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We study the stability problem of a magnetohydrodynamic current sheet with the presence
of a plasma jet. The flow direction is perpendicular to the normal of the current sheet and
we analyse two cases: (1) the flow is along the antiparallel component of the magnetic
field; (2) the flow is perpendicular to the antiparallel component of the magnetic field.
A generalized equation set with the condition of incompressibility is derived and solved
as a boundary value problem. For the first case we show that the streaming kink mode
is stabilized by the magnetic field at V0/B0 � 2, where V0 and B0 are the jet speed and
upstream Alfvén speed, and it is not affected by resistivity significantly. The streaming
sausage mode is stabilized at V0/B0 � 1, and it can transit to the streaming tearing mode
with a finite resistivity. The streaming tearing mode has larger growth rate than the pure
tearing mode, though the scaling relation between the maximum growth rate and the
Lundquist number remains unchanged. When the jet is perpendicular to the antiparallel
component of the magnetic field, the most unstable sausage mode is usually perpendicular
(wavevector along the jet) without a guide field. But with a finite guide field, the most
unstable sausage mode can be oblique, depending on the jet speed and guide field strength.
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1. Introduction

For nearly a century, scientists have been investigating the mechanisms that cause
space weather events such as magnetic storms (e.g. Chapman & Ferraro 1940; Ferraro
1952). Magnetic reconnection is identified as one of the most important processes in
space plasmas that drives various explosive phenomena, such as solar flares (e.g. Masuda
et al. 1994), coronal mass ejections (e.g. Gosling, Birn & Hesse 1995) and the magnetic
substorms in the Earth’s magnetotail (e.g. Angelopoulos et al. 2008). It efficiently converts
the magnetic energy in a current sheet to the kinetic and internal energies of the plasma
through reconfiguration of the topology of the magnetic field and connectivity of the
magnetic field lines. In the laboratory, magnetic reconnection destabilizes the plasma
(e.g. Yamada et al. 1994; Dorfman et al. 2013) and is fatal to stable controlled fusion.
Understanding of how the reconnection triggers and evolves is crucial for a complete
description of how energy is stored and released in different plasma environments.
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As the plasma is a multiscale system, various types of waves and instabilities exist on
the largest magnetohydrodynamic (MHD) scale, the intermediate ion-kinetic scale and
the smallest electron-kinetic scale. Consequently, magnetic reconnection is a multiscale
process. In the past two decades, numerical simulations (e.g. Daughton, Scudder &
Karimabadi 2006; Guo et al. 2015; Cassak et al. 2017; Lu et al. 2019) as well as in situ
measurements of space plasma (e.g. Burch et al. 2016; Torbert et al. 2018) have greatly
enhanced our understanding of the microscopic kinetic physics of reconnection in the
ion diffusion region and electron diffusion region. But it still remains unclear as how fast
reconnection triggers in the macroscopic current sheets whose dimensions are much larger
than any ion kinetic scales, e.g. current sheets in the preflare configurations in the solar
corona.

In an ideal-MHD regime, the magnetic field lines are ‘frozen in’ the plasma and change
of their connectivity is prohibited. Thus, a certain mechanism that breaks the ideal-MHD
condition must play a role for the reconnection to happen. In macroscopic current sheets,
this mechanism is either collision-induced resistivity, or some kind of effective resistivity
caused by microscopic wave–particle interactions (e.g. Büchner & Elkina 2006; Ma et al.
2018). Hence, the triggering problem of reconnection at MHD scales is essentially the
stability problem of the resistive current sheet. Since the 1960s, many works have been
conducted on the resistive instability, i.e. the so-called ‘tearing instability’, of the current
sheet (Furth, Killeen & Rosenbluth 1963; Coppi, Greene & Johnson 1966). The tearing
mode grows with the help of resistivity that transfers the magnetic energy stored in the
shear magnetic field to the growing perturbations, leading to the formation of a chain of
plasmoids. Considering an infinitely long current sheet with thickness a, one can define the
dimensionless Lundquist number S = aVA/η; where VA = B/

