(ô^, x) = 6r(^, x), T(\f/,xb) = r(^, x)&, 
r(ai/', x) = ar(f, x), r(^, ax) = ar(^, x) 

hold for all x in 9ft, ^ in 9ft', & in S3, and a in 12. Our second assumption is 
that r is non-degenerate. If these conditions are satisfied, then we shall call the 
system (9ft', 9ft, T) an (abstract) pairing. The nucleus b = r(9ft', 9ft) of the 
pairing is a two-sided ideal in 33. 

We let ® be the set of all 33-12-endomorphisms of 9ft. If â denotes the endo-
morphism x —> ax of 9ft determined by an element of 12, then â £ 6 g for every 
E in (£, and 5.E — Eâ, so that if we define aE = âE, then © becomes an 
12-ring. 

The endomorphisms x// Q u defined by (13) are elements of (S, and possess 
transposes relative to the form r. Let c be the subgroup of Ê consisting of all 
finite sums of the \f/ O u. If the action of c upon 9ft' is defined by the formula 
E\p — E*\f/, for E in c, then it follows that (^, u) —* \[/ O u is a c-12-bilinear 
mapping of 9ft' X 9ft —» c. We shall denote this pairing by (9ft', 9ft, O), and 
observe that the nucleus c is an O-subring of ©. If E 6 @, then (^ O w)E = 
^ O uE, and hence c is a right 12-ideal in (g. We shall denote by S an arbitrary 
12-subring of S such that 

(19) c Ç g Ç g . 

Then S will be called a centralizer of 9ft relative to 33, and will remain fixed 
throughout the discussion. Our aim is to establish relationships between the 
nuclei b and c of the rings S3 and Ë, and the properties of 9ft and 9ft' as 93 and 
(^-modules. 

In order to discuss the connection between the ring 33 and the structure of 
9ft (or 9ft') as a S-module, we shall assume that the pairing r is regular in the sense 
that b contains an element e0 = S7"^**» x**) such that be0 = e^b = b for all 
b Ç b. By the non-degeneracy of r it follows that xe0 = x and eo\[/ = \f/ for all 
x e m and yp G 2tt'. 

It is always possible to construct a regular pairing from an arbitrary one. 
Let eo be any central idempotent contained in the nucleus b of a pairing 
(9ft', 9ft, T), or let e0 = 0 if 6 contains no central idempotent. Then 

9ft = 9fte0 0 9ft(l - *>), 2ft' = e0W © (1 - e0)9ft\ 

where the direct summands are invariant relative to both 33 and c. We 
define a new pairing r0 of e09ft' X 9fttfo —» 33 by setting 

To(eo\p, xe0) = r^o'A, x^o) 

for all \p and x and we shall prove that r0 is a regular pairing. The nucleus bo 
of ro contains e0, for if e0 = S r(^*, X*), then e0 = E ^ W J , X ^ 0 ) . Obviously 

e0& = foo = b, b Ç b0. 

The bilinearity of TO is evident. It remains to prove that ro is non-degenerate. 
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Suppose ro^ot/s xeo) = 0 for all e0\p 6 e0W. If \p is arbitrary in 9ft', we write 

\p = e0\l/ + (1 — e0)\p 

and obtain 

r(\p, xeo) = T0(e0\p, xe0) + r ( ( l — e0)i/s ^ o ) 

= r ( ( l — ^o)^ , x^o)^o = e 0 r ( ( l — £ 0 ) ^ , ^ o ) = 0, 

so that xe0 = 0 by the non-degeneracy of T. Similarly ro(£o^, 9fteo) = 0 implies 
e0rp = 0. 

We return now to our assumption that the pairing is regular. If @ is any 
subset of 33, we shall write @r (resp. ©0 for the set of endomorphisms Rs: 
x —» #5 (resp. L s : ^ —> s^) of 93? (resp. 9ft') determined by the elements of ©. 
We are in a position to prove the following result: 

THEOREM 1. Let ï§ be the set of all (E-endomorphisms of 9ft. Then br = 33 r = 33. 

