
J. Functional Programming 8 (1): 23–60, January 1998. Printed in the United Kingdom

c© 1998 Cambridge University Press

23

Algorithm + strategy = parallelism

P. W. TRINDER
Department of Computing Science, University of Glasgow, Glasgow, UK

K. HAMMOND
Division of Computing Science, University of St Andrews, St Andrews, UK

H.-W. LOIDL and S. L. PEYTON JONES ã
Department of Computing Science, University of Glasgow, Glasgow, UK

Abstract

The process of writing large parallel programs is complicated by the need to specify both

the parallel behaviour of the program and the algorithm that is to be used to compute its

result. This paper introduces evaluation strategies: lazy higher-order functions that control the

parallel evaluation of non-strict functional languages. Using evaluation strategies, it is possible

to achieve a clean separation between algorithmic and behavioural code. The result is enhanced

clarity and shorter parallel programs. Evaluation strategies are a very general concept: this

paper shows how they can be used to model a wide range of commonly used programming

paradigms, including divide-and-conquer parallelism, pipeline parallelism, producer/consumer

parallelism, and data-oriented parallelism. Because they are based on unrestricted higher-order

functions, they can also capture irregular parallel structures. Evaluation strategies are not

just of theoretical interest: they have evolved out of our experience in parallelising several

large-scale parallel applications, where they have proved invaluable in helping to manage the

complexities of parallel behaviour. Some of these applications are described in detail here.

The largest application we have studied to date, Lolita, is a 40,000 line natural language

engineering system. Initial results show that for these programs we can achieve acceptable

parallel performance, for relatively little programming effort.

Capsule Review

This paper advocates that control of parallelism and evaluation order should be largely

separated from an underlying program. The control depends heavily on the underlying

program, but the underlying program can be examined largely without regard to the control.

The results are presented in the context of a parallel version of Haskell, GpH, extended to

include two primitive operations for controlling parallelism and evaluation order, par and

seq (where seq is included as standard in Haskell 1.3). The authors have extensive experience

using GpH to write real parallel programs.

Based on their experience, the authors advocate using evaluation strategies to control

program behaviour. Surprisingly, the introduction of strategies requires no changes to the

underlying language. A strategy is a function of type a -> (). An infix operator using

is defined so exp ‘using‘ strategy = strategy exp ‘seq‘ exp. That is, the strategy is

ã This work is supported by the UK EPSRC (Engineering and Physical Science Research
Council) AQUA and Parade grants.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

24 P. W. Trinder et al.

applied to an expression to force a certain evaluation pattern. The result is discarded and the

original expression is returned.

The authors present a number of examples drawn from real problems and illustrating a

variety of different forms of parallelism to demonstrate the practical value of their approach.

1 Writing parallel programs

While it is hard to write good sequential programs, it can be considerably harder to

write good parallel ones. At the University of Glasgow we have worked on several

fairly large parallel programming projects and have slowly, and sometimes painfully,

developed a methodology for parallelising sequential programs.

The essence of the problem facing the parallel programmer is that, in addition

to specifying what value the program should compute, explicitly parallel programs

must also specify how the machine should organise the computation. There are many

aspects to the parallel execution of a program: threads are created, execute on a

processor, transfer data to and from remote processors, and synchronise with other

threads. Managing all of these aspects on top of constructing a correct and efficient

algorithm is what makes parallel programming so hard. One extreme is to rely

on the compiler and runtime system to manage the parallel execution without any

programmer input. Unfortunately, this purely implicit approach is not yet fruitful

for the large-scale functional programs we are interested in.

A promising approach that has been adopted by several researchers is to delegate

most management tasks to the runtime system, but to allow the programmer the

opportunity to give advice on a few critical aspects. This is the approach we have

adopted for Glasgow Parallel Haskell (GpH), a simple extension of the standard

non-strict functional language Haskell (Peterson et al., 1996) to support parallel

execution.

In GpH, the runtime system manages most of the parallel execution, only requiring

the programmer to indicate those values that might usefully be evaluated by parallel

threads and, since our basic execution model is a lazy one, perhaps also the extent to

which those values should be evaluated. We term these programmer-specified aspects

the program’s dynamic behaviour. Even with such a simple parallel programming

model we find that more and more of such code is inserted in order to obtain

better parallel performance. In realistic programs the algorithm can become entirely

obscured by the dynamic-behaviour code.

1.1 Evaluation strategies

Evaluation strategies use lazy higher-order functions to separate the two concerns

of specifying the algorithm and specifying the program’s dynamic behaviour. A

function definition is split into two parts, the algorithm and the strategy, with

values defined in the former being manipulated in the latter. The algorithmic code

is consequently uncluttered by details relating only to the parallel behaviour.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 25

The primary benefits of the evaluation strategy approach are similar to those

that are obtained by using laziness to separate the different parts of a sequential

algorithm (Hughes, 1983): the separation of concerns makes both the algorithm and

the dynamic behaviour easier to comprehend and modify. Changing the algorithm

may entail specifying new dynamic behaviour; conversely, it is easy to modify the

strategy without changing the algorithm.

Because evaluation strategies are written using the same language as the algorithm,

they have several other desirable properties.

• Strategies are powerful: simpler strategies can be composed, or passed as

arguments to form more elaborate strategies.

• Strategies can be defined over all types in the language.

• Strategies are extensible: the user can define new application-specific strategies.

• Strategies are type safe: the normal type system applies to strategic code.

• Strategies have a clear semantics, which is precisely that used by the algorithmic

language.

Evaluation strategies have been implemented in GpH and used in a number of

large-scale parallel programs, including data-parallel complex database queries, a

divide-and-conquer linear equation solver, and a pipelined natural-language proces-

sor, Lolita. Lolita is large, comprising over 40,000 lines of Haskell. Our experience

shows that strategies facilitate the top-down parallelisation of existing programs.

1.2 Structure of the paper

The remainder of this paper is structured as follows. Section 2 describes parallel

programming in GpH. Section 3 introduces evaluation strategies. Section 4 shows

how strategies can be used to specify several common parallel paradigms including

pipelines, producer/consumer and divide-and-conquer parallelism. Section 5 dis-

cusses the use of strategies in three large-scale applications. Section 6 discusses

related work. Finally, section 7 concludes.

2 Introducing parallelism

GpH is available free with the Glasgow Haskell compiler and is supported by GUM,

a robust, portable runtime system (Trinder et al., 1996). GUM is message-based,

and portability is facilitated by using the PVM communications harness that is

available on many multi-processors. As a result, GUM is available for both shared-

memory (Sun SPARCserver multi-processors) and distributed-memory (networks

of workstations, and CM5) architectures. The high message-latency of distributed

machines is ameliorated by sending messages asynchronously, and by sending large

packets of related data in each message. GUM delivers wall-clock speedups relative

to the best sequential compiler technology for real programs (Trinder et al., 1996).

Most of the example programs below are run on shared-memory architectures.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

26 P. W. Trinder et al.

Parallelism is introduced in GpH by the par combinator, which takes two ar-

guments that are to be evaluated in parallel. The expression p ‘par‘ e (here we

use Haskell’s infix operator notation) has the same value as e, and is not strict in

its first argument, i.e. ⊥ ‘par‘ e has the value of e. Its dynamic behaviour is to

indicate that p could be evaluated by a new parallel thread, with the parent thread

continuing evaluation of e. We say that p has been sparked, and a thread may

subsequently be created to evaluate it if a processor becomes idle. There is no global

priority ordering between sparks on different processors, although the sparks on a

single processor are scheduled in first-in first-out (FIFO) order. Since the thread is

not necessarily created, p is similar to a lazy future (Mohr et al., 1991). Note that

par differs from parallel composition in process algebras such as CSP (Hoare, 1985)

or CCS (Milner, 1989) by being an asymmetric operation – at most one new parallel

task will be created.

Since control of sequencing can be important in a parallel language (Roe, 1991),

we introduce a sequential composition operator, seq. If e1 is not ⊥, the expression

e1 ‘seq‘ e2 has the value of e2; otherwise it is ⊥. The corresponding dynamic

behaviour is to evaluate e1 to weak head normal form (WHNF) before returning

e2. Since both par and seq are projection functions, they are vulnerable to being

altered by optimising transformations, and care is taken in the compiler to protect

them. A more detailed description of the implementation of par and seq is given in

Trinder et al. (1996).

2.1 Simple divide-and-conquer functions

Let us consider the parallel behaviour of pfib, a very simple divide-and-conquer

program.

pfib :: Int -> Int

pfib n

| n <= 1 = 1

| otherwise = n1 ‘par‘ n2 ‘seq‘ n1+n2+1

where

n1 = pfib (n-1)

n2 = pfib (n-2)

If n is greater than 1, then pfib (n-1) is sparked, and the thread continues to

evaluate pfib (n-2). Fig. 1 shows a process diagram of the execution of pfib

15. Each node in the diagram is a function application, and each arc carries the

data value, in this case an integer, used to communicate between the invocations.

Brackets can safely be omitted because seq has a higher precedence than par.

Parallel quicksort is a more realistic example, and we might write the following

as a first attempt to introduce parallelism.

quicksortN :: (Ord a) => [a] -> [a]

quicksortN [] = []

quicksortN [x] = [x]

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 27

pfib 13 pfib 12 pfib 12 pfib 11

pfib 14 pfib 13

pfib 15

Fig. 1. pfib Divide-and-conquer process diagram.

quicksortN (x:xs) = losort ‘par‘

hisort ‘par‘

losort ++ (x:hisort)

where

losort = quicksortN [y|y <- xs, y < x]

hisort = quicksortN [y|y <- xs, y >= x]

The intention is that two threads are created to sort the lower and higher halves of

the list in parallel with combining the results. Unfortunately quicksortN has almost

no parallelism because threads in GpH terminate when the sparked expression is

in WHNF. In consequence, all of the threads that are sparked to construct losort

and hisort do very little useful work, terminating after creating the first cons cell.

To make the threads perform useful work a ‘forcing’ function, such as forceList

below, can be used. The resulting program has the desired parallel behaviour, and a

process network similar to pfib, except that complete lists are communicated rather

than integers.

forceList :: [a] -> ()

forceList [] = ()

forceList (x:xs) = x ‘seq‘ forceList xs

quicksortF [] = []

quicksortF [x] = [x]

quicksortF (x:xs) = (forceList losort) ‘par‘

(forceList hisort) ‘par‘

losort ++ (x:hisort)

where

losort = quicksortF [y|y <- xs, y < x]

hisort = quicksortF [y|y <- xs, y >= x]

2.2 Data-oriented parallelism

Quicksort and pfib are examples of (divide-and-conquer) control-oriented parallelism

where subexpressions of a function are identified for parallel evaluation. Data-

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

28 P. W. Trinder et al.

1xf 2xf x nf

x 1 x 2parMap f [x n]...

....