√
μ0ρ is the characteristic

Alfvén speed, with ρ and B being the plasma density and asymptotic magnetic field
strength, and η is the magnetic diffusivity, which is resistivity divided by the permeability
μ0. For simplicity, we will refer to η as ‘resistivity’ hereinafter. Linear theory predicts
that the most unstable tearing mode has a growth rate γτa ∼ S−1/2 where τa = a/VA is
the Alfvén crossing time. This relation implies a faster growth of the instability with
larger resistivity. As plasma in most of the space environments and laboratories is weakly
collisional (Ji & Daughton 2011; Pucci, Velli & Tenerani 2017), the tearing mode seems
to grow at a very slow speed.

However, considering a two-dimensional (2-D) current sheet whose length is L, in
most prereconnection configurations, its aspect ratio can be very large (L � a). In this
case, we should use L instead of a to measure the growth rate of a tearing instability.
After redefining the Alfvén crossing time and Lundquist number such that τL = L/VA
and SL = LVA/η, it can be shown that the maximum growth rate of tearing mode is
γτL ∼ S−1/2

L × (a/L)−3/2 (Pucci & Velli 2013), implying that the aspect ratio of the current
sheet is an important factor in determining how fast the mode grows. The growth rate
can be extremely large at the low-resistivity limit (SL → ∞) if the current sheet is thinner
than a critical value a/L ∼ S1/3

L . Especially, in the classic model for steady reconnection
with resistivity, i.e. the Sweet–Parker type current sheet, whose aspect ratio is a/L ∼ S−1/2

L

(Parker 1957; Sweet 1958), the maximum growth rate of tearing is γτL ∼ S1/4
L (Loureiro,

Schekochihin & Cowley 2007; Tajima & Shibata 2018). The positive power-law index
means that the growth rate can be extremely large in the limit SL → ∞ (Bhattacharjee
et al. 2009; Huang & Bhattacharjee 2013).

The above analysis leads to a plausible scenario of the explosive energy release of the
macroscopic current sheet. Initially, the current sheet is thick with (a/L) > S−1/3

L , and thus
is stable to a tearing mode. Then some external forces gradually build up magnetic energy
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and result in thinning of the current sheet. Once the current sheet thins to the critical
aspect ratio (a/L) ∼ S−1/3

L , the growth of the tearing mode suddenly becomes very fast,
and the current sheet breaks up into many plasmoids and smaller-scale current sheets.
This process can happen recursively in the newly formed current sheets and dissipates
the magnetic energy rapidly (Shibata & Tanuma 2001; Landi et al. 2015; Tenerani et al.
2015b; Papini, Landi & Del Zanna 2019), until it is terminated due to the decrease of the
Lundquist number (Shi, Velli & Tenerani 2018) or the ion kinetic effect (Shi et al. 2019;
Bora, Bhattacharyya & Smolarkiewicz 2021). Thus, tearing instability is an important and
fundamental mechanism that facilitates fast reconnection in the large-scale current sheets.
Consequently, it is important to thoroughly study it under different configurations. Recent
progress on this topic includes the calculations of its linear growth rate with viscosity
(Tenerani et al. 2015a), different background magnetic field profiles (Pucci et al. 2018),
Hall effect (Pucci et al. 2017), guide field (Shi et al. 2020), ion-neutral collisions (Pucci
et al. 2020) and normal component of magnetic field (Shi et al. 2021).

