
ON DISCONJUGATE DIFFERENTIAL SYSTEMS 

PHILIP HARTMAN and AUREL WINTNER 

1. Introduction. Let F, G (and all capital letters to be used below) 
denote n by n matrices the elements of which are real-valued continuous func­
tions on an interval a < / < b. Correspondingly, by a solution x = x(t) of a 
differential system 

(1) (G(t)x'Y + F(t) x = 0, 

with det G(t) ^ 0, or of a differential system 

(2) x" + G{t)xr + F(t)x = 0, 

will be meant a (vector) solution all n components of which are real-valued. 
The trivial solution x(t) = 0 will not be referred to as a solution. Following 

the manner of speaking introduced in (7) in the scalar case (n — 1), let (1) 
or (2) be called disconjugate on the interval a < / < b if there does not exist a 
solution x(t) satisfying 

(3) x(h) = 0 and x(t2) = 0 if a < h < t2 < b. 

The following considerations deal with various facts concerning disconjugate 
vector equations, (1) or (2), for an arbitrary n. Sections 3-5 concern an exten­
sion of a result (2, p. 66) from self-adjoint systems (1) to non-self-adjoint sys­
tems (1). Sections 6-9 deal with criteria which are sufficient in order that 
the system (2) be disconjugate; these criteria can be considered analogues of 
the trivial condition F < 0 in the case that (2) is a scalar equation. Section 10 
concerns convexity properties of solutions of (2). In §11, these properties are 
used to obtain an extension of the result of (6) on the half-line 0 < t < <». 

2. Notations. Since every matrix A = (aiJC) is supposed to be real, its 
transposed matrix (aki) will be denoted by A*. Correspondingly, the symmetric 
part of A is its Hermitian part, that is, the matrix ^{A + ^4*). The latter 
will be denoted by A°. Thus A = A° if and only if A is symmetric ( = A*). 

By A < B or B > A will be meant that the quadratic form belonging to 
(B - A)° = B° - A° is non-negative definite (that is, that (B - A)° > 0, 
where 0 denotes the zero matrix). Accordingly, A < B is equivalent to A°KB°. 
Similarly, A < B or B > A is defined to mean that (the quadratic form 
belonging to the symmetric matrix) B° — A° is positive definite (that is, 
A° < B°orB° > A°). 

3. On a theorem of Morse. In terms of the definition given in connection 
with (3), the simplest case of a theorem of Morse (6, p. 66), a theorem which 
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extends Sturm's comparison theorem from the scalar case to the case of 
vectors, can be formulated as follows: 

(I) (Morse) Suppose that the pair of coefficient matrices Pj, Qj of the linear 
differential systems 
(4,) (Pj(t)x'Y + Qj(t)x = 0, 

where j = 1, 2, satisfy the following conditions at every t on a < / < b: 

(5) o < P i < P2 , & > &, 
and 

(6,) PJ = P?, Q, = Q?-

Then (42) is disconjugate on a < / < b whenever (4i) is disconjugate there. 

Here the real matrices Pjf Qj (and later on F, G, . . .) are supposed to be 
given as continuous functions on a < / < b. 

It will turn out that the above-quoted consequence of Morse's comparison 
theorem can be refined so as to eliminate for (42), but not for (4i), the restriction 
to be self-adjoint, that is, the restriction (62) : 

(II) The assertion of (I) remains true if, instead of (5), (61) and (62), only (5) 
and (61) are assumed. 

It follows from the refinement (II) of (I) that, without assuming (1) to be 
self-adjoint, the disconjugate character of (1) can be assured by exhibiting 
for (1) a scalar Sturmian majorant. In fact, it is clear that (II) contains the 
following 

COROLLARY. Let p{f) and q(t) be scalar continuous functions satisfying 

(7) 0 < p(t)I < G(t) and q{t)I > F(t), 

where I is the unit matrix and a < / < b. Then (1) must be disconjugate on 
a < / < b whenever the scalar equation 

(8) (p(t)x'Y + q(t)x = 0 

is disconjugate there. 

Note that (7) implies that G(t) > 0. Conversely, if G(t) > 0, then (7) can 
be satisfied by choosing p(t) to be the least eigenvalue of G°(t), and q(l) the 
greatest eigenvalue of F°(t), for every fixed t. 