Fig. 2. parMap process diagram.

oriented parallelism is an alternative approach where elements of a data structure

are evaluated in parallel. A parallel map is a useful example of data-oriented

parallelism; for example the parMap function defined below applies its function

argument to every element of a list in parallel.

parMap :: (a -> b) -> [a] -> [b]

parMap f [] = []

parMap f (x:xs) = fx ‘par‘ fxs ‘seq‘ (fx:fxs)

where

fx = f x

fxs = parMap f xs

The definition above works as follows: fx is sparked, before recursing down the

list (fxs), only returning the first constructor of the result list after every element

has been sparked. The process diagram for parMap is given in Fig. 2. If the function

argument supplied to parMap constructs a data structure, it must be composed with

a forcing function in order to ensure that the data structure is constructed in parallel.

2.3 Dynamic behaviour

As the examples above show, a parallel function must describe not only the algo-

rithm, but also some important aspects of how the parallel machine should organise

the computation, i.e. the function’s dynamic behaviour. In GpH, there are several

aspects of dynamic behaviour:

• Parallelism control, which specifies what threads should be created, and in

what order, using par and seq.

• Evaluation degree, which specifies how much evaluation each thread should

perform. In the examples above, forcing functions were used to describe the

evaluation degree.

• Thread granularity: it is important to spark only those expressions where the

cost of evaluation greatly exceeds the thread creation overheads.

• Locality: part of the cost of evaluating a thread is the time required to

communicate its result and the data it requires, and in consequence it may

only be worth creating a thread if its data is local.

Evaluation degree is closely related to strictness. If the evaluation degree of a value

in a function is less than the program’s strictness in that value then the parallelism is

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 29

conservative, i.e. no expression is reduced in the parallel program that is not reduced

in its lazy counterpart. In several programs we have found it useful to evaluate some

values speculatively, i.e. the evaluation-degree may usefully be more strict than the

lazy function. Section 5.5 contains a case study program where a strategy is used to

introduce speculative parallelism.

3 Strategies separate algorithm from dynamic behaviour

3.1 Evaluation strategies

In the examples above, the code describing the algorithm and dynamic behaviour

are intertwined, and as a consequence both have become rather opaque. In larger

programs, and with carefully-tuned parallelism, the problem is far worse. This section

describes evaluation strategies, our solution to this dilemma. The driving philosophy

behind evaluation strategies is that it should be possible to understand the semantics

of a function without considering its dynamic behaviour.

An evaluation strategy is a function that specifies the dynamic behaviour required

when computing a value of a given type. A strategy makes no contribution towards

the value being computed by the algorithmic component of the function: it is

evaluated purely for effect, and hence it returns just the nullary tuple ().

type Strategy a = a -> ()

3.2 Strategies controlling evaluation degree

The simplest strategies introduce no parallelism: they specify only the evaluation

degree. The simplest strategy is termed r0 and performs no reduction at all. Perhaps

surprisingly, this strategy proves very useful, e.g. when evaluating a pair we may

want to evaluate only the first element but not the second.

r0 :: Strategy a

r0 _ = ()

Because reduction to WHNF is the default evaluation degree in GpH, a strategy to

reduce a value of any type to WHNF is easily defined:

rwhnf :: Strategy a

rwhnf x = x ‘seq‘ ()

Many expressions can also be reduced to normal form (NF), i.e. a form that

contains no redexes, by the rnf strategy. The rnf strategy can be defined over built-

in or datatypes, but not over function types or any type incorporating a function type

as few reduction engines support the reduction of inner redexes within functions.

Rather than defining a new rnfX strategy for each data type X, it is better to have

a single overloaded rnf strategy that works on any data type. The obvious solution

is to use a Haskell type class, NFData, to overload the rnf operation. Because NF

and WHNF coincide for built-in types such as integers and booleans, the default

method for rnf is rwhnf.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

30 P. W. Trinder et al.

class NFData a where

rnf :: Strategy a

rnf = rwhnf

For each data type an instance of NFData must be declared that specifies how to

reduce a value of that type to normal form. Such an instance relies on its element

types, if any, being in class NFData. Consider lists and pairs for example.

instance NFData a => NFData [a] where

rnf [] = ()

rnf (x:xs) = rnf x ‘seq‘ rnf xs

instance (NFData a, NFData b) => NFData (a,b) where

rnf (x,y) = rnf x ‘seq‘ rnf y

3.3 Combining strategies

Because evaluation strategies are just normal higher-order functions, they can be

combined using the full power of the language, e.g. passed as parameters or composed

using the function composition operator. Elements of a strategy are combined by

sequential or parallel composition (seq or par). Many useful strategies are higher-

order, for example, seqList below is a strategy that sequentially applies a strategy

to every element of a list. The strategy seqList r0 evaluates just the spine of a

list, and seqList rwhnf evaluates every element of a list to WHNF. There are

analogous functions for every datatype, indeed in later versions of Haskell (1.3

and later (Peterson et al., 1996)) constructor classes can be defined that work on

arbitrary datatypes. The strategic examples in this paper are presented in Haskell

1.2 for pragmatic reasons: they are extracted from programs run on our efficient

parallel implementation of Haskell 1.2 (Trinder et al., 1996).

seqList :: Strategy a -> Strategy [a]

seqList strat [] = ()

seqList strat (x:xs) = strat x ‘seq‘ (seqList strat xs)

3.4 Data-oriented parallelism

A strategy can specify parallelism and sequencing as well as evaluation degree.

Strategies specifying data-oriented parallelism describe the dynamic behaviour in

terms of some data structure. For example parList is similar to seqList, except

that it applies the strategy to every element of a list in parallel.

parList :: Strategy a -> Strategy [a]

parList strat [] = ()

parList strat (x:xs) = strat x ‘par‘ (parList strat xs)

Data-oriented strategies are applied by the using function which applies the

strategy to the data structure x before returning it. The expression x ‘using‘ s is

a projection on x, i.e. it is both a retraction (x ‘using‘ s is less defined than x)

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 31

and idempotent ((x ‘using‘ s) ‘using‘ s = x ‘using‘ s). The using function

is defined to have a lower precedence than any other operator because it acts as a

separator between algorithmic and behavioural code.

using :: a -> Strategy a -> a

using x s = s x ‘seq‘ x

A strategic version of the parallel map encountered in Section 2.2 can be written

as follows. Note how the algorithmic code map f xs is cleanly separated from the

strategy. The strat parameter determines the dynamic behaviour of each element

of the result list, and hence parMap is parametric in some of its dynamic be-

haviour. Such strategic functions can be viewed as a dual to the algorithmic skeleton

approach (Cole, 1988), and this relationship is discussed further in section 6.2.

parMap :: Strategy b -> (a -> b) -> [a] -> [b]

parMap strat f xs = map f xs ‘using‘ parList strat

3.5 Control-oriented parallelism

Control-oriented parallelism is typically expressed by a sequence of strategy applica-

tions composed with par and seq that specifies which subexpressions of a function

are to be evaluated in parallel, and in what order. The sequence is loosely termed

a strategy, and is invoked by either the demanding or the sparking function. The

Haskell flip function simply reorders a binary function’s parameters.

demanding, sparking :: a -> () -> a

demanding = flip seq

sparking = flip par

The control-oriented parallelism of pfib can be expressed as follows using

demanding. Sections 4.4 and 4.2 contain examples using sparking

pfib n

| n <= 1 = 1

| otherwise = (n1+n2+1) ‘demanding‘ strategy

where

n1 = pfib (n-1)

n2 = pfib (n-2)

strategy = rnf n1 ‘par‘ rnf n2

If we wish to avoid explicitly naming the result of a function, it is sometimes

convenient to apply a control-oriented strategy with using. Quicksort is one example,

and as before the two subexpressions, losort and hisort are selected for parallel

evaluation.

quicksortS (x:xs) = losort ++ (x:hisort) ‘using‘ strategy

where

losort = quicksortS [y|y <- xs, y < x]

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

32 P. W. Trinder et al.

hisort = quicksortS [y|y <- xs, y >= x]

strategy result = rnf losort ‘par‘

rnf hisort ‘par‘

rnf result

3.6 Additional dynamic behaviour

Strategies can control other aspects of dynamic behaviour, thereby avoiding clutter-

ing the algorithmic code with them. A simple example is a thresholding mechanism

that controls thread granularity. In pfib for example, granularity is improved for

many machines if threads are not created when the argument is small. More sophis-

ticated applications of thresholding are discussed in sections 5.3 and 6.2.

pfibT n

| n <= 1 = 1

| otherwise = (n1+n2+1) ‘demanding‘ strategy

where

n1 = pfibT (n-1)

n2 = pfibT (n-2)

strategy = if n > 10

then rnf n1 ‘par‘ rnf n2

else ()

4 Evaluation strategies for parallel paradigms

This section demonstrates the flexibility of evaluation strategies by showing how

they express some common parallel paradigms. We cover data-oriented, divide-and-

conquer, producer-consumer, and pipeline parallelism. One parallel programming

paradigm that we have not expressed here is branch-and-bound parallelism. This

cannot be expressed functionally, however, without using semantic non-determinism

of some kind. Non-determinism is not available in Haskell, though languages such

as Sisal (McGraw, 1985) provide it for precisely such a purpose, and Burton and

Jackson have shown how to encapsulate the nondeterminacy in an abstract data

type with deterministic semantics (Burton, 1991), and discussed a parallel implemen-

tation (Jackson and Burton, 1993)

4.1 Data-oriented parallelism

In the data-oriented paradigm, elements of a data structure are evaluated in parallel.

Complex database queries are more realistic examples of data-oriented parallelism

than parMap. A classic example is drawn from the manufacturing application do-

main, and is based on a relation between parts indicating that one part is made

from zero or more others. The task is to list all component parts of a given part,

including all the sub-components of those components, etc. (Date, 1976).

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 33

Main Sub-

component component Quantity

P1 P2 2

P1 P4 4

P5 P3 1

P6 P7 8

P2 P5 3

A näıve function explode lists the components of a single part, main. For example,

the result of exploding P1 in the relation above is [P2, P4, P5, P3]. The core of

the query is the function explosions which explodes a sequence of parts.

type PartId = Int

type BillofMaterial = [(PartId, PartId, Int)]

explode :: BillofMaterial -> PartId -> [PartId]

explode parts main = [p | (m,s,q) <- parts, m == main,

p <- (s:explode parts s)]

explosions :: PartId -> PartId -> BillofMaterial -> [[PartId]]

explosions lo hi bom =

map (explode bom) [lo..hi]

The explosions function is inherently data parallel because the explosion of one

part is not dependent on the explosion of any other. On the target Sun SPARCserver

architecture, an appropriate thread granularity is to compute each explosion in

parallel, but without parallelism within an explosion. This dynamic behaviour is

specified by adding the following evaluation strategy which operates on the resulting

list of lists. The seqList rwhnf forces all of the explosion to be computed by each

thread. Subsequent sections include data-oriented strategies defined over many types

including pairs, triples and square matrices.

explosions lo hi bom =

map (explode bom) [lo..hi] ‘using‘ parList (seqList rwhnf)

4.2 Divide-and-conquer parallelism

Divide-and-conquer is probably the best-known parallel programming paradigm.

