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Abstract. Let G be a locally soluble-by-finite group in which every non-
subnormal subgroup has finite rank. It is proved that either G has finite rank or G
is soluble and locally nilpotent (and even a Baer group). On the other hand, a group
G is constructed that has infinite rank and satisfies the given hypothesis, but does not
have every subgroup subnormal.
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1. Introduction. The following result is established in [5].

THEOREM 1 [5, Theorem 1.22]. Let G be a group whose non-subnormal subgroups
have finite rank. If G is soluble then either G is a Baer group or G has finite rank.

We recall here that a Baer group is one in which every cyclic (and hence every
finitely generated) subgroup is subnormal, and that a group G has finite rank r, say, if
every finitely generated subgroup of G is r-generated. (Thus G has finite special rank
r.) In [3] the authors show that (in particular) a locally soluble-by-finite group G in
which every subgroup of infinite rank is subnormal of defect at most d, where d is
some fixed positive integer, is either nilpotent of bounded class or of finite rank. This
result generalizes to some extent the well-known theorem of Roseblade [9] that a group
in which every subgroup is subnormal of bounded defect is nilpotent (of bounded
class). In the present article we return to the theme of [5] and establish the following
improvement on Theorem 1 above.

THEOREM 2. Let G be a locally soluble-by-finite group in which every subgroup of
infinite rank is subnormal. If G has infinite rank then G is soluble, and hence a Baer group.

As noted in [5], the solubility of G is a reasonable hypothesis in the statement
of Theorem 1, since a group with all subgroups subnormal is in any case soluble, a
remarkable result due to Möhres [6]. On the other hand, such a group need not be
nilpotent, as the famous Heineken-Mohamed examples [4] indicate – these groups
have trivial centre and all subgroups subnormal. Whether the local hypothesis on
G presented in Theorem 2 can be weakened to any significant extent is not clear –
the conclusion may hold for locally graded groups G i.e. groups in which all finitely
generated nontrivial subgroups have nontrivial finite images. However, as it is not even
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known whether a finitely generated p-group (p a prime) that is residually finite, and
has all subgroups either finite or of finite index (and hence subnormal), need itself be
finite, we are nowhere near being able to answer the above question at present.

Papers [10] and [11] address the topic of groups in which every subgroup is either
subnormal or nilpotent, and we shall have occasion here to use the main results of these
articles. Indeed, it is shown in [10] that a torsion-free, locally soluble-by-finite group
in which every non-nilpotent subgroup is subnormal is itself nilpotent, and since a
locally nilpotent group of finite rank that is torsion-free is nilpotent [7, Theorem 6.36],
we deduce immediately that a torsion-free locally nilpotent group that satisfies the
hypotheses of Theorem 2 is nilpotent. We therefore obtain the following consequence
of Theorem 2.

THEOREM 3. Let G be a torsion-free locally soluble-by-finite group in which every
subgroup of infinite rank is subnormal. If G has infinite rank then G is nilpotent.

It is also reasonable to ask whether the conclusion of Theorem 2 can be replaced
by the stronger one that such a group G, if of infinite rank, must have all subgroups
subnormal. The next result shows that this is not the case.

THEOREM 4. There exists a metabelian, locally nilpotent group G of infinite rank such
that the torsion subgroup T of G has finite rank and contains a non-subnormal subgroup
of G, but every subgroup that is not contained in T is subnormal in G.

Our final result shows that, in one sense, the above example is optimal.

THEOREM 5. Let G be a group that satisfies the hypotheses of Theorem 2, and suppose
that the torsion subgroup T of G has infinite rank. Then every subgroup of G is subnormal.

2. The proof of Theorem 2. Let G be a locally soluble-by-finite group in which
all subgroups of infinite rank are subnormal, and suppose that G has infinite rank. We
wish to show that G is soluble, for then G is a Baer group, by Theorem 1. If H is an
arbitrary subgroup of G of infinite rank then H is subnormal in G, as is every subgroup
that contains H, and by considering a (finite) subnormal series from H to G we see
that every factor of this series is soluble [6], so that some term of the derived series of
G is contained in H. Now, since G has infinite rank it has a locally soluble subgroup
H of infinite rank [2], and if H is soluble then so is G. Thus we may assume that G is
locally soluble. If G is not soluble then it has finitely generated subgroups of arbitrarily
high derived length and rank, and so we may also suppose that G is countable.