4. Reduction to the self-adjoint case. Clearly, the extension (II) of (I) 
can be concluded from (I) and from the following 

LEMMA 1. If the differential system 

(9) (G°(t)x'Y + F°(t)x = 0, 

where G°(t) > 0, is disconjugate on a < t < b,then (1) is disconjugate there. 
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It should be noted that the assumption det G 9e 0 in (1) is implied by the 
assumption G° > 0 in (9); in fact, it is known (cf. 3) that det G > det G° 
whenever G° > 0. 

The proof of Lemma 1 will depend on an adaptation of Morse's proof of 
(I). Before proving Lemma 1, it will be shown that its converse is false: 
If (1) is disconjugate on a < t < b, then (9) need not be, not even when G° > 0 
(hence det G° > 0). This is shown by the following example: 

Let n = 2 and a = 0, b = w, let G (hence G°) be the unit matrix and let 

'-G!!)-ta»'-C0i)-"-(:)-
Then (1) and (9) become 

u" = 0, v" + 2u = 0 and u" + v = 0, v" + u = 0, 

respectively. But the general solution of the first of these two systems is 

U = C\t + C2, V = — \C\t'è — C2t
2 + Crf + Ci 

which implies that if both u and v vanish at some t = h and another / = t2, 
then u and v, hence the vector x, must vanish for all t. In other words, the 
present case of (1) is disconjugate on every interval a < t < b. On the other 
hand, the present case of (9) fails to be disconjugate on 0 < t < w, since 
(u,v) ~ (sin /, sin t) is a solution satisfying x(0) = 0 = x(w). 

5. Proof of Lemma 1. Suppose that the assertion of Lemma 1 is false. 
Then the assumptions of Lemma 1 are satisfied but (1) is not disconjugate 
on a < / < b; so that (1) has a solution x(t) = 0 satisfying (3) for some 
t\, t2. Since the definition of disconjugate behavior on an interval is such as to 
imply disconjugate behavior on any subinterval of that interval, it can be 
assumed that t\ = a and t2 = b, hence 

(10) x(a) = 0, x(b) = 0, 

butx(t) ^ 0. Scalar multiplication of (1) by x(t), when followed by integration 
over a < t < b and a partial integration of the result, leads to 

I (x' . Gx' - x . Fx) dt = 0, 
J a 

by (10). This can be written in the form 

(11) f (xf . G°x' - x . F°x) dt = 0, 
*J a 

since z . Az = z . A°z, by the definition of A° in §2. 
On the other hand, since (9) is supposed to be disconjugate on a < / < b, 

it is clear that X0 > 0, if X0 denotes the least eigenvalue of the boundary value 
problem (10) of (9). ButX0 > 0 means that 
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(12) min f (x' . G V - x . F°x) dt > 0, 

where the min refers, for instance, to the class of all continuously differentiable 
vector functions x(t), a < t < b, satisfying (10) and 

(13) I x.xdt = 1. 
J a 

Since (12) and (13) contradict (11), the proof of Lemma 1 is complete. 

6. A generalization of the Schwarz invariant. The following con­
siderations will deal with (2), rather than (1). The results of the next section 
can be motivated by the remark that the matrix 

(14) E = F - \G' - IG2 

reduces to Schwarz's invariant (cf. e.g., 5, p. 121) in the case that (2) is a 
scalar equation. The connection between (2) and (14) is given by the following 

LEMMA 2. Let F(t) be continuous, and G(t) continuously differentiable, on 
a < t < b.LetR = R(t) be a solution of 

(15) R' = -hG{t) R and det R ^ 0. 

Then the substitution 

(16) x = R(t)y 

transforms (2) into 

(17) y" + B{t)y = 0, B = RrlER 

where E = E{t) is given by (14). 

The existence of matrices R(t) satisfying (15) is clear. In fact, such a matrix 
results by placing R — (fi, . . . , rn), where the column vectors rk = rk(t) are n 
linearly independent, and otherwise arbitrary, solution vectors of the linear 
system r' = — \G{t)r. 

Proof of Lemma 2. Since G{t) is assumed to have a continuous derivative, 
it follows from (15) that R{t) has a continuous second derivation given by 

(18) R" = - $G'R - \GRf = - \G'R + (hG)2R. 