The problem to be solved is decomposed into smaller problems that are solved in

parallel before being recombined to produce the result. Our example is taken from

a parallel linear equation solver that we wrote as a realistic medium-scale parallel

program (Loidl et al., 1995), whose overall structure is described in section 5.4.

The computation performed in the solve-stage of the computation is essentially a

determinant computation which can be specified as follows:

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

34 P. W. Trinder et al.

• Given: a matrix (Ai,j)1≤i,j≤n
• Compute: for some 1 ≤ i ≤ n:

∑
1≤j≤n(−1)i+jAi,jdet(A

′)

where A′ = A cancelling row i, and column j

sum l_par ‘demanding‘ parList rnf l_par

where

l_par = map determine1 [jLo..jHi]

determine1 j = (if pivot > 0 then

sign*pivot*det’ ‘demanding‘ strategyD

else

0) ‘sparking‘ rnf sign

where

sign = if (even (j-jLo)) then 1 else -1

pivot = (head mat) !! (j-1)

mat’ = SqMatrixC ((iLo,jLo),(iHi-1,jHi-1))

(map (newLine j) (tail mat))

det’ = determinant mat’

strategyD =

parSqMatrix (parList rwhnf) mat’ ‘seq‘

(rnf det’ ‘par‘ ())

In this example almost all available parallelism is exploited, and for comparison,

Appendix A contains sequential and directly parallel versions of this function. At

first sight, it may not be obvious that this is a divide-and-conquer program. The

crucial observation is that a determinant of a matrix (A) of size n is computed in

terms of the determinants of n matrices (A′) of size n− 1.

The first strategy, parList rnf l par specifies that the determinant of each of

the matrices of size n − 1 should be calculated in parallel. There are two strategies

in determine1. The first, ‘sparking‘ rnf sign specifies that the sign of the

determinant should be calculated in parallel with the conditional. Only if the pivot

is non-zero is the second strategy, strategyD used. It specifies that the sub-matrix

(mat’) is to be constructed in parallel before its determinant is computed in parallel

with the result. The strategyD is invoked with demanding to ensure that it is

evaluated, if sparking had been used, the final ‘par‘ () could be omitted, but the

strategy might never be executed. Note that some data-oriented strategies such as

parList and parSqMatrix are used within the overall control-oriented structure.

4.3 Producer/consumer parallelism

In another common paradigm, a process consumes some data structures produced

by another process. In a compiler, for example, an optimising phase might consume

the parse-tree produced by the parser. The data structure can be thought of as a

buffer that the producer fills and the consumer empties.

For simplicity, we will assume that the buffer is represented by a list, and consider

just a bounded or n-place buffer. There are many other possible ways to express

producer/consumer parallelism, for example, to improve granularity the producer

could compute the next n-element “chunk” of the list rather than just a single value.

The dynamic behaviour of an n-place list buffer is as follows. Initially, the first n

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 35

map (* 2) map fac map fib

Fig. 3. Pipeline process diagram.

list elements are eagerly constructed, and then, whenever the head of the buffer-list

is demanded, the nth element is sparked. In effect the producer speculatively assumes

that the next n elements in the list will be used in the computation. This assumption

introduces parallelism because, if there is a free processor, a thread can produce the

nth element, while the consumer is consuming the first.

Applying the following parBuffer n s function to any list converts it into an

n-place buffer that applies strategy s to each list element. Initially start sparks the

first n elements and returns a (shared) list from the nth element onwards. The value

of the return function is identity on it’s first argument, and it’s dynamic behaviour

is to spark the nth element (the head of the start list) whenever the head of the

list is demanded.

parBuffer :: Int -> Strategy a -> [a] -> [a]

parBuffer n s xs =

return xs (start n xs)

where

return (x:xs) (y:ys) = (x:return xs ys) ‘sparking‘ s y

return xs [] = xs

start n [] = []

start 0 ys = ys

start n (y:ys) = start (n-1) ys ‘sparking‘ s y

4.4 Pipelines

In pipelined parallelism a sequence of stream-processing functions are composed

together, each consuming the stream of values constructed by the previous stage and

producing new values for the next stage. This kind of parallelism is easily expressed

in a non-strict language by function composition. The non-strict semantics ensures

that no barrier synchronisation is required between the different stages.

The generic pipeline combinator uses strategies to describe a simple pipeline,

where every stage constructs values of the same type, and the same strategy is

applied to the result of each stage.

pipeline :: Strategy a -> a -> [a->a] -> a

pipeline s inp [] = inp

pipeline s inp (f:fs) =

pipeline s out fs ‘sparking‘ s out

where

out = f inp

list = pipeline rnf [1..4] [map fib, map fac, map (* 2)]

A pipeline process diagram has a node for each stage, and an arc connecting one

stage with the next. Typically an arc represents a list or stream of values passing

between the stages. Fig. 3 gives the process diagram for the example above.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

36 P. W. Trinder et al.

Some of the large applications described in the next section use more elaborate

pipelines where different types of values are passed between stages, and stages may

use different strategies. For example, the back end in Lolita’s top level pipeline is as

follows:

back_end inp opts

= r8 ‘demanding‘ strat

where

r1 = unpackTrees inp

r2 = unifySameEvents opts r1

r3 = storeCategoriseInformation r2

r4 = unifyBySurfaceString r3

r5 = addTitleTextrefs r4

r6 = traceSemWhole r5

r7 = optQueryResponse opts r6

r8 = mkWholeTextAnalysis r7

strat = (parPair rwhnf (parList rwhnf)) inp ‘seq‘

(parPair rwhnf (parList (parPair rwhnf rwhnf))) r1 ‘seq‘

rnf r2 ‘par‘

rnf r3 ‘par‘

rnf r4 ‘par‘

rnf r5 ‘par‘

rnf r6 ‘par‘

(parTriple rwhnf (parList rwhnf) rwhnf) r7 ‘seq‘

()

A disadvantage of using strategies like this over long pipelines is that every

intermediate structure must be named (r1,. . .,r8). Because pipelines are so common

we introduce two strategic combinators to express sequential and parallel function

application. Explicit function application is written $, and f $ x = f x. The new

combinators take an additional strategic parameter that specifies the strategy to

be applied to the argument, and hence textually separate the algorithmic and

behavioural code.

The definition of the new combinators is as follows:

infixl 6 $||, $|

($|), ($||) :: (a -> b) -> Strategy a -> a -> b

($|) f s x = f x ‘demanding‘ s x

($||) f s x = f x ‘sparking‘ s x

We have also defined similar combinators for strategic function composition,

which can be viewed as a basic pipeline combinator. Pipelines can now be expressed

more concisely, for example the pipeline above becomes:

back_end inp opts =

mkWholeTextAnalysis $| parTriple rwhnf (parList rwhnf) rwhnf $

optQueryResponse opts $|| rnf $

traceSemWhole $|| rnf $

addTitleTextrefs $|| rnf $

unifyBySurfaceString $|| rnf $

storeCategoriseInf $|| rnf $

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 37

unifySameEvents opts $| parPair rwhnf (parList (parPair rwhnf rwhnf)) $

unpackTrees $| parPair rwhnf (parList rwhnf) $

inp

5 Large parallel applications

5.1 General

Using evaluation strategies, we have written a number of medium-scale parallel

programs, and are currently parallelising a large-scale program, Lolita (60,000 lines).

This section discusses the use of strategies in three programs, one divide-and-conquer,

one pipelined and the third data-oriented. The methodology we are developing out

of our experiences is also described. We have built on experience gained with several

realistic parallel programs in the FLARE project (Runciman, 1995). The FLARE

project was the first attempt to write large parallel programs in Haskell, and predated

the development of strategies.

Until recently parallel programming was most successful in addressing problems

with a regular structure and large grain parallelism. However, many large scale

applications have a number of distinct stages of execution, and good speedups

can only be obtained if each stage is successfully made parallel. The resulting

parallelism is highly irregular, and understanding and explicitly controlling it is

hard. A major motivation for investigating our predominantly-implicit approach

is to address irregular parallelism. Two recent parallel programming models, Bulk

Synchronous Processing (BSP) (McColl, 1996) and Single-Program Multiple-Data

(SPMD) (Smirni et al., 1995), have gone some way towards addressing this problem

by providing a framework in which some irregularity can be supported in an

otherwise regular program.

In large applications, evaluation strategies are defined in three kinds of modules.

Strategies over Prelude types such as lists, tuples and integers are defined in a

Strategies module. Strategies over application-specific types are defined in the

application modules. Currently, strategies over library types are defined in private

copies of the library modules. Language support for strategies which automatically

derived an NFData instance for datatypes would greatly reduce the amount of code

to be modified and avoid this problem of reproducing libraries. As an interim

measure we have developed a tool that, inter alia, automatically derives an NFData

instance for any datatype.

5.2 Methodology

Our emerging methodology for parallelising large non-strict functional programs

is outlined below. The approach is top-down, starting with the top level pipeline,

and then parallelising successive components of the program. The first five stages

are machine-independent. Our approach uses several ancillary tools, including time

profiling (Sansom and Peyton Jones, 1995) and the GranSim simulator (Hammond

et al., 1995). Several stages use GranSim, which is fully integrated with the GUM

parallel runtime system (Trinder et al., 1996). A crucial property of GranSim is that

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

38 P. W. Trinder et al.

it can be parameterised to simulate both real architectures and an idealised machine

with, for example, zero-cost communication and an infinite number of processors.

The stages in our methodology are as follows.

1. Sequential implementation. Start with a correct implementation of an inherently-

parallel algorithm or algorithms.

2. Parallelise Top-level Pipeline. Most non-trivial programs have a number of

stages, e.g. lex, parse and typecheck in a compiler. Pipelining the output of

each stage into the next is very easy to specify, and often gains some parallelism

for minimal change.

3. Time Profile the sequential application to discover the ‘big eaters’, i.e. the

computationally intensive pipeline stages.

4. Parallelise Big Eaters using evaluation strategies. It is sometimes possible

to introduce adequate parallelism without changing the algorithm; otherwise

the algorithm may need to be revised to introduce an appropriate form of

parallelism, e.g. divide-and-conquer or data-parallelism.

5. Idealised Simulation. Simulate the parallel execution of the program on an

idealised execution model, i.e. with an infinite number of processors, no com-

munication latency, no thread-creation costs etc. This is a ‘proving’ step: if the

program isn’t parallel on an idealised machine it won’t be on a real machine.

We now use GranSim, but have previously used hbcpp. A simulator is often

easier to use, more heavily instrumented, and can be run in a more convenient

environment, e.g. a workstation.