P r ^ / . Obviously br C 33 r C SB. Conversely let 5 <E «8; then B($ O u) = 
(^ O w)5 for all $ and w. Consequently 

wr(^, xB) = (UT(\P> X))B 

for all x, ^, and w. Let b = ]£T(^*i> x**£); then for all u £ 9ft we have 

«ft = E M r t f . x * ^ ) = («!>(**<, **<))# = (««o)5 = uB, 

and Rb = B. This completes the proof. 

If 8Î is a (£-fi-submodule of 9ft, then 

r(9ft', m = {£ T(*„ x,) |*, e 9ft', x, ç $R} 

is a left Œ-ideal contained in b. If I is a left O-ideal in 33, then 9)?l is a Ê-Î2-
submodule of 9ft. We have, for all 5R and I, 

(20) 9ftr(9ft', SR) C $ ; r(9ft/, SKI) C I: 

the first since 9ftr(9ft', » ) C 9î(9ft' O 9ft) C ffiffi C $ by (19) and the 
fact that 9î is a S-submodule4 of 9ft; the second, obvious. For later use we 
observe also that 

(21) rOft', I » , ) » E r(9ft', JR,), 9ft(£ U) = L (3»U), 

and 

(22) r(9ft', SRI) = r(9ft', SR)1, SK(I1I2) = (9ftIi)I2. 

LEMMA 1.. Let $lbe a di-direct summand of 9ft. Then there exists an idempotent 
e Ç 33 such that r(9ft', 9t) = $be. 

4For the rest of §5, 6, and 7, we shall omit explicit reference to the set O. Thus by submodule, 
ideal, etc. we shall mean fi-submodule, 12-ideal, etc. 
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Proof. Let £ be a projection of 99? upon 9? such that E £ 33. By Theorem 1, 
E = Rei where 

e = I r ( f ^ * , £ ) G T(2R', SR). 

If 6 = 5Zr(^i, ^i) is an arbitrary element of r(9Jî', 9?), then be = b since the 
restriction of E to 9? is the identity mapping. Therefore r(2ft', 9i) = 33#. 

LEMMA 2. Le/ 9Î &e a (H-submodule such that r(2)?', 9?) = Se, where e is an 
idempotent in 33. Then MT(W, SR) = 91. 

Proof. By the non-degeneracy of r we have e mr(W, 9?) for all 
x Ç 9î, and together with (20), this proves the Lemma. 

LEMMA 3. Let 1 = Se, w&ere e2 = e £ b. T^ew 9ÏH = $le is a ^-direct 
summand of 9ft, and T(2J?', 93ÎI) = I. 

Pm>/. We have 2RI = 9W33e = 9)?e, and Wl = me 0 3W(1 - e), proving 
the first statement. For the second, b Ç 1, b = 2]r(^i, #*), implies 

b = be = Y,Tttt,xte) G TODÎ', SUM), 

and by (20) we infer that I = T(2R', 2»I). 

THEOREM 2. Let (9JT, 2)î, T) &e a regular pairing with nucleus b. The mappings 
I —> 9JÎ1 aw J 9? —> r(9J?', 9Î) between the set of left ideal direct components of b 
and the (E-direct summands of 93? are inverses of each other. The mapping I —» 5DÎI 
preserves sums of arbitrary ideals, and intersections of left ideal direct components 
of 33. Two left ideal direct components U and U of b are ^-isomorphic if and only 
if SDHi and 9KI2 are ^-isomorphic. 

Proof. The first statement follows from Lemmas 1-3. By (21) the mapping 
I —> SDÎI preserves sums. The statement concerning intersections is an immed
iate consequence of the fact to be proved next, that if I is a left ideal direct 
component of b then 

2KI = \X\TW,X) C I } . 