A formal substitution of (16) into (2) gives the equation 

(19) Ry" + (2R' + GR)yf + (R" + GR! + FR)y = 0. 

The coefficient of y' is 0, by virtue of (15). Hence, (19) can be written as 
y" + By = 0, where 

(20) B = Rrl(R"R-1 + GR'R-1 + F)R. 

Since R'R-1 = - |G, by (15), and R"R-1 = - £G' + (|G)2, by (18), it 
follows that the matrix (20) is RrxER. This gives (17), hence Lemma 2. 
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Remark. In order to apply comparison theorems to (17), it is necessary to 
know bounds for the quadratic form x . Bx. In general, a knowledge of such 
bounds depends on a knowledge of R. An exceptional case is the case of the 
following remark: / / the coefficient G(t) in (2) is skew-symmetric for every t, 
then R(t) in (17) can be chosen to be a rotation matrix for every t] that is, R* = R"1 

and det R — + 1, so that B{i) is orthogonally equivalent to E(t) for every 
fixed /. This can be seen as follows : 

If G* = - G, then it is readily verified from (15) and (R*)' = (R')* that 
R*R' + R*' R = 0; so that R*R = const, for every solution R = R(t) of (15). 
Hence, if the matrix R(t) is determined by the initial condition R(a) = / , 
then R*R = const. = I, and the assertion follows. 

7. Criteria for (2) to be disconjugate. By adapting to matrices a 
device used repeatedly by Picard (cf., e.g., 4, p. 8), the following criteria will 
now be proved : 

(III) In order that (2) be disconjugate on a < / < b, it is sufficient that, for 
a < t < b, either 

(21) F < - \GG* 

or 

(22) F < Gf - \ G*G, 

where the existence of a continuous derivative G' is part of the assumption 
in the second case (but not in the first). 

Note that, since G(t) and G*(t) are not in general commutable, (22) does not 
reduce to (21) even if G = const. (i.e.,G' = 0). 

Since GG* is a (symmetric) non-negative definite matrix for every G, 
condition (21) is relaxed if the \ is replaced by \ — e < J. But it turns out 
that any such relaxation of (21) is inadmissible: In (III), the constant J, 
occurring in (21) and (22), is the best possible constant. This can be seen as 
follows : 

Let n — 2 and 

« - (_! J) • 
finally F — \I, where X is a constant. Then, since GG* — I =• G*G and G' = 0 
in view of (23), it is clear that the condition in which the \ of (21) or (22) is 
relaxed to J — e is satisfied if X < — \ + e, for example, if 

(24) F = ( - Î + e)I ( e > 0). 

Hence it is sufficient to show that the case (23)-(24) of (2) fails to be disconju­
gate on the interval a < t < b, if the latter is suitably chosen (the matrices 
(23), (24) are independent of t). 

First, since (23) implies that G' = 0 and G2 = / , it follows from (14) and 
(24) t h a t E = el. Hence the differential equation in (17) reduces t o y + ey = 0 
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and admits therefore the (vector) solution y if) = J sin (eH). Since the latter 
vector has more than one zero on a < t < b if e is fixed and b — a is large 
enough, it follows from (16), where det R(t) j* 0, that (2) has a solution 
satisfying (10) if the interval a < / < b is suitably chosen. This proves the 
last italicized statement. 

Instead of proving (III) directly, the following generalization of (III) will 
be derived : 

(IV) In order that (2) be disconjugate on a < t < b, it is sufficient that there 
exists a continuously differentiable matrix K (t) satisfying 

(25) F - K' < - {\G - K°)(%G* - K°) 

on a < t < b. 

This criterion implies both assertions of (III). In fact, (25) reduces to (21) 
ÏÎK = 0, and to (22) if K = G. 

8. Proof of (IV). Multiply (2) by x, substitute the value of the scalar 
product x . x" from the identity x . x" = (x . x')f — x'2 and, under the assump­
tion (3), integrate the result between tx and t2. This gives the relation 

(25a) f \x'
2 - x.Gx' - x.Fx)dt = 0. 