6. Realistic Simulation. GranSim can be parameterised to closely resemble the

GUM runtime system for a particular machine, forming a bridge between the

idealised and real machines. A major concern at this stage is to improve thread

granularity so as to offset communication and thread-creation costs.

7. Real Machine. The GUM runtime system supports some of the GranSim

performance visualisation tools. This seamless integration helps understand

real parallel performance.

It is more conventional to start with a sequential program and then move almost

immediately to working on the target parallel machine. This has often proved highly

frustrating: the development environments on parallel machines are usually much

worse than those available on sequential counterparts, and, although it is crucial to

achieve good speedups, detailed performance information is frequently not available.

It is also often unclear whether poor performance is due to use of algorithms that

are inherently sequential, or simply artifacts of the communication system or other

dynamic characteristics. In its overall structure our methodology is similar to others

used for large-scale parallel functional programming (Hartel et al., 1995).

5.3 Lolita

The Lolita natural language engineering system (Morgan et al., 1994) has been

developed at Durham University. The team’s interest in parallelism is partly as

a means of reducing runtime, and partly also as a means to increase functionality

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 39

Synt. ParsingMorpholgy Semantic An.Normalisation Pragmatic An. Back End

Fig. 4. Overall pipeline structure of Lolita.

within an acceptable response-time. The overall structure of the program bears some

resemblance to that of a compiler, being formed from the following large stages:

• Morphology (combining symbols into tokens; similar to lexical analysis);

• Syntactic parsing (similar to parsing in a compiler);

• Normalisation (to bring sentences into some kind of normal form);

• Semantic analysis (compositional analysis of meaning);

• Pragmatic analysis (using contextual information from previous sentences).

Depending on how Lolita is to be used, a final additional stage may perform a

discourse analysis, the generation of text (e.g. in a translation system), or it may

perform inference on the text to extract the required information.

Our immediate goal in parallelising this system is to expose sufficient parallelism

to fully utilise a 4-processor shared-memory Sun SPARCserver. A pipeline approach

is a promising way to achieve this relatively small degree of parallelism (Figure 4).

Each stage listed above is executed by a separate thread, which are linked to

form a pipeline. The key step in parallelising the system is to define strategies

on the complex intermediate data structures (e.g. parse trees) which are used to

communicate between these stages. This data-oriented approach simplifies the top-

down parallelisation of this very large system, since it is possible to define the parts

of the data structure that should be evaluated in parallel without considering the

algorithms that produce the data structures.

In addition to the pipeline parallelism, we introduce parallelism in the syntactic

parsing stage. The parallelism in this module has the overall structure of a parallel

tree traversal. In order to improve the granularity in this stage we apply a thresh-

olding strategy (similar to the one at the end of section 3.1) to a system parameter,

which reflects the depth in the tree. In fact the same polymorphic threshholding

strategy is applied to two lists of different types.

Another source of parallelism can be used to improve the quality of the analysis

by applying the semantic and pragmatic analyses in a data-parallel fashion on

different possible parse trees for the same sentence. Because of the complexity of

these analyses the sequential system always picks the first parse tree, which may

cause the analysis to fail, although it would succeed for a different parse tree. We

have included code to exploit this kind of parallelism but not yet tested its influence

on the quality of the result.

Fig. 5 shows the parallel structure arising when all of the sources of parallelism

described above are used. Note that the analyses also produce information that is

put into a ‘global context’ containing information about the semantics of the text.

This creates an additional dependence between different instances of the analysis

(indicated as vertical arcs). Lazy evaluation ensures that this does not completely

sequentialise the analyses, however.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

40 P. W. Trinder et al.

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Back End

Morpholgy Synt. Parsing

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

stream

Text

SGML Tree Parse Forest Parse Tree

Normalisation

Sentence 1

Sentence 3

Sentence 2

Fig. 5. Detailed structure of Lolita.

The code of the top level function wholeTextAnalysis in Fig. 6 clearly shows

how the algorithm is separated from the dynamic behaviour in each stage. The only

changes in the algorithm are

1. the use of parMap to describe the data parallelism in the parsing stage;

2. the evalScores strategy which defines data parallelism in the analysis stages

over possible parse trees; and

3. the use of strategic function applications to describe the overall pipeline

structure.

The strategies used in parse2prag are of special interest. The parse forest

rawParseForest contains all possible parses of a sentence. The semantic and

pragmatic analyses are then applied to a predefined number (specified in global)

of these parses. The strategy that is applied to the list of these results (parList

(parPair ...)) demands only the score of each analysis (the first element in the

triple), and not the complete parse. This score is used in pickBestAnalysis to

decide which of the parses to choose as the result of the whole text analysis. Since

Lolita makes heavy use of laziness it is very important that the strategies are not

too strict. Otherwise, redundant computations are performed, which yield no further

improvements in runtime.

It should be emphasised that specifying the strategies that describe this parallel

behaviour entailed understanding and modifying only one of about three hundred

modules in Lolita and three of the thirty six functions in that module. So far, the

only module we have parallelised is the syntactic parsing stage. If it proves necessary

to expose more parallelism we could parallelise other sub-algorithms, which also

contain significant sources of parallelism. In fact, the most tedious part of the code

changes was adding instances of NFData for intermediate data structures, which

are spread over several dozen modules. However, this process has been partially

automated, as described in section 5.1

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 41

wholeTextAnalysis opts inp global =

result

where

-- (1) Morphology

(g2, sgml) = prepareSGML inp global

sentences = selectEntitiesToAnalyse global sgml

-- (2) Parsing

rawParseForest = parMap rnf (heuristic_parse global) sentences

-- (3)-(5) Analysis

anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2

-- (6) Back End

result = back_end anlys opts

-- Pick the parse tree with the best score from the results of

-- the semantic and pragmatic analysis. This is done speculatively!

parse2prag opts parse_forest global =

pickBestAnalysis global $|| evalScores $

take (getParsesToAnalyse global) $

map analyse parse_forest

where

analyse pt = mergePragSentences opts $ evalAnalysis

evalAnalysis = stateMap_TimeOut analyseSemPrag pt global

evalScores = parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))

-- Pipeline the semantic and pragmatic analyses

analyseSemPrag parse global =

prag_transform $|| rnf $

pragm $|| rnf $

sem_transform $|| rnf $

sem (g,[]) $|| rnf $

addTextrefs global $| rwhnf $

subtrTrace global parse

back_end inp opts =

mkWholeTextAnalysis $| parTriple rwhnf (parList rwhnf) rwhnf $

optQueryResponse opts $|| rnf $

traceSemWhole $|| rnf $

addTitleTextrefs $|| rnf $

unifyBySurfaceString $|| rnf $

storeCategoriseInf $|| rnf $

unifySameEvents opts $| parPair rwhnf (parList (parPair rwhnf rwhnf)) $

unpackTrees $| parPair rwhnf (parList rwhnf) $

inp

Fig. 6. The top level function of the Lolita application.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

42 P. W. Trinder et al.

We are currently tuning the performance of Lolita on the Sun SPARCserver. A

realistic simulation showed an average parallelism between 2.5 and 3.1, using just

the pipeline parallelism and parallel parsing. Since Lolita was originally written

without any consideration for parallel execution and contains a sequential front end

(written in C) of about 10–15%, we are pleased with this amount of parallelism. In

particular the gain for a set of rather small changes is quite remarkable.

The wall-clock speedups obtained to date are disappointing. With two processors

and small inputs we obtain an average parallelism of 1.4. With more processors

the available physical memory is insufficient and heavy swapping causes a drastic

degradation in performance. The reason for this is that GUM, which is designed

to support distributed-memory architectures uniformly, loads a copy of the entire

code, and a separate local heap, onto each processor. Lolita is a very large program,

incorporating large static data segments (totaling 16Mb), and requires 100Mb of

virtual memory in total in its sequential incarnation. Clearly, a great deal of this

data could be shared, an opportunity we are exploring. We hope to obtain better

results soon using a machine with twice the memory capacity. We are also making

the C parsing functions re-entrant which will allow the analysis to be performed in

a data-parallel fashion over a set of input sentences.

5.4 Linsolv

Linsolv is a linear equation solver, and a typical example of a parallel symbolic

program. It uses the multiple homomorphic images approach which is often used in

computer algebra algorithms (Lauer, 1982): first the elements of the input matrix

and vector are mapped from Z into several images Zp (where each p is a prime

number); then the system is solved in each of these images, and finally the overall

result is constructed by combining these solutions using the Chinese Remainder

Algorithm. This divide-and-conquer structure is depicted by Fig. 7.

Strategic code for the matrix determinant part of the solver is given in section 4.2

(the whole algorithm is discussed in (Loidl et al., 1995)). Precise control of the

dynamic behaviour is required at two critical places in the program. This behaviour

can be described by combining generic strategies.

• The algorithm is described in terms of an infinite list of all solutions in the

homomorphic images. An initial segment of the list is computed in parallel,

based on an educated guess as to how many homomorphic solutions are

needed. Depending on the solutions in the initial segment, a small number of

additional solutions are then computed.

• The algorithm only computes the solutions that can actually be used in the

combination step. This is achieved by initially only evaluating the first two

elements of the result list, then checking if the result is useful and if so

computing the remainder.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 43

Z Z

.. .

.. .

�� �CRA

Zs

t

�������)

PPPPPPPq

������)

? ?

PPPPPPq

?

ba

pkp1

s

t

s

t

Zp1
Zpk

Zp1

Zp1

Zpk

Zpk

ap1 bp1 apk bpk

xp1 xpk

x

Forward Mapping

Cramer’s Rule

Lifting

Fig. 7. Structure of the LinSolv algorithm.

5.5 Accident blackspots

The UK Centre for Transport Studies requires to analyse police accident records

to discover accident blackspots, i.e. places where a number of accidents occurred.

Several criteria are used to determine whether two accident reports are for the

same location. Two accidents may be at the same location if they occurred at the

same junction number, at the same pair of roads, at the same grid reference, or

within a small radius of each other. The problem amounts to partitioning a set into

equivalence classes under several equivalence relations.

The algorithm used is as follows. For each of the matching criteria an index is

constructed over the set of accidents. The indices are used to construct an indexed,

binary same-site relation that pairs accidents occurring at the same location. The

partition is obtained by repeatedly choosing an accident and finding all of the

accidents reachable from it in the same-site relation (Trinder et al., 1996).

Fine-grained version The first parallel version uses fine-grained parallelism, and has

four stages in the top-level pipeline: reading and parsing the file of accidents;

constructing the criteria indices over the set of accidents; constructing the indexed

same-site relation; and forming the partition. Little parallelism is gained from this

top-level pipeline (a speedup of 1.2) because partitioning depends on the same-site

index, and constructing the same-site relation depends on the criteria indices and

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

44 P. W. Trinder et al.

the first value cannot be read from an index (or tree) until all of the index has been

constructed.