Let I = 33e, where e2 = e Ç b. Then T(9J2', X) Ç I implies T(^ , xe) = r(^, #) 
for all ^ Ç S)?', and by the non-degeneracy of r, £ 9KI. Conversely 
x 6 SDÎ1 implies xe = x, and 

T(g»,,x) = r(mf
ix)eQl 

Let 33ei and 33e2 be ^-isomorphic ; then there exist elements a and b such 
that 

33ei<z = 33e2, 33e2& = 2tei, £#& = c, c £ 33ei, 

dba = d for all d Ç 33e2. One verifies easily that xei —> xeia and xe2 —» xej) 
are ®-homomorphisms between 9Jtei and 9Jîe2 which are inverses of each other, 
and consequently SOî̂ i and 9fte2 are ©-isomorphic. 

Conversely let x —» xh be a ©-isomorphism of 9?i onto 9Î2. Define 

https://doi.org/10.4153/CJM-1956-032-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-032-7


284 C. W. CURTIS 

of T(W, JRX) into 7(2»', 9t2). In order to prove that T (3» ' , 9ti) and 7(2»', 9t2) 
are 93-isomorphic, it is clearly sufficient to prove that h is a 93-homomorphism 
onto. If 

ErGK *<) = 0 , x* £ 9îi, 

then 0 = 9W(Er(^*f %i)) ~ YL Xitti O SEX?), and since & is a E-isomorphism, 

£ *,*(*, O 3») = £ 2Rr(*<» *,*) = 0. 

Since e0 = E r(^*i» x**) *s a kft identity element in b, we have 

Er (*„* ,* ) = 2>or(*<,*,*) = 0. 

Thus Â is single valued. The fact that it is onto, and is a 93-homomorphism 
can be checked in a similar way using the properties of r. This completes 
the proof. 

COROLLARY. A left ideal direct component I of b is indecomposable if and only 
if SDÎI is an indecomposable direct summand of 90?. 

Proof. Let I be a decomposable direct component of 93: 1 = li 0 U. Then 
by the theorem 2JÎ1 = SDîïi © WIU, where neither component is zero. The 
converse is proved similarly. 

Let us denote by c* the set of transposes relative to r of the elements of c, 
and write 931 and bh respectively, for the sets of endomorphisms \p —> b\p 
determined in 2)?' by the elements of 93 and b. Let (§* be the set of all 93-12-
endomorphisms of 9J?', and let Ê* be an arbitrary ring of O-endomorphisms 
of W such that c* C 6* C (g*. We shall write 93' for the set of (^-endo
morphisms of 2JT. Then we may state the following duals to Theorems 1 
and 2. 

THEOREM V'. Let (2)?', 2JÎ, r) be a regular pairing with nucleus b, and let 
E* be an Q-subring of ©* containing c*. Then bi = 931 = 93'. 

THEOREM 2'. Let (2)?', 2)î, r) be a regular pairing with nucleus b. The map
pings x —> rSOî', dl' —•» r(9î /, 2J?) between the sets of right ideal direct components 
of b and the ^-direct summands of SO?' are inverses of each other, and possess the 
properties stated in Theorem 2. 

THEOREM 3 (Weyl).5 Let (2ft', 2», r) te a pairing of W X 2W -» 93, wftere 93 
is a semi-simple iï-ring satisfying the minimum condition for left ideals. Then 
the pairing is regular. The mappings I —» 2JH and dt —* r(2)?', 9Î) are inverses 
of each other, and establish a (1-1) inclusion preserving correspondence between 
the set of all left ideals of 93 which are contained in the nucleus b, and the set of all 
S-submodules of SIR. If 

U^dîi = 2ttïi, I2 <-• 9Î2 = SWI2, 
5This result, and Theorem 2 in its essentials, have been proved by Weyl for pairings of the 

type considered in §3 (16, Chap. 5; 15; 17, Chap. 3). 
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then 
li + It <-» SRi + $2, Ii H 12 <-* jRi H 9Î2, 

and li awd 12 are ^-isomorphic if and only if 3îi and 9î2 are ^-isomorphic. 