«J ti 

If K = K(t) is any matrix function possessing a continuous derivative, 
then, since 

(x . KxY = x' . (K + K*)x + x . K'x 

and K + X* = 2K°, and since 

(x . Kx)'dt = 0 x: in view of (3), 

J' (2x' . K°x + x . K'x) dt = 0. 

If this identity is added to (25a) it follows that 

(26) f 2(|x' - (JG* - K°) x\2 - x . Mx) dt = 0, 

where M = F - K' + (*G - i^0)(|G* - X°). 
Suppose that ikf = M(t) satisfies the condition M < 0 throughout. By the 

definition of ikf, this is the case if X = i£(£) satisfies the inequality (25) for 
a < / < b. Then, since M < 0 means, by §2, that y . M°y < 0 or, what is 
the same thing, that y . My < 0 holds for every vector y, both terms of the 
integrand in (26) are non-negative for t\ < t < t2. It follows therefore from 
(26) that both of these terms, which are continuous functions, must vanish 
for all t between t± and U. The vanishing of the first term for t\ < t < t2 
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implies that the vector x(t) is a solution of the differential equation xr = A (/)#, 
where A — |G* — K°. Since this differential equation is of first order, and 
since its solution x(t) satisfies, by (3), the initial condition x{t\) = 0, it follows 
from the uniqueness theorem of linear differential equations that x(t) = 0. 

This shows that if (25) is satisfied, then (3) implies x(t) = 0 for every 
solution of (1). This proves (IV). 

9. Another criterion. In what follows, an idea of Lichtenstein (1, p. 
1298), applied by him to a partial differential equation of (elliptic type) for a 
scalar, will be adapted to (2), an ordinary differential equation for a vector x. 

As in §6, suppose that G(t) is continuously differentiate. Then (2) possesses 
the adjoint 
(27) x" - G*(t)x' + (F*(t) - G*'(t))x = 0 

(in which the coefficient matrices are continuous functions). In fact, if m(x) 
and n(x) denote the (vector) differential operators on the left of (2) and (27), 
respectively, then, since u . Av = v . A*u, it is seen that 

y . m(x) — x . n(y) = y . x" — x . y" + y . Gx' + y' . Gx + y . G'x 

is an identity. Since the expression on the right of this identity is the derivative 
of y . x' — x . y' + y . Gx, the assertion follows. 

We do not known an "elementary" verification of the following theorem 
(the analogue of which was used by Lichtenstein for his purposes (1, p. 1298)) : 

(V) Let F (J) be continuous, and G(t) continuously differentiable, on a < t < b. 
Then both (2) and (27) are disconjugate on a < t < b if either (2) or (27) is 
dis conjugate there. 

The truth of this assertion follows directly from the definition of disconjugate 
behavior and from the fact that the pair of adjoint differential equations 
(2), (27) and the (common) boundary condition (3) determine Green kernels 
which are adjoint (i.e., transposed) kernels in the sense of Fredholm's theory. 

Remark. If use is made of (V), then the second of the criteria in (III) 
follows from the first (and conversely). In fact, if the coefficients of (2) are 
replaced by those of (27), then (21) goes over into 

F* - G*' < - i ( - G * ) ( - G * ) * = - JG*G, 

a condition which can be written in the form (22), since A < B is equivalent 
toi4* < £ * (§2). 

10. Convexity. The assumption (21) for the coefficients of (2) implies a 
geometrical restriction for the squared lengths of solution vectors of (2); 
cf. (6), where G = 0. 

LEMMA 3. If x(t) is any solution of (2), then the graph of r{t) = \x(t)\2 in a 
(t, r)-plane is convex {from below) on every t-interval on which (21) is satisfied. 

https://doi.org/10.4153/CJM-1956-012-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-012-4


DISCONJUGATE DIFFERENTIAL SYSTEMS 79 

This assertion is equivalent to the statement that the second derivative of 
\x(t) |2 is non-negative by virtue of (21). But if K — 0, then (25) and 

(28) r{t) = \x{t)\2 + J x.Kxdt 

reduce to (21) and |x(/)|2, respectively. Hence the assertion is contained in the 
statement that (28) satisfies 

(29) r" > 0 

by virtue of (25) and (2). But this can be verified as follows: 
Let the expression (28), where |x|2 = x . x, be differentiated twice, and let 

x" be substituted from (2) in the resulting representation of r". It then follows 
that \r" is the integrand in (26). Hence (29) follows from (25), the latter 
being equivalent to x . Mx < 0. Thus Lemma 3 is verified. 