The individual pipeline stages are parallelised using a variety of techniques. The

file reading and parsing stage is made data parallel by partitioning the data and

reading from n files.

nFiles = 4

main = readn nFiles []

readn n cts | n > 0 =

readFile ("/path/accident"++show n)

(\ioerror -> complainAndDie)

(\ctsn -> readn (n-1) (ctsn:cts))

readn 0 cts =

let accidents = concat (map parse8Tuple cts ‘using‘ parList rnf)

in ...

Control parallelism is used to construct the three criteria indices.

mkAccidentIxs :: [Accident] -> AccidentIxs

mkAccidentIxs accs = (jIx,neIx,rpIx) ‘demanding‘ strategy

where

jIx = ...

neIx = ...

rpIx = ...

strategy = rnf jIx ‘par‘

rnf neIx ‘par‘

rnf rpIx ‘par‘ ()

The pipeline stages constructing the same-site relation and the partition both use

benign speculative parallelism. For partitioning, the equivalence classes of n, 20 say,

accidents are computed in parallel. If two or more of the accidents are in the same

class, some work is duplicated. The chance of wasting work is small as the mean

class size is 4.4, and there are approximately 7,500 accidents. The speculation is

benign because the amount of work performed by a speculative task is small, and

no other threads are sparked.

mkPartition :: Set Accident -> IxRelation2 Accident Accident ->

Set (Set Accident)

mkPartition accs ixRel =

case (length aList) of

0 -> emptySet

n -> (mkSet matchList ‘union‘ mkPartition rest ixRel)

‘demanding‘ strategy

otherwise -> ...

where

aList = take n (setToList accs)

matchList = [mkSet (reachable [a] ixRel) | a <- aList]

rest = minusManySet accs matchList

strategy = parList rnf matchList

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 45

On four processors the fine-grained program achieves an average parallelism of

3.5 in an idealised simulation. Unfortunately, average parallelism falls to 2.3 for the

simulated target machine because thread granularity is small and data locality is

poor.

Coarse-grained version The second version of the program partitions the data geo-

graphically into a number of tiles using the grid references. Each tile has an overlap

with its neighbours to capture multiple-accident sites that span the borders. Each

area is partitioned in parallel and duplicated border sites are eliminated. There are

currently just four tiles: top left, top right, bottom left and bottom right; and the

strategy is trivial:

strategy =

rnf tlPartition ‘par‘

rnf trPartition ‘par‘

rnf blPartition ‘par‘

rnf brPartition

The advantages of this simple, coarse-grained approach are excellent thread granu-

larity and data locality. On four processors an average parallelism of 3.7 is achieved

for both idealised and realistic simulations. The program is at an early stage of

tuning on a shared-memory Sun SPARCserver with 4 Sparc 10 processors, and is

already delivering wall-clock speedups of 2.2 over the sequential version compiled

with full optimisation. The sequential Haskell version is already an order of magni-

tude faster than the interpreted PFL version constructed at the Centre for Transport

Studies (Trinder et al., 1996). Evaluation strategies facilitated experiments with many

different types of parallelism in this application.

6 Related work

Many different mechanisms have been proposed to specify the parallelism in func-

tional languages. Space precludes describing every proposal in detail, instead this

section concentrates on the approaches that are most closely related to evaluation

strategies, covering purely-implicit approaches, algorithmic skeletons, coordination

languages, language extensions and explicit approaches. Some non-functional ap-

proaches are also covered. The approach that is most closely related to our work is

that using first-class schedules (Mirani and Hudak, 1995), described in Section 6.4.

6.1 Purely implicit approaches

Purely implicit approaches include dataflow languages like Id (Arvind et al., 1989)

or pH (Nikhil et al., 1993; Flanagan and Nikhil, 1996), and evaluation transform-

ers (Burn, 1987). Data parallel languages such as NESL (Blelloch et al., 1993) can

also be seen as implicitly parallelising certain bulk data structures. All of the implicit

approaches have some fixed underlying model of parallelism. Because evaluation

strategies allow explicit control of some crucial aspects of parallelism, the program-

mer can describe behaviours very different from the fixed model, e.g. speculatively

evaluating some expressions.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

46 P. W. Trinder et al.

Table 1. The relationship of evaluation strategies and transformers

Transf. Meaning Strategy

E0 No reduction r0
EWHNF Reduce to WHNF rwhnf
ETS Reduce spine of a list seqList r0
EHTS Reduce each list element to WHNF seqList rwhnf

Evaluation transformers Evaluation transformers exploit the results of strictness

analysis on structured data types, providing parallelism control mechanisms that

are tailored to individual strictness properties (Burn, 1987). Each evaluation trans-

former reduces its argument to the extent that is allowed by the available strictness

information. The appropriate transformer is selected at compile time, giving efficient

execution at the cost of some increase in code-size (Burn, 1991; Finne and Burn,

1993).

If there are only a small number of possible transformers (as for lists using the

standard 4-point strictness domain – see Table 1), repeated work can be avoided

by recording the extent to which a data structure has already been evaluated, and

then using a specialised transformer on the unevaluated, but needed part of that

structure.

One problem with evaluation transformers is that the more sophisticated the

strictness analysis, and the more types they are defined on, the greater is the number

of evaluation transformers that are needed, and the greater is the code-bloat.

Specialised transformers must be defined in the compiler for each type, complicating

the provision of transformers over programmer-defined types.

In contrast, since the programmer has control over which strategy is to be used in

a particular context, and since those strategies are programmable rather than fixed,

strategies are strictly more general than evaluation transformers. In particular, a

programmer can elect to use a strategy that is more strict than the function in order

to obtain good performance or to allow speculation; to use a strategy that is known

to be safe, though stricter than the analyser can detect; or to use a strategy that is

less strict than the analyser can determine, in order to improve granularity. Finally,

it is not always straightforward to determine how much strictness an analyser

might detect, and small program changes may have dramatic effects on strictness

information.

It is possible that in the future, strictness analysis could drive the choice of an

appropriate evaluation strategy in at least some circumstances. Indeed we are aware

of a relationship between strictness domains and some strategies. Use of strictness

information in this way would make strategies more implicit than they are at present.

Data parallelism It has been argued that support should be provided for both task

and data parallelism (Subhlok et al., 1993). We have already shown how some kinds

of data-oriented parallelism can be expressed using evaluation strategies. Truly data

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 47

parallel approaches, however, such as NESL (Blelloch et al., 1993; Blelloch, 1996)

treat higher-order functions such as scans and folds, or compound expressions such

as list- and array-comprehensions, as single ‘atomic’ operations over entire structures

such as lists or arrays.

In effect, functions are applied to each element of the data simultaneously, rather

than data being supplied to the functions. This approach is more suitable than

control parallelism for massively parallel machines, such as the CM-2. Certain

evaluation strategies can therefore be seen as control parallel implementations of

data parallel constructs, targeted more at distributed-memory or shared-memory

machines than at massively parallel architectures.

Unusually for a data parallel language, NESL supports nested parallelism. This

allows more complex and more irregular computation patterns to be expressed than

with traditional data-parallel languages such as C* (Rose, et al., 1987). For example,

to compute the product of a sequence using a divide-and-conquer style algorithm,

the following code could be used:

function product(a) =

if (#a == 1) then a[0]

else let r = {product(v) : v in bottop(a)};

in r[0] * r[1]

The RHS of r is a sequence comprising two calls to product. The bottop function

is used to split the argument sequence, a, into two equal sized components.

This could then be used in an outer sequence if required, for example,

function products(m,n) =

{product(s) : s in {[p:n] : p in [m:n-1]}}

NESL has been implemented on a variety of machines including the CM-2, the

Cray Y-MP and the Encore Multimax.

Dataflow Many recent dataflow languages are functional, e.g. Id (Arvind et al.,

1989); one of the most recent, pH (Nikhil et al., 1993), is in fact a variant of Haskell.

These languages usually introduce parallelism implicitly, for example by using an

evaluation scheme such as lenient evaluation (Traub, 1991) which generates massive

amounts of fine-grained parallelism. Unfortunately, these threads are often too small

to be utilised efficiently by conventional thread technology. The solutions are to

use hardware support for parallelism as with Monsoon (Papadopoulos, 1990) or

*T (Nikhil et al., 1992), or to use compiler optimisations to create larger threads

statically (Traub et al., 1992). In contrast, used with suitable performance analyses

or measurement tools, evaluation strategies provide a readily available handle that

can help to control thread size.

Sisal (McGraw, 1985) provides high-level loop-based constructs in a first-order

dataflow language. These constructs support implicit control parallelism over arrays.

The Sisal 90 language (Feo et al., 1995) adds higher-order functions, polymorphism

and user-defined reductions.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

48 P. W. Trinder et al.

6.2 Algorithmic skeletons

As defined by Cole (Cole, 1988), algorithmic skeletons take the approach that

implementing good dynamic behaviour on a machine is hard. A skeleton is intended

to be an efficient implementation of a commonly encountered parallel behaviour on

some specific machine. In effect a skeleton is a higher-order function that combines

(sequential) sub-programs to construct the parallel application. The most commonly

encountered skeletons are pipelines and variants of the common list-processing

functions map, scan and fold. A general treatment has been provided by Rabhi,

who has related algorithmic skeletons to a number of parallel paradigms (Rabhi,

1993).

Skeletons and strategies Since a skeleton is simply a parallel higher-order function,

it is straightforward to write skeletons using strategies. Both the parMap function

in Section 3.3 and the pipeline function in Section 4.4 are actually skeletons. A

more elaborate divide-and-conquer skeleton, based on a Concurrent Clean func-

tion (Nöcker et al., 1991) can be written as follows. All of these strategic skeletons

are much higher-level than the skeletons used in practice which have a careful

implementation giving good data distribution, communication and synchronisation.

divConq :: (a -> b) -> a -> (a -> Bool) ->

(b -> b -> b) -> (a -> Bool) -> (a -> (a,a)) -> b

divConq f arg threshold conquer divisible divide

| not (divisible arg) = f arg

| otherwise = conquer left right ‘demanding‘ strategy

where

(lt,rt) = divide arg

left = divConq f lt threshold conquer divisible divide

right = divConq f rt threshold conquer divisible divide

strategy = if threshold arg

then (seqPair rwhnf rwhnf) $ (left,right)

else (parPair rwhnf rwhnf) $ (left,right)

Many strategic functions take the opposite approach to skeletons: a skeleton

parameterises the control function over the algorithm, i.e., it takes sequential sub-

programs as arguments. However, a strategic function may instead specify the

algorithm and parameterise the control information, i.e. take a strategy as a pa-

rameter. Several of the functions we have already described take a strategy as a

parameter, including parBuffer.

Imperative skeletons The algorithmic skeleton approach clearly fits functional lan-

guages very well, and indeed much work has been done in a functional context.

However, it is also possible to combine skeletons with imperative approaches.