We now proceed to establish some properties that will allow us to pass to successive
sections of G as our proof proceeds. If H is an infinite rank subgroup of any section K
of G then K/CoreK (H) is soluble, as above. In particular, if H is soluble then so is K –
in other words, each insoluble section K of G has no soluble subgroups of infinite rank.
Now a locally nilpotent group of infinite rank has an infinite rank abelian subgroup
[7, Corollary 2 to Theorem 6.36], and the same holds for hyperabelian groups [1] and
locally finite groups [12]. Again let K be an infinite rank section of G. If M is an infinite
rank subgroup of K generated by K-invariant subgroups Mλ of finite rank then, since
each Mλ has a characteristic and hence K-invariant abelian series [7, Lemma 10.39], M
is hyperabelian and K is therefore soluble (since M has an abelian subgroup of infinite
rank). On the other hand, if M is a normal subgroup of K of finite rank such that
K/M is soluble then K is hyperabelian and therefore soluble. What all this means in
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the present context is that, in order to establish that G is soluble, we may restrict our
attention to the following case.

(1) G has no nontrivial normal subgroups of finite rank, and both the locally nilpotent
and locally finite radicals of G are trivial. G has no infinite rank soluble subgroups.

Note that hypotheses (1) imply that G is insoluble.

LEMMA 1. G is locally of finite rank, and every proper image of G is soluble and
locally nilpotent.

Proof. Let F be a finitely generated subgroup of G; then F is soluble and therefore,
by (1), of finite rank. If N is an arbitrary nontrivial normal subgroup of G then, again
by (1), N has infinite rank and so all subgroups of G/N are subnormal. Thus G/N is
locally nilpotent and, by [6], soluble. �

Next, let G0 denote the intersection of all normal subgroups N of G such that
G/N is torsion-free and locally nilpotent. Certainly G/G0 is torsion-free, and if G0 �= 1
then G/G0 is soluble, by Lemma 1. If M is a proper nontrivial normal subgroup of G0

then M has infinite rank, for otherwise M has a characteristic abelian series (as before)
and hence contains a nontrivial abelian subnormal subgroup of G, contradicting the
fact that the locally nilpotent radical of G is trivial. But M of infinite rank implies
that G0/M is soluble, so there is a G-invariant subgroup L of M with G/L soluble and
hence locally nilpotent. If U/L denotes the torsion subgroup of G0/L then we have
G/U torsion-free and locally nilpotent, which implies that U = G0. Thus all proper
images of G0 are periodic (in the case G0 �= 1). On the other hand, if G0 = 1 then G is
residually torsion-free nilpotent.

LEMMA 2. Let X be a locally soluble group that is residually torsion-free nilpotent.
If X is locally of finite rank then X is locally nilpotent.

Proof. Let F be a finitely generated subgroup of X ; then F too is residually torsion-
free nilpotent. Since F has finite Hirsch length there is no infinite descending chain of
normal subgroups of F with each factor being nontrivial and torsion-free. It follows
that F is nilpotent, as required. �

From Lemma 2 we see that if G0 = 1 then G is locally nilpotent, contradicting (1).
Thus G0 is also a counterexample to Theorem 2, and we may assume that

(2) every proper image of G is periodic, soluble and locally nilpotent.

The intersection of all nontrivial normal subgroups of G cannot be nontrivial, as
a minimal normal subgroup of a locally soluble group is abelian. It follows that G is
residually periodic. Since G is countable it is the ascending union of finitely generated
subgroups F1 ≤ F2 ≤ . . ., and each Fi is soluble of finite rank, by Lemma 1, hence
minimax, by [7, Theorem 10.38], and therefore nilpotent-by-abelian-by-finite [7, Proof
of Theorem 10.38]. So, for each i, there are normal subgroups Ui, Vi of Fi with Vi ≤ Ui,
Vi nilpotent, Ui/Vi abelian and Fi/Ui finite. Vi may be chosen to be the Fitting radical
of Fi (in this case, the unique maximal normal nilpotent subgroup of Fi), and Ui/Vi may
be assumed torsion-free for each i. Since G is residually periodic, each Fi is residually
finite. Let V = 〈Vi : i = 1, 2, 3, . . .〉.

LEMMA 3. If U1/V1 is nontrivial then V has finite rank.