In space plasma, current sheets are frequently accompanied by plasma flows. In the
dayside magnetosheath, reconnection events are often observed within highly turbulent
plasma (e.g. Huang et al. 2016), and also for the solar wind (e.g. Osman et al. 2014).
As a result, the reconnecting current sheets are likely to be affected by plasma flows
of all directions. Plasma flows are also detected in the preflare corona (e.g. Wallace
et al. 2010) and nightside magnetotail current sheet (e.g. Lane et al. 2021). At the tip
of the helmet streamer where the heliospheric current sheet forms, growth of the tearing
instability accompanied by an outward propagating solar wind stream is observed in MHD
simulations (Réville et al. 2020, 2022). Thus, study of how the tearing mode instability is
modified by plasma flows is necessary. Many works have been conducted on the effect of
a shear flow, i.e. flow parallel to the shear magnetic field (e.g. Hofman 1975; Paris & Sy
1983; Einaudi & Rubini 1986; Chen & Morrison 1990; Ofman et al. 1991; Paris, Wood &
Stewart 1993; Chen, Otto & Lee 1997; Dahlburg, Boncinelli & Einaudi 1997; Faganello
et al. 2010). For example, Chen et al. (1997), through 2-D MHD simulations, show that a
sub-Alfvénic shear flow stabilizes the tearing mode, and with a super-Alfvénic shear flow
the instability is dominated by the Kelvin–Helmholtz mode. This result is confirmed by a
recent work (Shi et al. 2021) that calculates the linear instability growth rate by a boundary
value problem (BVP) approach. They also show that when the flow is exactly Alfvénic, the
current sheet is extremely stable and the perturbation only grows at the rate of diffusion.
Compared with the shear flow, the case where a plasma jet exists at the centre of the current
sheet is more complicated, because the jet itself is susceptible to two types of streaming
instabilities, i.e. the sausage (varicose) mode and the kink (sinuous) mode. Wang, Lee &
Wei (1988a), using an initial value solver of compressible MHD equations, show that a
super-Alfvénic plasma jet can increase the growth rate of the tearing mode. Subsequent
works (Lee et al. 1988; Wang et al. 1988b) show that under this type of configuration
both the kink mode and sausage mode exist and the sausage mode mixes with the tearing
mode in the presence of resistivity. Two-dimensional MHD (Bettarini et al. 2006) and
Hall–MHD simulations (Hoshino & Higashimori 2015) confirm these early results.

In this study, we carry out a comprehensive investigation of the stability problem of the
current sheet with a plasma jet in the framework of linear incompressible MHD, using an
eigenvalue problem solver. We examine both the streaming sausage mode and streaming
kink mode with and without resistivity. We derive the controlling equation set under a
generalized configuration such that the plasma jet can have arbitrary angle with respect to
the magnetic field and a finite guide field is allowed. The paper is organized as follows.
In § 2, we describe the background fields used in this study. In § 3, we derive the equation
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set for the perturbation field. In § 4 we present the detailed results of our calculation. In
§ 5 we summarize the results and discuss the possible applications of the results to space
plasma.

2. Equilibrium and background fields

We start from the resistive-MHD equation set

∂ρ

∂t
+ ∇ · (ρV ) = 0, (2.1a)

ρ
∂V
∂t

+ ρV · ∇V = −∇P + J × B, (2.1b)

∂B
∂t

= ∇ × (V × B)+ 1
S
∇2B, (2.1c)

∂P
∂t

+ V · ∇P + κ(∇ · V )P = 0, (2.1d)

where ρ,V ,B,P are density, velocity, magnetic field and pressure; κ is the adiabatic
index; S is the Lundquist number. Incompressibility is assumed throughout the study, i.e.
ρ(t, x) ≡ ρ0 is a constant. In a generalized configuration, the background magnetic field
and velocity consist of both x and z components but are functions of y only:

B = Bx( y)êx + Bz( y)êz, V = Vx( y)êx + Vz( y)êz. (2.2a,b)

Consequently, the momentum convection term and the magnetic tension force are both
zero: V · ∇V ≡ 0,B · ∇B ≡ 0, and the divergences of V and B are also zero. The
zeroth-order scalar pressure ensures the pressure balance

P( y) = PT − B2( y)
2μ0

, (2.3)

where PT is the uniform total pressure. With the above configuration, the background field
is in equilibrium without resistivity, but will diffuse with a finite resistivity. However,
in most of the space and laboratory plasmas, the resistivity is extremely small, thus the
diffusion time is much longer than the growth time of instabilities of interest. Therefore,
we are able to neglect the diffusion of background fields.