Proof. The structure theory of semi-simple rings implies that the pairing 
is regular, and that every left ideal in b is a direct component of b. By Theorem 
2, I —» 9DÎI is a (1-1) inclusion preserving correspondence between the set of 
all left ideal direct components of b and the set of all S-submodules of 2)?. 
By a principle of lattice theory, the mapping preserves the lattice operations. 
That it preserves isomorphism relations has been proved in Theorem 2. 

Example. Let b —> U(b) be an ordinary representation of the group algebra 
33 of a finite group © by l.t. in a finite dimensional vector space 9JÎ over a 
field, and let Ê be the set of all l.t. commuting with the l.t. U(b), b £ 23. 
Let bT and bff be the nuclei of the pairings constructed in 2 and 3 respectively. 
Finally let us assume that both pairings are regular. Then by Theorems 2 and 
2', a left ideal 23e of bT is matched against the fè-submodule %JlU(e) of 9K, 
while a right ideal /23 of ba generated by an idempotent / is matched against 
the S-submodule WW(fJ). We remark finally that b, = b / . 

6. Maximal submodules of indecomposable S-direct summands. 
We adhere to the assumptions and notation of §5, and make the additional 
assumption that 23 satisfies the minimum condition for left ideals, and hence 
also the maximum condition, since 23 has an identity element. Let 5ft be the 
radical of 23 ; then every indecomposable left ideal direct component 23e of 23 
has a unique maximal subideal ^le. Every proper subideal of 23e is nilpotent, 
and 23e and 23e' are 23-isomorphic if and only if 23e/$fte and See'/SSle' are 
23-isomorphic (1, Chap. IX). 

LEMMA 4. Let 31 = 9J?e be an indecomposable ^-direct summand of 9ÏÎ. 
Then dt has a unique maximal Ë-submodule ©, and 

(23) T ( 2 T , ©) ç ft*, mUSle) Q ©. 

Proof. By the Corollary to Theorem 2, 23# = T(9D?', 9Î) is an indecomposable 
left ideal. Let © = 52 9î„, where {9î„} is the set of all proper E-submodules of 
9î. By (21) and the fact that 23 satisfies the maximum condition for left ideals, 
we have 

r(2W',©) = E T ( 3 K ; , » , ) , 

which in turn can be expressed as a finite sum 

E t i r(2»', 91*). 
No T^ffl'y 9?„) = 23tf, otherwise, by Lemma 2, 

9t„ = 9Wr(2ft', 9t,) = 9We = JR. 
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Hence each r(2)?', 9t„) is nilpotent, and since the sum is finite, r(2)?\ ©) is 
nilpotent. This proves (i) © ^ 9î (for if © = 9? then r(2ft',@) contains an 
idempotent 3^0) and (ii), T(9)Î', ©) Q We. For the other inclusion of (23) it is 
sufficient to prove that 2K(9te) ^ 9Î. If, however, 2tt(9te) = 9?, then by 
Lemma 3 and (22) we have 

S3e = r(3K', » ) = T(2R', 2W)9k ^ 5R, 

contrary to our assumption that e2 = e j£ 0. This completes the proof. 

THEOREM 4. Let 9?i awd 9î2 fo indecomposable ^-direct summands of 9ft 
with maximal Ç£-submodules<&iand<&2- Then dli/(B1and 9î2/©2ar£ (^-isomorphic 
if and only if 9?i and 9?2 org (^-isomorphic. 

Proof. We prove the result by throwing the argument back to the known 
results concerning the ideals in 33. Using Lemma 4, it is easy to prove that the 
©-isomorphism of 9îi onto 9Î2 induces a ©-isomorphism of 9ti/©i onto 9î2/©2. 
For the proof of the converse it is enough to show, by Theorem 2, that 
33tfi = r(3K', 9ti) and 33e2 = r(S)?', 9Î2) are 33-isomorphic. This we prove by 
showing that S8ei/3lei and 33^2/9t^2 are 33-isomorphic, assuming that 9?i/©i 
and 9î2/©2 are ©-isomorphic. 