For example, the Skil compiler integrates algorithmic skeletons into a subset of

C (C-). Rather than using closures to represent work, as we have done for our

purely functional setting, the Skil compiler (Botorog and Kuchen, 1996) translates

polymorphic higher-order functions into monomorphic first-order functions. The

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 49

performance of the resulting program is close to that of a hand-crafted C- applica-

tion. While the Skil instantiation procedure is not fully general, it may be possible

to adopt similar techniques when compiling evaluation strategies, in order to reduce

overheads.

6.3 Coordination languages

Coordination languages build parallel programs from two components: the com-

putation model and the coordination model (Gelernter and Carriero, 1992). Like

evaluation strategies, programs have both an algorithmic and a behavioural aspect.

It is not necessary for the two computation models to be the same paradigm, and

in fact the computation model is often imperative, while the coordination language

may be more declarative in nature. Programs developed in this style have a two-tier

structure, with sequential processes being written in the computation language, and

composed in the coordination language.

The best known coordination languages are PCN (Foster and Taylor, 1994) and

Linda (Gelernter and Carriero, 1992), both of which adopt a much more explicit

approach than evaluation strategies. Since both languages support fully general

programming structures and unrestricted communication, it is, of course, possible

to introduce deadlock with either of these systems, unlike evaluation strategies.

PCN composes tasks by connecting pairs of communication ports, using three

primitive composition operators: sequential composition, parallel composition and

choice composition. It is possible to construct more sophisticated parallel structures

such as divide-and-conquer, and these can be combined into libraries of reusable

templates.

Linda is built on a logically shared-memory structure. Objects (or tuples) are held

in a shared area: the Linda tuple space. Linda processes manipulate these objects,

passing values to the sequential computation language. In the most common Linda

binding, C-Linda, this is C. Sequential evaluation is therefore performed using

normal C functions.

SCL Darlington et al. (1995) integrate the coordination language approach with

the skeleton approach, providing a system for composing skeletons, SCL. SCL is

basically a data-parallel language, with distributed arrays used to capture not only

the initial data distribution, but also subsequent dynamic redistributions.

SCL introduces three kinds of skeleton: configuration, elementary and computa-

tional skeletons. Configuration skeletons specify data distribution characteristics,

elementary skeletons capture the basic data parallel operations as the familiar

higher-order functions map, fold, scan, etc. Finally, computational skeletons add

control parallel structures such as farms, SPMD and iteration. It is possible to write

higher-order operations to transform configurations as well as manipulate compu-

tational structures etc. An example taken from Darlington et al., but rewritten in

Haskell-style, is the partition function, which partitions a (sequential) array into

a parallel array of p sequential subarrays.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

50 P. W. Trinder et al.

partition :: Partition_pattern -> Array Index a ->

ParArray Index (Array Index a)

partition (Row_block p) a = mkParArray [ii := b ii | ii <- [1..p]]

where b l = array bounds [(i,j) := a ! (i+(ii-1)*l/p, j)

| i <- [1..l/p], j <- [1..m]]

bounds = ((1,l/p), (1,m))

A similar integration is provided by the P3L language (Danelutto et al., 1991),

which provides a set of skeletons for common classes of algorithm.

Control abstraction Crowl and Leblanc (Crowl and Leblanc, 1994) have developed

an approach with similarities with evaluation strategies. The approach is based

on explicitly parallel imperative programs (including explicit synchronisation and

communication, as well as explicit task creation).

Like evaluation strategies, the control abstraction approach also separates parallel

control from the algorithm. Each control abstraction comprises three parts: a

prototype specifying the types and names of the parameters to the abstraction; a set

of control dependencies that must be satisfied by all legal implementations of the

control abstraction; and one or more implementations.

Each implementation is effectively a higher-order function, parameterised on one

or more closures representing units of work that could be performed in parallel.

These closures are invoked explicitly within the control abstraction. Implementations

can use normal language primitives or other control abstractions.

In our purely functional context, Crowl and Leblanc’s control dependencies cor-

respond precisely to the evaluation degree of a strategy. Their requirement that

implementations conform to the stated control dependencies is thus equivalent in

our setting to requiring that strictness is preserved in any source-to-source transfor-

mation involving an evaluation strategy. This is, of course, a standard requirement

for any transformation in a non-strict functional language.

Compared with the work described here, control abstractions take a more control-

oriented approach, relying on a meta-language to capture the essential notions of

closure and control dependency that are directly encoded in our GpH-based system.

In this system, we also avoid the complications caused by explicit encoding of

synchronisation and communication, though perhaps at some cost in efficiency.

Crowl and Leblanc have applied the technique in a prototype parallelising com-

piler. They report good performance results compared with hand-coded parallel C,

though certain optimisations must be applied by hand. This encourages us to believe

that evaluation strategies could also be applied to imperative parallel programs.

Finally, there is a clear relationship between control abstraction and skeleton-based

approaches. In fact, control abstractions could be seen as an efficient implementation

technique for algorithmic skeletons.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 51

6.4 Parallel language extensions

Rather than providing completely separate languages for coordination and compu-

tation, several researchers have instead extended a functional language with a small,

but distinct, process control language. In its simplest form, this can be simply a set

of annotations that specify process creation, etc. More sophisticated systems, such

as Caliban (Kelly, 1989), or first-class schedules (Mirani and Hudak, 1995) support

normal functional expressions as part of the process control language.

Annotations Several languages have been defined to use parallel annotations. De-

pending on the approach taken, these annotations may be either hints that the

runtime system can ignore, or directives that it must obey. In addition to specifying

the parallelism and evaluation degree of the parallel program (the what and how),

as for evaluation strategies, annotation-based approaches often also permit explicit

placement annotations (the where).

An early annotation approach that is similar to that used in GpH was that of

Burton (Burton, 1984), who defined three annotations to control the reduction order

of function arguments: strict, lazy and parallel. In his thesis (Hughes, 1983), Hughes

extends this set with a second strict annotation (qes), that reverses the conventional

evaluation order of function and argument, evaluating the function body before

the argument. Clearly all these annotations can be expressed as straightforward

evaluation strategies, or even directly in GpH.

These simple beginnings have led to the construction of quite elaborate annota-

tion schemes. One particularly rich set of annotations was defined for the Hope+

implementation on ICL’s Flagship machine (Glynn et al., 1988; Kewley and Glynn,

1989). This covered behavioural aspects such as data and process placement, as well

as simple partitioning and sequencing. As a compromise between simplicity and

expressibility, however, we will describe the well-known set of annotations that have

been provided for Concurrent Clean (Nöcker et al., 1991).

The basic Concurrent Clean annotation is e {P} f args, which sparks a task to

evaluate f args to WHNF on some remote processor and continues execution of

e locally. Before the task is exported its arguments, args, are reduced to NF. The

equivalent strategy is rnf args ‘seq‘ (rwhnf (f args) ‘par‘ e).

The other Concurrent Clean annotations differ from the {P} annotation in either

the degree of evaluation or the placement of the parallel task. Since GpH delegates

task placement to the runtime system, there is no direct strategic equivalent to the

annotations that perform explicit placement.

Other important annotations are:

• e {I} f args interleaves execution of the two tasks on the local processor.

• e {P AT location} f args executes the new task on the processor specified

by location.

• e {Par} f args evaluates f args to NF rather than WHNF. The equivalent

strategy is rnf args ‘seq‘ (rnf (f args) ‘par‘ e).

• e {Self} f args is the interleaved version of {Par}.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

52 P. W. Trinder et al.

As with evaluation strategies, Concurrent Clean annotations cleanly separate

dynamic behaviour and algorithm. However, because there is no language for

composing annotations, the more sophisticated behaviours that can be captured by

composing strategies cannot be described using Concurrent Clean annotations. This

is, in fact, a general problem with the annotation approach.

Caliban Caliban (Kelly, 1989) provides a separation of algorithm and parallelism

that is similar to that used for evaluation strategies. The moreover construct is used

to describe the parallel control component of a program, using higher-order functions

to structure the process network. Unlike evaluation strategies, the moreover clause

inhabits a distinct value space from the algorithm – in fact one which comprises

essentially only values that can be resolved at compile-time to form a static wiring

system. Caliban does not support dynamic process networks, or control strategies.

A clean separation between algorithm and control is achieved by naming processes.

These processes are the only values which can be manipulated by the moreover

clause. This corresponds to the use of closures to capture computations in the

evaluation strategy model.

For example, the following function defines a pipeline. The 2 syntax is used to

create an anonymous process which simply applies the function it labels to some

argument. arc indicates a wiring connection between two processes. chain creates

a chain of wiring connections between elements of a list. The result of the pipeline

function for a concrete list of functions and some argument is thus the composition

of all the functions in turn to the initial value. Moreover, each function application

is created as a separate process.

pipeline fs x = result

where result = (foldr (.) id fs) x

moreover (chain arc (map (2) fs))

/\ (arc 2(last fs) x)

/\ (arc 2(head fs) result)

Para-functional programming Para-functional programming (Hudak, 1986; Hudak,

1988; Hudak, 1991) extends functional programming with explicit parallel scheduling

control clauses, which can be used to express quite sophisticated placement and

evaluation schemes. These control clauses effectively form a separate language for

process control. For ease of comparison with evaluation strategies, we follow Hudak’s

syntax for para-functional programming in Haskell (Hudak, 1991).

Hudak distinguishes two kinds of control construct: schedules are used to express

sequential or parallel behaviours; while mapped expressions are used to specify

process placements. These two notions are expressed by the sched and on constructs,

respectively, which are attached directly to expressions.

Schedules To use functional expressions in schedules, Hudak introduces labelled

expressions: l@e labels expression e with label l (this syntax is entirely equivalent

to a let expression.

There are three primitive schedules: Dlab is the demand for the labelled expression

lab; ^lab represents the start of evaluation for lab; and lab^ represents the end of

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 53

evaluation for lab. Whereas a value may be demanded many times, it can only be

evaluated once. Schedules can be combined using either sequential composition (.)

or parallel composition (|). Since it is such a common case, the schedule lab can be

used as a shorthand for Dlab.lab^. Schedules execute in parallel with the expression

to which they are attached.

So, for example,

(l@e0 m@e1 n@e2) sched l^ . (Dm|Dn)

requires e0 to complete evaluation before either m or n are demanded.

Evaluating schedules in parallel is one major difference from the evaluation

strategy approach, where all evaluation is done under control of the strategy. A

second major difference is that schedules are not normal functional values, and

hence are not under control of the type system.

Mapped expressions The second kind of para-functional construct is used to specify

static or dynamic process placement. The expression exp on pid specifies that exp is

to be executed on the processor identified by an integer pid. There is a special value

self, which indicates the processor id of the current processor, and libraries can be

constructed to build up virtual topologies such as meshes, trees etc. For example,

sort (QT q1 q2 q3 q4) =

merge (sort q1 on (left self))

(sort q2 on (right self))

(sort q3 on (up self))

(sort q4 on (down self))

would sort each sub-quadtree on a different neighbouring processor, and merge the

results on the current processor. Because GpH deliberately doesn’t address the issue

of thread placement, there is no equivalent to mapped expressions in evaluation

strategies.