11. Bounded and unbounded solutions. This lemma makes it possible 
to generalize the existence theorem of (6), where 

(30) F{t) < 0, G(t) = 0, 

to the case of an arbitrary pair F, G satisfying (21), as follows : 

(VI) / / the coefficients of (2) satisfy (21) for large positive t, then the system (2) 
of order 2n possesses n linearly independent solution vectors, say 

(31) xi(t), . . . , xt(t), . . . , xn(t), 

such that the lengths \xi(t)\ of the vectors (31) tend to finite limits (>0) as t —> œ , 
whereas \x(t)\ —* °° holds for the lengths of all solutions vectors which are linearly 
independent of the n particular solutions (31). 

The proof of (VI) will not use (21) directly, but only its consequence, 
according to which 
(32) r"{t) > 0, where r = \x\\ 

holds for all solutions x = x(t) of (2). 

Proof of (VI). The first part of (III) assures that, if tl and t2(>tl) are large 
enough, then (2) is disconjugate on tl < / < t2. Hence, for the same reasons 
as in (6, p. 363), there belongs to any pair of constant vectors u, v a unique 
solution x = x(t) of (1) satisfying 

(33) x{tl) = u, x(t2) = v. 

Without loss of generality, it can be assumed that t1 = 0. Let u be any unit 
vector (there are oow such choices of u) and, with reference to a fixed choice of 
u, let xk(t), where & = 1, 2, . . . , denote the solution vector x(t) belonging to 
the case/1 = 0, t2 = k,v = 0 of (33) ; so that 

(34) I** (0)| = 1, xk(k) = 0. 
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I t is clear from (34) and (32) t h a t the sequence Xi(t), . . . , xk(/),.. . is 
uniformly bounded on every finite /-interval ; in fact, 

(35) MOI < 1, 0 < t < k. 

Hence, if the sequence of the derivatives is bounded a t t = 0, t h a t is, if 

(36) 1^^(0)1 < const, as k—> œ , 

then the proof of (VI) can be completed in the same way as in (6, pp. 364-365) . 
Bu t (36) can be proved as follows: 

Since x\{t) is continuous, there exists on 0 < / < 1 some tk satisfying 

(37) \x'k(t*)\ = max\x'k(t)\. 
0 < K 1 

Let 7 denote a constant satisfying 

(38) 1̂ (0*1 < YM, \G(t)x\ < y\x\ (0 < / < 1) 

for every vector x. I t can be supposed t h a t y > 2. Then , for every k, there is a 
number r = rk for which 

(39) ny\r\ = 1 and 0 < tk + r < 1. 

Only the algebraic sign of rk (and not \rk\) depends on k. By the mean value 
theorem of differential calculus, 

(40) xk(t* + T) = xk(t«) + rxk'(t
k) + J T V ' W , 

where 6 is between tk and tk + r. Actually, (40) is to be considered as a set of 
n scalar equations, one for each component of xk, and the value of 6 varies 
from equation to equat ion but , in each case, is a number between tk and tk + r. 

I t follows from (2) and (38) t h a t the absolute value of the j t h component 
of xk

,r{6) does not exceed y(\xk(dj)\ + | ^ ( 0 ; ) | ) , where 6 = dj is an inter­
mediary value belonging to the jth equat ion in (40). Since |x(0y)| < 1, by 
(35), and 1^(^ )1 < \xk'(t

k)\, by (37), it follows t h a t \xk"(6)| < ny(\xk'(t*)\ + l). 
In view of (35), neither 1^(^)1 nor \xk(t

k + T)\ exceeds 1. Hence (40) implies 
t h a t 

\rxk'{tk)\ <2+±nr*y(\xk'(t
k)\ + 1) 

or 

| r | ( l - in|r|7)!**'(**)I < 2 + \nr*y. 

From the first pa r t of (39), 

h(ny)-'\xk'{tk)\ < 2 + ±(ny)-K 

Consequently, the sequence x / ^ 1 ) , x2
f(t2), . . . is bounded. In view of (37), 

this proves (36). 
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