Let f be a ©-isomorphism of 9?i/©i onto 9?2/©2, and let 8 = i'~l. In both 
9îi and 9î2 select a fixed system of representatives of the cosets in 3?i/©i and 
9Î2/©2 respectively, and for each x\ £ 9ti, let Xif be the representative of the 
coset (xi + ©i)f i that is 

*if + ©2 = (xi + ©i)f. 

Similarly we define a map 0 of 9î2 into 9îi. We have 

(24) xi = X1Ç6 (mod ©i), x2 = x20f (mod ©2), 

for all xi G 9îi, x2 G 9Î2-
Now define a mapping /x of r(9J?', 9îi) into r(9J?', 9t2), namely 

M: E T ( ^ < , *i<) —• Hr(\l/U xHf), 

where i n £ 9?i, ^* Ç 9J?' for all i. We contend that the induced mapping 

M: l>0£i> *H) + 9tei —> 2>GAi> *nf) + 9^2 

is a 33-isomorphism of 33ei/9^i onto 33<?2/9fe2. 
First we prove that /Z is single valued. Let a = YLT{^U XH) Ç 9fei; then 

9fta C 2K(9ftei) ç ©1 by (23). Thus for all M G 2R, 

^a + ©1 = Z ^ii(^i O w) + ©1 = 0. 

Applying f we have 1] (x u + ©i)f (̂ < O u) = 0. Then 

E 5ci<f(̂ « O «) € ©2, E 2 M * , , x u f ) c ©2. 

If e0 = Z)r(^*i, x**) is the identity element in b, then a = e0a implies 
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an = e0(a») G r(2ft',©2) C 2îe2 

by (23), and /Z is single valued. That /Z is a 33-homomorphism follows from the 
bilinearity of r, and the ontoness from (24) and (23). To prove that <x is (1-1), 
let 

5 > ( * „ *i,f) G 9te2, *< G 2»', x u G 5Ri. 

Then by (23), X) 2 ) I T ( ^ , #nf) C (g2; as in the first part of the proof we now 
verify that ^r(\pu xuCd) G 2tei, and that 

ET(*„ *i«) - E T ( ^ , X ! ^ ) = E r ^ . x u - xufe) G r(2ft',©i) ç ^ i 
by (23). Thus £ r (^ i> XH) G 9^1, and we have proved that /Z is (1-1). This 
completes the proof of the theorem. 

7. The structure of c = 2ft' O 9ft. Let (9ft', 2ft, r) be an abstract pairing. 
We shall assume that the nucleus c = 9ft' O 9ft of the associated pairing 
(9ft', 9ft, O) contains the identity mapping on 9ft, and that the function \p Q u 
is non-degenerate. Since c is a right ideal in (§, the first assumption implies 
that c = S, and the two assumptions combined imply that the dual pairing 
(9ft', 9ft, O). is regular in the sense of §5. Since the ring 93 of all c-endomor-
phisms of 9ft is a centralizer of 9ft relative to c, the methods of §5 yield a 
correspondence between the 93-direct summands of 9ft and the left ideal direct 
components of c: to a 33-direct summand 9Î corresponds 

2ft' © dt = {tiO ut\ft G 2ft', utedl}, 

while to a left ideal direct component I of c corresponds the 33-direct summand 
aw.. 

THEOREM 5. Let (2ft', 9ft, O) be a regular pairing of 9ft' X 9ft —> c, which is 
dual to an abstract pairing (9ft', 9ft, r). Then the mappings 9Î —> 9ft' O 9Î and 
I —» 2ftl between the set of $B-direct summands of 9ft and the set of left ideal direct 
components of c are inverses of each other. These mappings preserve direct sums 
and intersections whenever all modules concerned are direct summands. Two 
^-direct summands $Ri and 9?2 are $8-isomorphic if and only if 9ft' O 9îi and 
2ft' O 9Î2 are c-isomorphic. 9? is an indecomposable ^8-direct summand of 2ft if 
and only if 9ft' O dt is an indecomposable left ideal in c. 