First-class schedules First-Class schedules (Mirani and Hudak, 1995) combine para-

functional programming with a monadic approach. Where para-functional schedules

and mapped expressions are separate language constructs, first-class schedules are

fully integrated into Haskell. This integration allows schedules to be manipulated as

normal Haskell monadic values.

The primitive schedule constructs and combining forms are similar to those

provided by para-functional programming. The schedule d e demands the value of

expression e, returning immediately, while r e suspends the current schedule until

e has been evaluated. Both these constructs have type a -> OS Sched. Similarly,

both the sequential and parallel composition operations have type OS Sched -> OS

Sched -> OS Sched. The monadic type OS is used to indicate that schedules may

interact in a side-effecting way with the operating system. As we will see, this causes

loss of referential transparency in only one respect.

Rather than using a language construct to attach schedules to expressions, Mirani

and Hudak instead provide a function sched, whose type is sched :: a -> OS

Sched -> a, and which is equivalent to our using function. The sched function

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

54 P. W. Trinder et al.

takes an expression e and a schedule s, and executes the schedule. If the schedule

terminates, then the value of e is returned, otherwise the value of the sched

application is ⊥. There are also constructs to deal with task placement and dynamic

load information which have no equivalent strategic formulation.

In evaluation strategy terms, both the d and r schedules can be replaced by calls

to rwhnf without affecting the semantics of those para-functional programs that

terminate. Unlike evaluation strategies, however, with first-class schedules it is also

possible to suspend on a value without ever evaluating it. Thus para-functional

schedules can give rise to deadlock in situations which cannot be expressed with

evaluation strategies. A trivial example might be:

f x y = (x,y) ‘sched‘ r x . d y | r y . d x

Compared with evaluation strategies, it is not possible to take as much direct

advantage of the type system: all schedules have type OS Sched rather than being

parameterised on the type of the value(s) they are scheduling. Clearly schedules

could be used to encode strategies, thus regaining the type information.

There can also be a loss of referential transparency when using schedules, since

expressions involving sched may sometimes evaluate to ⊥, and other times to a

non-⊥ value. This can happen both through careless use of demand and wait as in

the deadlock-inducing example above, and conceivably if dynamic load information

is used to demand an otherwise unneeded value. If the program terminates (yields a

non-⊥ value), however, it will always yield the same value.

6.5 Fully-explicit approaches

More explicit approaches usually work at the lowest level of parallel control, pro-

viding sets of basic parallelism primitives that could then be exploited to build

more complex structures such as evaluation strategies. The approach is typified by

MultiLisp (Halstead, 1985) or Mul-T (Kranz et al., 1989) which provide explicit

futures as the basic parallel control mechanism. Futures are similar to GpH pars.

At a slightly higher level, Jones and Hudak have worked on commutative Mon-

ads (Jones and Hudak, 1993), that allow operations such as process creation (called

fork) to be captured within a standard state-transforming monad. While this ap-

proach provides the essential building blocks needed to support evaluation strategies,

it has the disadvantage of raising all parallel operations to the monad level, thus

preventing the clean separation of algorithm and behaviour that is observed with

either evaluation strategies or first-class schedules.

7 Conclusion

7.1 Summary

This paper has introduced evaluation strategies, a new mechanism for controlling

the parallel evaluation of non-strict functional languages. We have shown how lazy

evaluation can be exploited to define evaluation strategies in a way that cleanly

separates algorithmic and behavioural concerns. As we have demonstrated, the re-

sult is a very general, and expressive system: many common parallel programming

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 55

paradigms can be captured. Finally, we have also outlined the use of strategies in

three large parallel applications, noting how they facilitate the top-down paralleli-

sation of existing code. Preliminary results indicate that acceptable parallelism is

attained with relatively little programming effort.

7.2 Discussion

Required language support In describing evaluation strategies, we have exploited

several aspects of the Haskell language design. Some of these are essential, whereas

others may perhaps be modelled using other mechanisms. For example, some support

for higher-order functions is clearly needed: strategies are themselves higher-order

functions, and may take functional arguments.

Lazy evaluation is the fundamental mechanism that supports the separation of

algorithm from dynamic behaviour: essentially it allows us to postpone to the

strategy the specification of which bindings, or data-structure components, are

evaluated and in what order. Operationally, laziness avoids the recomputation of

values referred to in both the algorithmic code and the strategy. Although we have

not yet studied this in detail, the work on control abstraction by Crowl and Leblanc,

plus other work referred to above, does suggest that enough of the characteristics

of lazy evaluation could be captured in an imperative language to allow the use of

evaluation strategies in a wider context than that we have considered.

In defining evaluation strategies, we have taken advantage of Haskell’s type class

overloading to define general evaluation-degree strategies, such as rnf. If general ad-

hoc overloading is not available, then a number of standard alternative approaches

could be taken, including:

• define a set of standard polymorphic evaluation-degree operations;

• require evaluation-degree operations to be monomorphic.

In either case, support can be provided as functions or language constructs.

Neither approach is as desirable as that taken here, since they limit user flexibility

in the first case, or require code duplication in the second.

Abuse of strategies As with any powerful language construct, evaluation strategies

can be abused. If a strategy has an evaluation degree greater than the strictness of

the function it controls, it may change the termination properties of the program

(note that unlike first-class schedules, however, this is still defined by the normal

language semantics). Similarly it is easy to construct strategies with undesirable

parallelism, e.g. a strategy that creates an unbounded number of threads. Adding a

strategy to a function can also greatly increase space consumption, e.g. where the

original function incrementally constructs and consumes a data structure, a strategic

version may construct all of the data structure before any of it is consumed. Finally,

strategies sometimes require additional runtime traversals of a data structure. In

pathological cases care must be taken to avoid multiple traversals, e.g. when a small

part of a large data structure has been changed, or with accumulating parameters.

Many unnecessary traversals could be avoided with a runtime mechanism that tags

closures to indicate their evaluation degree.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

56 P. W. Trinder et al.

Additional applications This paper has focussed on the use of evaluation strategies for

parallel programming, but we have also found them useful in other contexts. Strate-

gies have been used for example in Lolita to force the evaluation of data structures

that are transferred from Haskell to C (see section 5.3). Furthermore, they can cause

a reduction in heap usage in cases where the strictness analysis is overly conservative

and the normal evaluation would hang on to data that can be safely evaluated.

The separation of behavioural and algorithmic code provided by strategies sug-

gests that they can be used to model the context in which a certain function is used.

For example, in a sequential profiling setting strategies can define the evaluation

degree of a function. The performance of the function can then be measured in the

given context. Also, when tuning parallel performance, a driver strategy can define

the pattern of parallelism generated in a certain context. This facilitates the testing

of parts of the program in isolation.

7.3 Future work

The groups at Glasgow and Durham will continue to use evaluation strategies to

write large parallel programs, and we hope to encourage others to use them too.

To date we have only demonstrated modest wall-clock speedups for real programs,

although this is partially due to the limited machine resources available to us. Several

of the parallel functional implementations outlined in Section 6 achieve rather larger

speedups. We would like to port the GUM runtime system underlying GpH to a

larger machine, with a view to obtaining larger speedups. Another plausible target

for GpH programs in the near future are modestly parallel workstations, with 8

processors for example. Interestingly it has required remarkably little effort to gain

acceptable parallelism even for large, irregular programs like Lolita.

Initial performance measurements show that strategic code is as efficient as code

with ad hoc parallelism and forcing functions, but more measurements are needed

to confirm that this is true in general.

A framework for reasoning about strategic functions is under development. Prov-

ing that two strategic functions are equivalent entails not only proving that they

compute the same value, but also that they have the same evaluation degree and

parallelism/sequencing. The evaluation-degree of a strategic function can be deter-

mined adding laws for par and seq to existing strictness analysis machinery, e.g.

Hughes and Wadler’s projection-based analysis (Wadler and Hughes, 1987). As an

operational aspect, parallelism/sequencing are harder to reason about. At present

we have a set of laws (e.g. both par and seq are idempotent), but are uncertain of

the best framework for proving them. One possible starting point is to use partially

ordered multisets to provide a theoretical basis for defining evaluation order (Hudak

and Anderson, 1987).

Some support for evaluation strategies could be incorporated into the language. If

the compiler was able to automatically derive rnf from a type definition, the work

involved in parallelising a large application would be dramatically reduced, and the

replication of libraries could be avoided. Some form of tagging of closures in the

runtime system could reduce the execution overhead of strategies: a data structure

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 57

need not be traversed by a strategy if its evaluation degree is already at least as

great as the strategies.

We would like to investigate strategies for strict parallel languages. Many strict

functional languages provide a mechanism for postponing evaluation, e.g. delay

and force functions. The question is whether cost of introducing explicit laziness

outweighs the benefits gained by using strategies.

Our long-term goal is to support more implicit parallelism. Strategies provide a

useful step towards this goal. We are learning a great deal by explicitly controlling

dynamic behaviour, and hope to learn sufficient to automatically generate strategies

with good dynamic behaviour for a large class of programs. One promising approach

is to use strictness analysis to indicate when it is safe to evaluate an expression in

parallel, and granularity analysis to indicate when it is worthwhile. It may be

possible to use a combined implicit/explicit approach, i.e. most of a program may

be adequately parallelised by a compiler, but the programmer may have to parallelise

a small number of crucial components.

A Determinant

This appendix contains two more versions of the determinant function from the

linear equation solver described in Section 4.2. The version on the left is the orig-

inal sequential version. That on the right is a slightly cleaned-up version of the

directly-parallel code originally written. Compared with the strategic version pre-

sented earlier, the directly parallel version is both lower-level and more obscure.

Sequential version

sum l_par where

l_par = map determine1 [jLo..jHi]

determine1 j =

(if pivot > 0 then

sign*pivot*det’

else

0)

where

sign = if (even (j-jLo))

then 1 else -1

pivot = (head mat) !! (j-1)

mat’ =

SqMatrixC

((iLo,jLo),(iHi-1,jHi-1))

(map (newLine j)

(tail mat))

det’ = determinant mat’

Direct parallel version

sum l_par where

l_par = do_it_from_to jLo

do_it_from_to j

| j>jHi = []

| otherwise = fx ‘par‘ (fx:rest)

where

sign = if (even (j-jLo))

then 1 else -1

mat’ =

SqMatrixC

((iLo,jLo),(iHi-1,jHi-1))

(parMap (newLine j)

(tail mat))

pivot = (head mat) !! (j-1)

det’ = mat’ ‘seq‘

determinant mat’

x = case pivot of

0 -> 0

_ -> sign*pivot*det’

fx = sign ‘par‘

if pivot>0

then det’ ‘par‘ x else x

rest = do_it_from_to (j+1)

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

58 P. W. Trinder et al.

References

Arvind, Nikhil, R. S. and Pingali, K. K. (1989) I-Structures – Data structures for parallel

computing. ACM TOPLAS 11(4): 598–632.