In this study, we adopt the Harris-type current sheet model for the magnetic field such
that Bx( y) = B0 tanh( y/a). We also allow a uniform guide field Bz( y) = Bg. We assume
the velocity is of the following form:

V = V( y)(cos(α)êx + sin(α)êz), (2.4)

i.e. the jet rotates from the x direction by an angle α (figure 1a). We adopt a flow function,

V( y) = V0 sech2
( y

d

)
, (2.5)

where d is the half-thickness of the jet, and V0 is the flow speed at the centre of the current
sheet (y = 0) and is a variable parameter. Throughout the study, we fix d = a, i.e. the
width of the jet is the same as the width of the current sheet. The profile of V( y) is plotted
in figure 1(b) together with the profile of the x-component of the magnetic field B( y).
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(a) (b)

FIGURE 1. (a) Coordinate systems used in this study and the background fields. Coordinate
system x̃–z̃ is x–z rotated by an angle θ with respect to y axis, so that x̃ is parallel to the
wavevector k. (b) The y-profiles of the background flow V( y) (blue solid) and the x-component
of the magnetic field B( y) (orange dashed) used in this study.

3. Equation set for the perturbations

For the perturbations, we consider a Fourier mode whose growth rate γ is a complex
number and wavevector k is in the x–z plane with an arbitrary angle θ with respect to the
x direction (figure 1a):

k = k cos(θ)êx + k sin(θ)êz. (3.1)

Hence, the perturbation fields have the form
⎛
⎝

u(t, x)
b(t, x)
p(t, x)

⎞
⎠ =

⎛
⎝

u( y)
b( y)
p( y)

⎞
⎠ exp(γt + ik · x). (3.2)

For simplicity, one can rotate the x–z coordinates with respect to the y-axis by angle θ and
get a new coordinate system x̃–z̃ (figure 1a) such that k = kêx̃, and thus there is ∂z̃ ≡ 0.
The background magnetic field and velocity can then be written as B = Bx̃( y)êx̃ + Bz̃( y)êz̃
and V = Vx̃( y)êx̃ + Vz̃( y)êz̃ after projection to the new coordinate system.

The next step is to derive a closed linear equation set for the eigenvalue problem. We
start from the linearized momentum equation (with uniform density ρ)

γu + V · ∇u + u · ∇V = − 1
ρ

∇pT
1 + (B · ∇b + b · ∇B), (3.3)

where we have normalized the magnetic field by
√
μ0ρ so that it is in the units of speed.

To get rid of the first-order pressure, we can take the curl of the equation and get

γ∇ × u + ∇ × (V · ∇u + u · ∇V ) = ∇ × (B · ∇b + b · ∇B). (3.4)

Using ∇ · u = 0 and ∇ · b = 0 to eliminate ux̃ and bx̃, the z̃ component of the above
equation can be rearranged in the following form:

γ(u′′
y − k2uy)+ ik[Vx̃(u′′

y − k2uy)− V ′′
x̃ uy] = ik[Bx̃(b′′

y − k2by)− B′′
x̃ by], (3.5)

where the prime indicates ∂y. We note that the above equation contains only the
y-component of u and b. The linearized induction equation is

γb = b · ∇V − V · ∇b + B · ∇u − u · ∇B + 1
S
∇2b, (3.6)
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where S = aVA/η is defined with the half-thickness of the current sheet a and the upstream
Alfvén speed VA = B0/

√
μ0ρ. The y-component of the linearized induction equation is

γby = −ikVx̃by + ikBx̃uy + 1
S
(b′′

y − k2by), (3.7)

which also contains only the y-component of u and b. Thus, (3.5) and (3.7) form a closed
equation set for uy and by:

γ(u′′
y − k2uy)+ ik[Vx̃(u′′

y − k2uy)− V ′′
x̃ uy] = k[Bx̃(b′′

y − k2by)− B′′
x̃ by], (3.8a)

γby = −ikVx̃by − kBx̃uy + 1
S
(b′′

y − k2by). (3.8b)

Here we have assimilated a π/2 phase difference between uy and by, i.e. we have replaced
iby with by.