Proof. The first part of the theorem follows from Theorem 2, if we observe 
that a 33-direct summand of 9ft is necessarily a 33-direct summand. By Theorem 
2, a c-isomorphism between 2ft' O 9îi and 9ft' O 9?2 induces a 33-isomorphism 
between $Ki and 9Î2, and hence 9?i and 9î2 are 93-isomorphic, since 93r G 93. 
Now let x —> xh be a 93-isomorphism between 9?i and 9Î2. We supply the first 
step in the proof that 

2 > i O *«-> X>i O *i* 

is a c-isomorphism of 2ft' O 9îi onto 9ft' O 9î2. Let YL^i 0 x ^ = 0; then 

E *<r(*„ 9ft) = 0. 
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Since h is a ^-isomorphism and T ( ^ , 9ft) C 53, we have £ xfriipi, 9ft) = 0. 
Then ] £ ^ 0 x / = 0, and the mapping is single valued. The rest of the proof 
is left to the reader. The final statement of the Theorem follows from the proof 
of the Corollary to Theorem 2. 

Dually, we may state the following result. 

THEOREM 5'. Let (9ft', 9ft, G) be a regular pairing, as in Theorem 5. Then 
the mappings 9Î' —> 9î' O 9ft and r —» r9ft' between the $8-direct summands of 
9ft' and the right ideal direct components of c have the properties stated in Theorem 5. 

We shall omit the proof of Theorem 5'. 

8. F u r t h e r resu l t s on t h e s t r u c t u r e of c = 9ft' O 99?. Using the results of 
§4, we shall establish a further theorem on the structure of the ring c = 9ft'©9ft, 
in case the pairing (2)?', 9ft, r) is constructed from a projective representation 
of a finite group according to §2. In this case 33 = A(®, H, p) is a crossed 
product, and the set 12 is vacuous. We shall assume that the dual pairing 
(9ft', 9ft, O) is regular, so that the results of §7 are available. 

THEOREM 7. Let (9ft', 9ft, T) te a regular pairing of 9ft' X 2W -» 33 = A(®, 
i l , p) as defined in §2. Le/ //ze dwa/ pairing (9ft'', 9ft, O) fo regular. Then every 
indecomposable left or right ideal direct component of c = 9ft' O 9J? contains a 
unique minimal subideal. 

Proof. First let I be an indecomposable left ideal direct component of c. 
By Theorem 5,1 = 9ft' O 9î, where 9î is an indecomposable 33-direct summand 
of 9ft. Our assumption that the pairing (9ft', 9ft, O) is regular implies that 9ft 
is a projective 33-module, by Proposition 5 and the first remark thereafter. 
Therefore 3? is 33-isomorphic to an indecomposable right ideal direct compo
nent of 33, and by Proposition 4, it follows that dt contains a unique minimal 
33-submodule m ^ 0. Since the pairing (9ft', 9ft, O) is non-degenerate, 
9ft' O m ^ 0. Now let 1' ^ 0 be any left ideal contained in Ï. The fact that 
the pairing (9ft', 9ft, r) is regular implies that 9ftF 9^ 0. By (20) we have 

V 2 9ft' O 9ftl' 2 9ft' O m, 
and we have proved that 9ft' O m is the unique minimal subideal of I. 

Now let r be an indecomposable right ideal direct component of c. By 
Theorem 5', r = 9î' O 9ft, where 9?' is an indecomposable 33-direct summand 
of 9ft'. By the second remark following Proposition 5, 9ft' is a projective 
33-module, and the argument given in the first part of the proof can be applied 
to prove that r has a unique minimal subideal, as required. 

COROLLARY. Let A be afield, and let E be the subfield of A consisting of those 
elements of A left fixed by the automorphisms s, s G ©. Let the hypotheses of 
Theorem 6 be satisfied, and assume also that 9ft is finite dimensional over A. 
Then c = 9ft' O 9ft is a QF-2 algebra6 over the field E. 