Blelloch, G. E., Chatterjee, S., Hardwick, J. C., Spielstein, J. and Zagha, M. (1993) Implemen-

tation of a Portable Nested Data-Parallel Language. Proc. 4th ACM Conf. on Principles &

Practice of Parallel Programming (PPoPP), pp. 102–111. San Diego, CA.

Blelloch, G. E. (1996) Programming Parallel Algorithms. Comm. ACM, 39(3): 85–97.

Botorog, G. M. and Kuchen, H. (1996) Skil: An Imperative Language with Algorithmic

Skeletons for Efficient Distributed Computation. Proc. 5th. IEEE Int. Symposium on High

Performance Distributed Computing, pp. 253–262. Syracuse, NY.

Burn, G. L. (1987) Abstract Interpretation and the Parallel Evaluation of Functional Lan-

guages. PhD Thesis, Imperial College London.

Burn, G. L. (1991) Implementing the Evaluation Transformer Model of Reduction on Parallel

Machines. J. Functional Prog., 1(3): 329–366.

Burton, F. W. (1984) Annotations to Control Parallelism and Reduction Order in the Dis-

tributed Evaluation of Functional Programs. ACM TOPLAS, 6(2): 159–174.

Burton F. W. (1991) Encapsulating Nondeterminacy in an Abstract Data Type with Deter-

ministic Semantics. J. Functional Programming., 1(1): 3–20.

Cole, M. I. (1988) Algorithmic Skeletons. Pitman/MIT Press.

Crowl, L. A. and Leblanc, T. J. (1994) Parallel programming with control abstraction. ACM

TOPLAS, 16(3): 524–576.

Danelutto, M., Di Meglio, R., Orlando, S., Pelagatti, S. and Vanneschi, M. (1991) The P3L

Language: An Introduction. Technical Report HPL-PSC-91-29, Hewlett-Packard Labora-

tories, Pisa Science Centre.

Darlington, J., Guo, Y., To, H. W. and Yang, J. (1995) Parallel skeletons for structured com-

position. Proc. 5th ACM Conf. on Principles & Practice of Parallel Programming (PPoPP),

pp. 19–28. Santa Barbara, CA.

Date, C. J. (1976) An Introduction to Database Systems (4th ed.). Addison Wesley.

Feo, J., Miller, P., Skedziewlewski, S., Denton, S. and Soloman, C. (1995) Sisal 90. Proc.

HPFC ’95 – High Performance Functional Computing, pp. 35–47. Denver, CO.

Finne, S. O. and Burn, G. L. (1993) Assessing the evaluation transformer model of reduction

on the Spineless G-Machine. Proc. FPCA ’93, pp. 331–340. Copenhagen, Denmark.

Gelernter, D. and Carriero, N. (1992) Coordination languages and their significance. Comm.

ACM, 32(2): 97–107.

Flanagan, C. and Nikhil, R. S. (1996) pHluid: The design of a parallel functional language

implementation. Proc. ICFP ’96, pp. 169–179. Philadelphia, Penn.

Foster, I. and Taylor, S. (1994) A compiler approach to scalable concurrent-program design.

ACM TOPLAS, 16(3): 577–604.

Glynn, K., Kewley, J. M., Watson, P. and While, L. (1988) Annotations for Hope+. Technical

Report IC/FPR/PROG/1.1.1/5, Imperial College, London.

Halstead, R. (1985) MultiLisp: A language for concurrent symbolic computation. ACM

TOPLAS, 7(4): 501–538.

Hammond, K., Loidl, H.-W. and Partridge, A. S. (1995) Visualising granularity in parallel

programs: A graphical winnowing system for Haskell. Proc. HPFC’95 – High Performance

Functional Computing, pp. 208–221. Denver, CO.

Hartel, P., Hofman, R., Langendoen, K., Muller, H., Vree, W. and Hertzberger, L. O. (1995)

A toolkit for parallel functional programming. Concurrency – Practice and Experience.

High Performance Fortran Forum (1993) High Performance Fortran Language Specification.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

Algorithm + strategy = parallelism 59

Hoare, C. A. R. (1985) Communicating Sequential Processes. Prentice Hall.

Hudak, P. (1986) Para-functional programming. IEEE Computer, 19(8): 60–71.

Hudak, P. (1988) Exploring para-functional programming: Separating the what from the how.

IEEE Software, 5(1): 54–61.

Hudak, P. (1991) Para-functional programming in Haskell. In Parallel Functional Languages

and Computing, pp. 159–196. ACM Press/Addison-Wesley.

Hudak, P. and Anderson, S. (1987) Pomset interpretations of parallel functional languages.

Proc. FPCA ’87: Lecture Notes in Computer Science 274, pp. 234–256. Springer-Verlag.

Hughes, R. J. M. (1983) The Design and Implementation of Programming Languages. DPhil

Thesis, Oxford University.

Jackson, W. K. and Burton F. W. (1993) Improving intervals. J. Functional Programming.,

3(2): 153–169.

Jones M. P. and Hudak, P. (1993) Implicit and Explicit Parallel Programming in Haskell.

Research Report YALEU/DCS/RR-982, University of Yale.

Kelly, P. H. J. (1989) Functional Programming for Loosely-Coupled Multiprocessors Pit-

man/MIT Press.

Kewley, J. M. and Glynn, K. (1989) Evaluation annotations for Hope+. Glasgow Workshop

on Functional Programming, pp. 329–337. Fraserburgh, Scotland.

Kranz, D., Halstead, R. and Mohr, E. (1989) Mul-T: A high-performance parallel Lisp. Proc.

PLDI ’89, pp. 81–90. Portland, OR.

Lauer, M. (1982) Computing by homomorphic images. In B. Buchberger, G. E. Collins,

R. Loos and R. Albrecht (eds.), Computer Algebra – Symbolic and Algebraic Computation,

pp. 139–168. Springer-Verlag.

Loidl, H.-W., Hammond, K. and Partridge A. S. (1995) Solving Systems of Linear Equations

Functionally: a Case Study in Parallelisation. Technical Report, Department of Computing

Science, University of Glasgow.

McColl, W. F. (1996) Scalability, portability and predictability: The BSP approach to parallel

programming. Future Generation Computer Systems, 12(4): 265–272.

McGraw, J. R., Skedzielewski, S., Allan, S., Oldehoeft, R., Glauert, J. R. W., Kirkham, C.,

Boyce, W. and Thomas, R. (1985) SISAL: Streams and Iteration in a Single Assignment

Language. Language Reference Manual Version 1.2, Manual M-146, Rec. 1, Lawrence

Livermore National Laboratory.

Milner, A. J. R. G. (1989) Communication and Concurrency. Prentice Hall.

Mirani, R. and Hudak, P. (1995) First-class schedules and virtual maps. Proc. FPCA ’95,

pp. 78–85. La Jolla, CA.

Mohr, E., Kranz, D. A. and Halstead, R. H. (1991) Lazy task creation – a technique

for increasing the granularity of parallel programs. IEEE Trans. Parallel and Distributed

Systems, 2(3): 264–280.

Morgan, R. G., Smith, M. H. and Short, S. (1994) Translation by meaning and style in Lolita.

Int. BCS Conf. – Machine Translation Ten Years On, Cranfield University.

Nikhil, R. S., Arvind and Hicks, J. (1993) pH language proposal. DEC Cambridge Research

Lab Technical Report.

Nikhil, R. S., Papadopolous, G. M. and Arvind (1992) *T: a multithreaded massively parallel

architecture. Proc. ISCA ’92, pp. 156–167.

Nöcker, E. G. J. M. H., Smetsers, J. E. W., van Eekelen, M. C. J. D. and Plasmeijer, M. J.

(1991) Concurrent Clean., Proc. PARLE ’91, pp. 202–220. Springer-Verlag.

Rogers, A., Carlisle, M. C., Reppy, J. H. and Hendren, L. J. (1995) Supporting dynamic data

structures on distributed-memory machines. ACM TOPLAS, 17(2): 233–263.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

60 P. W. Trinder et al.

Papadopoulos, G. M. and Culler, D. E. (1990) Monsoon: An explicit token store architecture.

In Proc. ISCA ’90, Seattle, WA.

Peterson J. C. and Hammond, K. (eds.) (1996) Report on the Non-Strict Functional Language,

Haskell, Version 1.3, (1996).

http://haskell.org/report/index.html

Rabhi, F. A. (1993) Exploiting parallelism in functional languages: a ‘Paradigm-oriented’

approach”. In Dew, P. and Lake, T. (eds.), Abstract Machine Models for Highly Parallel

Computers. Oxford University Press.

Roe, P. (1991) Parallel Programming using Functional Languages. PhD thesis, Department of

Computing Science, University of Glasgow.

Rose, J. and Steele, G. L. Jr. (1987) C*: an extended C language for data parallel programming.

Technical Report PL87-5, Thinking Machines Corp.

Runciman, C. and Wakeling, D. (1995) Applications of Functional Programming UCL Press.

Sansom, P. M. and Peyton Jones, S. L. (1995) Time and space profiling for non-strict,

higher-order functional languages. Proc. POPL ’95, pp. 355–366.

Smirni, E., Merlo, A., Tessera, D., Haring, G. and Kotsis, G. (1995) Modeling speedup of

SPMD applications on the Intel Paragon: a case study. In B. Hertzberger and G. Serazzi

(eds.), Proc. High Performance Computing and Networking (HPCN ’95), pp. 94–101. Milan,

Italy.

Subhlok, J., Stichnooch, J. M., O’Hallaron, D. R. and Gross, T. (1993) Exploiting task and

data parallelism on a multicomputer. Proc. 4th ACM Conf. on Principles & Practice of

Parallel Programming (PPoPP), pp. 13–22. San Diego, CA.

Traub, K. R. (1991) Implementation of Non-Strict Functional Programming Languages, Re-

search Monographs in Parallel and Distributed Computing, Pitman/MIT Press.

Traub, K. R., Culler, D. E. and Schauser, K. E. (1992) Global analysis for partitioning non-strict

programs into sequential threads. In LFP ’92, pp. 324–334. San Francisco, CA.

Trinder, P. W., Hammond, K., Mattson, J. S. Jr., Partridge, A. S. and Peyton Jones, S. L.

(1996) GUM: a portable parallel implementation of Haskell. Proc. PLDI ’96, pp. 79–88.

Philadelphia, Penn.

Trinder, P. W., Hammond, K., Loidl, H.-W., Peyton Jones, S. L. and Wu, J. (1996) A case

study of data-intensive programs in parallel Haskell. Proc. Glasgow Functional Programming

Workshop. Ullapool, Scotland.

Wadler, P. L. and Hughes, R. J. M. (1987) Projections for strictness analysis. Proc. FPCA ’87.

https://doi.org/10.1017/S0956796897002967 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002967