One can immediately find that, if Vx̃ = 0, i.e. if k · V = 0, the system is purely
determined by Bx̃, similar to the classic tearing case, and the growth rate is purely real. As
an example, consider an antiparallel magnetic field B = Bx( y)êx and an out-of-plane flow
V = Vz( y)êz. In this case, if k = kêx, the system reduces to the classic tearing case, i.e.
the flow has no effect on the solution. But if the wavevector is not along x and has a finite
z-component, the flow will alter the growth rate and introduce an oscillation (a non-zero
frequency) to the solution. Similarly, if k · B = 0, the system is determined purely by the
flow Vx̃ and there are only stream-induced instabilities.

As a final remark, we note that (3.8) is in generalized form, and works for any functions
V ( y) and B( y) once they have the form of (2.2a,b) and the system is incompressible.

4. Results

Equation (3.8) is a BVP with the boundary conditions uy( y → ±∞) = 0, by( y →
±∞) = 0. Far from the centre of the current sheet (y → ±∞), the derivatives of the
background fields reduce to zero. Consequently, one can see that uy, by ∝ exp(−k|y|)
satisfy (3.8a), and (3.8b) just gives the ratio uy/by at y → ±∞. In this study, we use the
numerical BVP solver implemented in the Python package SciPy (Virtanen et al. 2020)
to solve (3.8). In practice, we set the boundaries at y = ±15a, which are large enough to
acquire accurate solutions.

Before solving the equation set, we need to define the parities of uy and by first. Given
that Vx̃( y) is an even function and Bx̃( y) is an odd function, one can see from (3.8) that
there are two possible combinations of the parities of uy and by: (1) uy( y) is odd and
by( y) is even; (2) uy( y) is even and by( y) is odd. The first case is the so-called ‘sausage’
(varicose) mode, which leads to the formation of a chain of blobs and plasmoids (if
resistivity is non-zero). Tearing instability is categorized to the sausage mode. The second
case is the ‘kink’ (sinuous) mode, which results in wavy distortion of the current sheet and
stream. In solving the problem, we carefully search for both of the two modes.

4.1. Instabilities of a plasma jet inside a non-resistive current sheet
In this section, we analyse the simplest 2-D case, where the jet, magnetic field and
wavevector are all aligned along the x direction, i.e. there is no out-of-plane flow or guide
field. Besides, the current sheet is non-resistive. We will show how the pure streaming
instabilities are modified by the interaction between the jet and the current sheet.

In figure 2(a,b), we show the dispersion relations γ(k) and ω(k) for the sausage mode
(solid lines) and kink mode (dashed lines). The wavenumber is normalized to d, and
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(a) (b) (c)

(d) (e) ( f )

FIGURE 2. Streaming instabilities of a plasma jet inside a current sheet. The jet and the wave
vector are both parallel to the magnetic field, and there is no guide field. (a,b) Growth rate (γ)
and oscillation frequency (ω) as functions of wavenumber k for the sausage mode (solid lines)
and the kink mode (dashed lines) with different magnetic field and jet speed ratios B0/V0. Black
lines represent the non-magneto fluid case (B0/V0 = 0). Here, the wavenumber is normalized
by the half-thickness of the jet, which is equal to the half-thickness of the current sheet, and the
growth rate and frequency are normalized to d/V0. Panels (c) and (d) are plotted based on the
sausage mode with B0/V0 = 0.4 and kd = 0.46 (the fastest growing mode). (c) Two-dimensional
profiles of Vx, solid lines are the streamlines, and the two dashed lines mark the resonance
surfaces where ω = kV( y). (d) 2-D profiles of Jz (out-of-plane current density), solid lines are
the magnetic field lines, and the two dashed lines mark the resonance surfaces. Panels (e) and
( f ) are similar to panels (c) and (d) but for the kink mode with B0/V0 = 0.4 and kd = 0.83 (the
fastest growing mode). We note that in panels (c)–( f ) all the physical quantities are the sums of
the linear eigenfunctions and the background fields.