6A finite-dimensional algebra 21 over a field E is a QF-2 algebra (14) if every right or left 
ideal direct component of 2Ï contains a unique minimal subideal. 
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Proof. It suffices to prove that c is finite dimensional over E. Since A is 
commutative, the automorphisms s, s 6 @, form a finite group, and from 
Galois theory it follows that A is a finite extension of E. Therefore 9ft is finite 
dimensional over E. The elements of c are l.t. in 9ft over E, and c contains the 
scalar multiplications by elements of E, so that c is a finite dimensional algebra 
over E, and the Corollary is proved. 

Thrall's paper (14) contains a number of results concerning QF-2 algebras, 
all of which are directly applicable to c. We refer the reader to that paper for 
the details. 

We add a final remark on the application of the theory to projective repre
sentations of groups. Let (9ft', 9ft, r) be a regular pairing of 9ft' X 9ft —> 33, 
constructed as in §2, and let Ë be a centralizer of 9ft relative to 33. Then 
Proposition 4, and the results of §5, can be applied to prove that every inde
composable Ê-direct summand of 9ft contains a unique minimal submodule. 
The proof is similar to the proof of Theorem 6, and will be omitted. 

9. Applications to the Galois theory of primitive rings with minimal 
ideals. Let 9ft' and 9ft be left and right, respectively, vector spaces over a 
division ring A, which are dual relative to a non-degenerate bilinear form 
<*, x) on W X m -> A. Let 8 (ST, 9ft) be the set of l.t. A on 9ft over A which 
possess transposes relative to the form (\[/, x), and let 5(9ft', 9ft) be the subset 
of 8 (9ft', 9ft) consisting of finite valued l.t. We shall consider a ring SI of l.t. 
in 9ft over A such that (7, 8) 

(25) g (9ft', 9ft) c 21 c 8(aR'f 9ft), 

together with a finite group © of automorphisms A —» As of §1. Then SI is a 
primitive ring with minimal ideals, and conversely, every primitive ring with 

minimal ideals is isomorphic to a dense ring of l.t. which satisfies (25). Let S 
be the set of elements of SI which are left fixed by all the elements of ©. We 
shall indicate how S may be regarded as a centralizer of 9ft relative to a crossed 
product A(@, H, p), so that the results of §5-8 can be applied to discuss, for 
example, the subspaces of 9ft which are invariant relative to Ë. 

For each element s in ©, there exists a (1-1) s.l.t. Us with associated auto
morphism s of 9ft onto itself, which possesses a transpose relative to the form, 
and which satisfies the equation 

(26) A* = UrlAUa 

for all A £ 31. Since (A8)1 = A8t, we obtain from (26), 

url UrxA usut= us t-*A us „ 
and 

AUsUtUst-1 = UaUtU,rlA9 

for all A. Since 31 is a dense ring of l.t., for each pair (5, /) there exists a scalar 
multiplication 

Ps,t 
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such that 

UsUtUst = Ps.t » 

or 

(27) U,Ut = UstPs,t. 

It is now easy to verify that {ps,t', s} is a factor set, and that if 33 = A(®, H, p) 
is the corresponding crossed product, then the mappings Us define a representa
tion of 33 by endomorphisms of 9ft. Since (26) is unchanged if we replace U$ 

by UsfXs, we may assume that pi,i = 1. Then the condition 

Ps.8-i = 1 

of Proposition 1 is satisfied if and only if UsUs-\ = U\ for all s in ©. We have 
to show finally that 6 satisfies (19). The elements of © are 33-endomorphisms 
of 9ft. On the other hand, by (15) it follows that 9ft' O 9ft is precisely the set 
of l.t. T.sA\ where^ ranges throughout g(9ft', 9ft) C SI, so that 9ft' O l Ç Ê , 
and (19) is proved. 