Proof. Suppose for a contradiction that V has infinite rank. Then V is subnormal
in G, as is every subgroup that contains V , and so some term D of the derived series
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of G is contained in V , while G/D is periodic, by (2). Choose u ∈ U1\V1. Then
there exists a positive integer n such that un ∈ V ∩ F1, and so un ∈ (V1 . . . Vr) ∩ F1

for some integer r. Now, for all j > 1, (V1 . . . Vj) ∩ F1 = (V1 . . . Vj) ∩ Fj−1 ∩ F1 =
(V1 . . . Vj−1)(Vj ∩ Fj−1) ∩ F1 = (V1 . . . Vj−1) ∩ F1, since Vj ∩ Fj−1 is a normal nilpotent
subgroup of Fj−1 and hence contained in Vj−1. It follows that (V1 . . . Vr) ∩ F1 = V1,
and we obtain the contradiction that U1/V1 is periodic. The lemma is proved. �

Thus, if U1/V1 is nontrivial then V has finite rank r, say, and so each Vi has
rank (at most) r. We proceed to dispense with this possibility. Firstly, suppose that G
is not torsion-free. Then there is an element x of prime order p in G, and 〈x〉G has
infinite rank and is insoluble, by (1). We may assume in this case that G is generated
by elements of order p, and so every proper image of G is a locally nilpotent p-group,
by (2). In particular, G is residually a p-group and so every finitely generated subgroup
is residually finite-p. Thus, in general, we may suppose that every periodic subgroup is
a p-group, where p is some fixed prime.

For each i, let Ti denote the torsion subgroup of Vi, and let S be the subgroup of
V generated by all Ti. Clearly S is a locally finite p-group and, since it has finite rank,
S is C̆ernikov. But S is also residually of finite exponent, so it is finite of order m, say,
and each Ti therefore has order at most m. For each i, let Di be the centralizer of Ti in
Fi, so that Fi/Di has bounded order and therefore bounded derived length.

Now Vi/Ti is a torsion-free nilpotent group of rank at most r and hence of
nilpotency class c that is also at most r, as may be seen by noting that the rank of Vi/Ti is
the sum of the ranks of the upper central factors of Vi/Ti. Let Z̄i,j denote one such upper
central factor, and let Ci,j be the centralizer of Z̄i,j in Fi; then Fi/Ci,j embeds in GL(r, �)
and therefore has r-bounded derived length, by the well-known theorem of Zassenhaus
[7, Theorem 3.2.3]. Denoting by Ci the intersection of the Ci,j, j = 1, . . . , c, we deduce
that Fi/Ci has bounded derived length, as therefore has Fi/Ei, where Ei = Ci ∩ Di.
If EiVi/Vi is non-trivial then, since Fi/Vi is soluble, there is a nontrivial Fi-invariant
abelian subgroup BiVi/Vi of EiVi/Vi. But Bi acts nilpotently on Vi and so BiVi is
nilpotent, and since Vi is the Fitting radical of Fi we have a contradiction. It follows
that Ei is contained in Vi and hence that Fi/Vi has bounded derived length, so that Fi

also has bounded derived length. But this gives the contradiction that G is soluble.
The above argument establishes that V cannot have finite rank, and Lemma 3 now

tells us that U1/V1 is trivial. But if Ui > Vi for any i then a suitable relabelling allows
us to suppose that U1 > V1, and we are thus forced to conclude that Ui = Vi for all i,
so each Fi is finitely generated nilpotent-by-finite and hence polycyclic. We know from
(1) that every abelian subgroup of G has finite rank; if the ranks of the torsion-free
abelian subgroups of G were bounded then we would obtain from [2, Corollary 3.7]
that G has finite rank. By this contradiction we see that there is no bound for the
torsion-free ranks of the Fi.

LEMMA 4. Let X be a polycyclic group, Y a subgroup of X, and let V be a normal
subgroup of finite index in Y. Suppose that the derived length of X is exactly d. Then
there is a normal subgroup U of finite index in X such that X/U has derived length
exactly d and U ∩ Y ≤ V.

Proof. Since X is residually finite there is certainly a normal subgroup U0 of finite
index in X with the derived length of X/U0 being exactly d. Also, using a theorem of
Mal’cev [8, 5.4.16], there is a subgroup U1 of finite index in X such that U1 ∩ Y = V .
Let U2 be the core of U1 in X and set U = U0 ∩ U2. �
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Conclusion of the proof of Theorem 2. For an arbitrary group H, we denote by H(n)

the nth term of the derived series of H, and if H is soluble we denote by d(H) the derived
length of H. Suppose that d(F1) = d1 and choose N1 normal in F1 with F1/N1 finite and
d(F1/N1) = d1. By relabelling if necessary we may assume that d(F2) = d2 is greater
that 2d1, and by Lemma 4 we may choose N2 � F2 with F2/N2 finite, d(F2/N2) = d2

and N2 ∩ F1 ≤ N1. Since d(N1N2/N2) ≤ d(N1) ≤ d1, we see that F (d1)
2 � N1N2. Note

that N1N2 ∩ F1 = N1(N2 ∩ F1) = N1. Next, we may assume that d(F3) = d3 > 2d2 +
d1, and so there exists a normal subgroup N3 of F3 with F3/N3 finite, d(F3/N3) =
d3 and N3 ∩ F2 ≤ N2. We have d(N1N2N3/N3) ≤ d(N1N2) ≤ d1 + d2, so that F (d2)