γ and ω are normalized to V0/d. The lines are colour-coded with the B0/V0 ratio, as
marked in figure 2(a). Both modes have larger growth rate with smaller magnetic field,
as it is well known that the magnetic field suppresses the stream-shear instability. The
kink mode has larger growth rate than the sausage mode for B0/V0 � 0.4. But when
B0/V0 � 0.4, the sausage mode becomes more unstable than the kink mode, i.e. the
magnetic field stabilizes the kink mode more effectively. The wavenumber of the most
unstable kink mode is roughly twice the wavenumber of the most unstable sausage mode.
In figure 2(c,d), we show 2-D profiles of Vx and Jz, respectively, for the sausage mode
with B0/V0 = 0.4 and kd = 0.46, which is the fastest growing mode for B0/V0 = 0.4.
Here, the 2-D profiles are calculated by summing the background fields and the solved
eigenfunctions of the perturbations. The solid curves in figure 2(c,d) are the streamlines
and the magnetic field lines, respectively, and one can see the formation of a chain of
sausage-like structures in both the velocity and the magnetic field. The dashed lines
in the two figure panels mark the resonance surfaces where ω = kV( y) and the fields
undergo sharp transitions. Figure 2(e, f ) are similar to figure 2(c,d) but for kink mode with
B0/V0 = 0.4 and kd = 0.83, which is the fastest growing mode for B0/V0 = 0.4. We can
see the growth of kink mode deforms the jet and the magnetic field in a sinuous way.
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(a)

(b)

(c)

FIGURE 3. (a,b) Dispersion relation γ(k) and ω(k) for sausage mode (solid lines) and kink
mode (dashed lines) with V0/B0 = 2.5. Colours of the curves correspond to the Lundquist
numbers, such that yellow is S = 10, light purple is S = 100 and dark purple is S = 1000. Black
curves are non-resistive cases (S → ∞). Different from figure 2, here γ and ω are normalized
by the Alfvén crossing time a/VA (or a/B0). (c) Maximum growth rate max(γ(k)) as a function
of V0/B0. Blue and orange curves are the sausage and kink modes, respectively, with S = 1000.
The two black dashed curves are the non-resistive cases (S → ∞).

Here we must point out that, in the non-resistive case, growth of the streaming sausage
mode does not result in reconnection of the magnetic field since the system is ideal-MHD.
The sausage-like structures are not plasmoids but are merely antiphased deformation of
the magnetic field lines on the two sides of the current sheet (figure 2d). Actually, from
(3.8b), one can see that by( y = 0) = 0 in the limit S → ∞.

4.2. Instabilities of a plasma jet inside a resistive current sheet
Based on the results of the previous section, we explore how a finite resistivity will modify
the streaming instabilities and how the tearing mode couples with the streaming sausage
mode.

Figure 3(a,b) show the dispersion relation γ(k) and ω(k) for the sausage mode (solid
lines) and kink mode (dashed lines) with V0/B0 = 2.5 and different Lundquist numbers.
Different from figure 2, hereinafter we normalize γ and ω by the Alfvén crossing time
a/VA, i.e. a/B0, which is conventional for the analysis of the tearing mode. Although
not very significantly at this V0/B0 ratio, resistivity enhances the maximum growth rates
of both modes. It is clear that the kink mode is less affected by resistivity compared
with the sausage mode. This is a reasonable result because the streaming sausage mode
is expected to couple with the tearing mode whose growth rate is determined by the
resistivity. To better illustrate this point, figure 3(c) shows the maximum growth rates
max(γ) as functions of the ratio V0/B0 for the sausage and kink modes. The blue line is
the sausage mode with S = 1000, and the orange line is the kink mode with S = 1000.
The two black lines are the cases without resistivity (S → ∞). As already shown in § 4.1,
in the non-resistive case, the kink mode (black squares) is more unstable than the sausage
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(a) (b)

FIGURE 4. (a) Maximum growth rate of the sausage mode as a function of the Lundquist
number S for different V0/B0. The black dashed line shows γ ∝ S−1/2 and the black dotted line
shows γ ∝ S−0.4 for reference. (b) Corresponding wavenumber of the most unstable mode as a
function of S. The black dashed line shows k ∝ S−1/4 and the black dotted line shows k ∝ S−0.15

for reference.