10. On the centralizer of a projective module. It seems probable 
that more penetrating results than we have obtained in §7 and 8 can be 
proved concerning the structure of the centralizer of a projective module. 
To support this view we shall prove the following result. 

THEOREM 7. Let % be a commutative symmetric algebra of l.t. on a finite 
dimensional space 9ft over a field $ such that 9ft is a unital projective (right) 
%-module. Then the centralizer g of 9ft relative to 21 is a symmetric algebra. 

Proof. The only consequences which we shall require of the assumption 
that 9ft is a projective Si-module are the following: (a) the indecomposable 
direct summands of the 21-module 9ft are 2I-isomorphic to indecomposable 
right ideal direct components of 21 (9, Theorem 1); and (b) if 9ft = 9fti © 9ft2, 
where 9fti and 99?2 are 2I-modules, then 9fti and 9J?2 are projective 2ï-modules 
(5, p. 473). 

We recall that 21 is symmetric if and only if there exists a hyperplane 
n(a) = 0, which contains all commutators ab — ba but no non-zero right or 
left ideals. We shall require the result that if 21 and $8 are symmetric algebras, 
then the Kronecker product 21 0 S3 is symmetric. 

Now we begin the proof of the theorem. First assume that 21 = 2Ii ® 2Ï2, 
where 2ïi and 2I2 are non-zero ideals. If we set 9ft* = 9ft2l* (i = 1, 2), then each 
9ftt is a faithful 2Irmodule, and 9ft = 9ft 1 © 9ft2. The elements of the central
izer Ei of 9fti relative to 211 (i = 1,2,) may be viewed as elements of the 
centralizer S of 9ft relative to 2t, and with this agreement, Ê = Si ® (£2. 
It follows that (S is symmetric if we can prove that the E* are symmetric. 
Furthermore, each 9ft* is a projective 2I-module, and hence a projective 
2Iz-module (i = 1, 2). Thus we may assume, without loss of generality, that, 
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in addition to the hypotheses stated in the theorem, 21 is an indecomposable 
algebra. Now let 

m = 2Ri 0 . . . © 2tt„ 

where the Tit are indecomposable 21-modules. Since 3JÎ is projective, each 9)ît- is 
3l-isomorphic to SI, by the indecomposability of 31, and hence the 2Jtz- are 
isomorphic to each other. Evidently 2JÎ* is a faithful cyclic 31-module. Since 21 
is commutative, the centralizer of SOÎi relative to 2Ï is isomorphic to 21. The 
centralizer 6 of 9DÎ is isomorphic to the full algebra of 5 by 5 matrices with 
coefficients in the centralizer of 30? i (6, p. 58), and hence 

g ^ ( 2 l ) s ^ 2 l ® <5>s. 

Since both 21 and 3>s are symmetric algebras, we conclude that 6 is symmetric, 
and the theorem is proved. 

11. Examples of regular pairings. We shall consider the pairing 
a of §3, which has been studied by Weyl in connection with the representation 
theory of the full linear group. Let <£ be an arbitrary field of characteristic 
p > 0. Let Wl be the w-fold Kronecker product with itself of an ^-dimensional 
space 93 over <ï>. Let © = ©m be the symmetric group on m letters, and let 
b —> U(b) be the (ordinary) representation of the group algebra 93 of ® by 
symmetry operators on 2JJ. Let (93?, 9W*, a) be the pairing defined in §3, and 
let b be the nucleus o-(9ft, 2JÎ*). We shall state without proof a few special 
results. 

(a) p > m or p = 0, n arbitrary. Then 93 is semi-simple, and the pairing is 
regular. The centrally primitive idempotents of 93 which are contained in h 
have been determined explicitly by Weyl (17, Chap. IV). 

(b) m < n, p arbitrary. Then b = 93, and the pairing is regular. 
(c) m = 3, p = 3, n = 2. Then b = 93, and the pairing is regular. In this 

case the kernel $ of the representation U is different from zero, and 6 f \ S = $ . 
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