3 �
N1N2N3, also N1N2N3 ∩ F2 ≤ N1N2. We continue in this manner, and with the obvious
notation. Write Ji = N1 . . . Ni for each i, and set J = 〈Ji : i = 1, 2, . . .〉. Since the Fi

have unbounded torsion-free rank, so do the Ni, and it follows that J has infinite
rank and hence that every subgroup containing J is subnormal in G. We deduce that
G(d) ≤ J for some integer d, and hence that F (dr)

r+1 ≤ J for some r (chosen so that dr ≥ d).
Certainly therefore F (dr)

r+1 ≤ Ji for some i > r + 1. But Ji ∩ Fr+1 = (N1 . . . Ni) ∩ Fr+1 ≤
(N1 . . . Ni) ∩ Fi−1 = (N1 . . . Ni−1)(Ni ∩ Fi−1) = Ji−1, and continuing (if necessary) we
see that F (dr)

r+1 is contained in Jr+1, contradicting the choice of Nr+1. The theorem is
therefore proved. �

3. The proof of Theorem 5. Let G be as stated, so that G is both soluble and a
Baer group, by Theorem 2. Note that G/T is nilpotent, by the remarks preceding the
statement of Theorem 3. Assuming for a contradiction that not every subgroup of G is
subnormal, there is a subgroup H of finite rank that is not subnormal in G. If every p-
component of T has finite rank then, since T has infinite rank, we may write T = T1 ×
T2 for some infinite rank subgroups T1, T2, where the sets of primes involved in T1 and
T2 are disjoint. Since G/T is nilpotent and each of HT1, HT2 is subnormal in G, there is
a positive integer n such that [G,n H] ≤ T ∩ HT1 ∩ HT2 = T1(T ∩ H) ∩ T2(T ∩ H) =
T1(T2 ∩ H) ∩ T2(T1 ∩ H) = (T2 ∩ H)(T1 ∩ H) ≤ H, giving the contradiction that H
is subnormal. Hence there is a p-component P of T that has infinite rank, and since
HP is subnormal in G we may suppose that G = HP. There is a term R of the derived
series of P that has infinite rank while R′ has finite rank, and so there exist G-invariant
subgroups A and B of P, with B of finite rank and contained in A and A/B infinite
abelian and of exponent p. Since every subgroup of G/A is subnormal, we may further
suppose that G = AH.

Let D denote the divisible component of B; then D is central in the Baer p-group
A [7, Lemma 3.13] and hence, as DH is a Baer group of finite rank r, say, we have
D ≤ Zr(G), the rth term of the upper central series of G [7, Vol. 2, p. 38]. But B/D
is finite, so B ≤ Zs(G) for some integer s, and it follows that H is subnormal in HB,
so we may assume that B is contained in H. But now H ∩ A is normal in G, and
we may again factor and hence suppose that A is abelian and of exponent p. By
induction on the derived length of H we may assume that H ′ is subnormal in G, so
that [A,k H ′] ≤ H ′ ∩ A = 1, for some positive integer k. Writing Ai = [A,i H ′] for each
i ≥ 0 (where A0 = A), we see that HAi+1 is not subnormal in HAi for some integer i;
certainly Ai/Ai+1 must be infinite, and so factoring once more allows us to suppose
that [A, H ′] = 1. This in turn means that H ′ is normal in G, so we set H ′ = 1 and
assume that H is abelian.