mode (black circles) with large V0/B0 but its growth rate decreases fast towards zero as
V0/B0 approaches ∼ 2 from above. The growth rate of sausage mode decreases to zero at
V0/B0 ∼ 1. With S = 1000, the maximum growth rate of the kink mode almost does not
change from the non-resistive case. For the sausage mode, the growth rate does not change
for V0/B0 ≥ 2 but becomes larger than the non-resistive case for V0/B0 < 2. Especially,
even for V0/B0 < 1, its maximum growth rate is larger than zero. This is because of the
transition of the streaming sausage mode to the tearing mode at small V0/B0 ratio. Thus,
in the finite (but not too large) resistivity case, we can roughly divide the sausage mode
into two regimes according to V0/B0. For V0/B0 � 2, the mode is almost dominated by the
jet, hence it is the ‘streaming sausage’ mode. For V0/B0 � 2, especially for V0/B0 � 1, the
mode becomes heavily affected by the resistivity, thus it is the ‘streaming tearing’ mode.
A similar result was obtained by Wang et al. (1988a), who showed that there is a sharp
increase of the maximum growth rate of the sausage mode at V0/B0 ≈ 1.2, implying a
transition of the tearing mode to streaming mode.

Figure 4(a) shows how the maximum growth rate of the sausage mode scales with
the Lundquist number for different V0/B0, and figure 4(b) shows the corresponding
wavenumbers. The black dashed and dotted lines in panel (a) show γ ∝ S−1/2 and γ ∝
S−0.4 for references, and those in panel (b) show k ∝ S−1/4 and k ∝ S−0.15 for references.
Classic tearing mode theory (Furth et al. 1963; Coppi et al. 1966) shows that the maximum
growth rate and corresponding wavenumber have the scaling relations γ ∝ S−1/2 and
k ∝ S−1/4 in the limit of large S. This is confirmed by the result for V0/B0 = 0 in figure 4.
As V0/B0 increases, both the maximum growth rate and the wavenumber increase, but
the slopes of these lines remain unchanged for V0/B0 < 1, implying that the mode is still
tearing-like. But at V0/B0 = 1, the scaling relations change such that the two lines are less
steep, meaning that the dependence of the instability on the resistivity becomes weaker.
At V0/B0 = 1.25, the two lines are flat for S ≥ 105, indicating that the instability becomes
weakly dependent on resistivity and start to transit to pure streaming sausage mode.

In figure 5, we show the solved eigenfunctions uy (figure 5a1–a3) and by (figure 5b1–b3)
for the most unstable sausage modes with S = 106. Figures 5(a1,b1), 5(a2,b2) and 5(a3,b3)
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(a)

(b)

FIGURE 5. Eigenfunctions uy (a1–a3) and by (b1–b3) for the most unstable sausage modes
with S = 106 and varying V0/B0. Panels (a1,b1), (a2,b2) and (a3,b3) are V0/B0 = 0, 0.75 and
1.25, respectively. In each panel, the solid and dashed curves are the real and imaginary parts
of the eigenfunctions. In panels (a2) and (b3), the embedded plots show the close-ups of the
eigenfunctions.

are V0/B0 =0, 0.75 and 1.25, respectively. In each figure panel, the solid curve is the
real part, and the dashed curve is the imaginary part of the function. Figure 5(a1) and
5(b1) correspond to the classic tearing case, where the solution shows a very thin singular
layer, or ‘inner’ layer, around y = 0, which is dominated by the resistivity. Outside the
singular layer, the solution is determined by the non-resistive parts of (3.8). As the ratio
V0/B0 increases (figure 5a2–b2 and figure 5a3–b3), the outer solution is altered by the jet,
while the inner singular layer persists, as can be seen in the embedded blow-up plots. In
addition, as V0/B0 increases, the relative amplitude of by and uy drops. For the pure tearing
mode, |by| � |uy|, implying the mode is magnetic field dominated. As the mode transits
to streaming sausage mode, magnetic field perturbation gradually weakens.