Since H has finite rank, it has a finitely generated subgroup F such that H/F is
periodic. Because G is a Baer group there is a positive integer m such that [A,m F ] = 1,
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and repeating the above argument with F in place of H ′ we reduce to the case where
H is itself periodic. But the p′-component of H may clearly be assumed trivial, so
that now G is a p-group. Let S be an arbitrary subgroup of G. If S has finite
rank then, since it is also a Baer p-group, S is nilpotent [7, Vol. 2, p. 38], and
it follows that every subgroup of the p-group G is either nilpotent or subnormal.
By [11, Theorem 3] we deduce that every subgroup of G is subnormal, our final
contradiction. �

4. The proof of Theorem 4. Let p1 be an arbitrary prime and define inductively
a set of primes p1, p2, . . . such that pn+1 > n(p1 + . . . + pn) for each n ≥ 1. For each
n, let Hn = 〈cn〉 � 〈bn〉, where |cn| = pn+1

n , |bn| = pn
n and [cn, bn] = c pn

n , so that Hn is a
finite p-group of nilpotency class n. Let K denote the cartesian product of the Hn,
and let T be the torsion subgroup of K , namely their direct product. Write d1 =
(1, c p1

2 , c p2
3 , c p3

4 , . . .), d2 = (1, 1, c p1
3 , c p2

4 , . . .), . . . . (so that dn has 1 for each of its first n
entries, followed by c p1

n+1, c p2
n+2, . . .). The direct product D of the 〈dn〉 is a torsion-free

abelian subgroup of K that has infinite rank. Our group G is then the subgroup T � D
of K . Setting C = Dr〈cn〉, B = Dr〈bn〉, we have T = C � B, G′ = T ′[T, D] ≤ C, and so
G is metabelian. Clearly [G, D, D] = 1, and so D is subnormal in G, and G is a Baer
group. However, B is not subnormal in G, since [〈cn〉,n−1 〈bn〉] �= 1, for each n. Finally,
T is (non-nilpotent) of rank 2, and G has infinite rank.

Let U be a subgroup of G not contained in T , and choose an element u of
U\T . Then u = dα1

1 dα2
2 . . . dαk

k t, for some t ∈ T , some positive integer k and some
α1, α2, . . . , αk ∈ �, where not every αi is zero. Certainly t ∈ Drl

i=1Hi for some l. Choose
an integer N > max (|α1| + k, . . . , |αk| + k, l), and let n ≥ N. We have [G, U ] ≤ C, and
so it suffices to prove that U is subnormal in UC. If V = Drl

i=1Ci then we see that
V ≤ ZN+1(G), and so U is subnormal in UV . We claim that now UV is normal in UC,
and to show this we may as well suppose that V is contained in U . It remains to show
that [〈cn〉, U ] ≤ U for all n ≥ N.

Let n be an arbitrary integer greater than or equal to N. Certainly DC is normal
in G (since G′ ≤ C) and DC centralizes 〈cn〉. If U projects trivially onto 〈bn〉 via the
restriction of the natural epimorphism from G onto G/DC then we have [〈cn〉, U ] = 1,
and there is nothing to prove. Otherwise, there is an element v of U of the form
v = bpσn

n
n w, where w is contained in the (G-invariant) subgroup generated by DC and

Dri �=n〈bi〉, and where σ (n), the least such non-negative integer, is less than n. Observe
that [〈cn〉, U ] is precisely [〈cn〉, 〈bpσn

n
n 〉]. It therefore suffices to prove that gn := [cn, bpσn

n
n ]

is contained in U . (Note that this does indeed suffice, since every subgroup of
C is normal in G, while gn generates [〈cn〉, U ] as a G-group.) Now U contains
[u, v] = [dα1

1 dα2
2 . . . dαk

k t, bpσn
n

n w], and since G′ ≤ C, which is the direct product of its

primary components, it follows without difficulty that U contains [dα1
1 dα2

2 . . . dαk
k , bpσn

n
n ]

(note that [t, G] and [D, w] both intersect Hn trivially). So U contains [cλ(n)
n , bpσn

n
n ], where

λ(n) = α1pn−1 + α2pn−2 + . . . + αkpn−k. It now suffices to prove that 0 < |λ(n)| < pn.
We have |λ(n)| ≤ (max(|αi|)(pn−1 + pn−2 + . . . + pn−k) < n(pn−1 + pn−2 + . . . + pn−k)
≤ n(pn−1 + pn−2 + . . . + p1) < pn. Also, if i is least such that αi �= 0, then λ(n) =
αipn−i + αi+1pn−i−1 + . . . + αkpn−k, and |αipn−i| ≥ pn−i > (n − i)(pn−i−1 + . . . + p1) ≥
(n − i)(pn−i−1 + . . . + pn−k) ≥ (n − k)(pn−i−1 + . . . + pn−k) > (max |αj|)(pn−i−1 + . . . +
pn−k) ≥ |αi+1pn−i−1 + . . . + αkpn−k|, so λ(n) �= 0. Hence 0 < |λ(n)| < pn, and the result
follows. �
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