4.3. Jet along the guide field and the oblique tearing mode
In this section, we only discuss the sausage mode because the kink mode is not affected
much by the resistivity and not directly related to the reconnection process. In space
environments or laboratory plasma, the jet is not necessarily parallel to the reconnecting
magnetic field component, and it is possible that the jet has a finite component along the
guide field direction (generally speaking, the z direction no matter whether a guide field
exists). In this case, the most unstable mode may be oblique whose wavevector also has
a component along the guide field. In this section, we consider the case where the jet is
along the z axis. As the instability is determined fully by the background fields projected
on the wavevector direction, one can imagine that, when we rotate k from the x direction
to the z direction, the instability transits from pure tearing mode to pure streaming mode.

Figure 6(a) shows the maximum growth rate of the sausage mode as a function of
θ(k,B0), which is the angle between k and x-axis, for S = 104, Bg = 0, and different
V0/B0 ratios. If there is no jet (V0/B0 = 0), increasing θ leads to a monotonic decrease
of the maximum growth rate. But as the jet speed increases, there is a turning point from
which the maximum growth rate starts to rise. Even for a small ratio V0/B0 = 0.1, a turning
point exists at large θ (≈ 75◦). However, in this case the perpendicular (θ = 90◦) mode
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(a) (b)

(c) (d)

FIGURE 6. (a) Maximum growth rate of the sausage mode as a function of θ (angle between k
and B0), for α = 90◦ (angle between V0 and B0), S = 104, Bg = 0 and varying V0/B0. (b) The
corresponding wavenumbers. (c) Blue curve with square markers: maximum growth rate of pure
tearing mode, i.e. θ = 0, as a function of S. Horizontal dashed lines mark the maximum growth
rate of the pure streaming sausage mode, i.e. θ = 90◦, with varying V0/B0. Note that the growth
rates of pure streaming modes (modes decoupled from the magnetic field) are independent of S.
(d) Critical value (V0/B0)c, above which the pure streaming sausage mode has larger maximum
growth rate than the pure tearing mode, as a function of S.

still grows slower than the parallel (θ = 0◦) mode. For large jet speed (V0/B0 =1.00),
the curve is monotonically increasing. The turning point is due to the transition from
the pure tearing mode to the pure streaming sausage mode as k rotates. Figure 6(b)
shows the wavenumbers corresponding to the modes shown in figure 6(a). In general,
as θ increases, the wavenumber also increases, especially for large V0/B0 ratios, because
the most unstable streaming mode has larger wavenumber than the most unstable tearing
mode. In figure 6(c), we plot the maximum growth rate of pure tearing mode as a function
of S in blue line with square markers. This curve corresponds to the θ = 0 case with
V0 ‖ êz. In this figure panel, the horizontal dashed lines mark the maximum growth rate
of the pure streaming sausage mode, i.e. the θ = 90◦ case, for different V0/B0 ratios. We
note that the growth rates of the pure streaming modes are independent of S because
these modes decouple with the magnetic field. Consequently, the growth rate is simply
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(a) (b) (c)

FIGURE 7. Maximum growth rate of the sausage mode as a function of the guide field strength
Bg/B0 for different θ (angle between k and the x-axis). The jet is along the guide field (α = 90◦).
The Lundquist number is S = 104. The three panels are results for different flow speeds.

proportional to V0/B0. From this plot, we see that at any fixed Lundquist number S, there
is a critical V0/B0 above which the perpendicular mode (pure streaming sausage) has larger
growth rate than the parallel mode (pure tearing). In figure 6(d) we plot this critical value
(V0/B0)c as a function of S. One can read that, for example, for S = 103, the critical value
is V0/B0 ≈ 0.4 while for S = 5 × 105 the critical value is V0/B0 ≈ 0.02. For a V0/B0 that
exceeds the critical value, the max(γ)–θ curve (such as those shown in figure 6a) will raise
with θ at some point and eventually reach a value at θ = 90◦ higher than that at θ = 0◦.

Then we consider the case with a uniform guide field Bg. In figure 7, each figure
panel displays the maximum growth rate of the sausage mode as a function of the guide
field strength Bg/B0 for different θ . Figure 7(a)–(c) correspond to V0/B0 =0, 0.5 and
1.0, respectively. We note that B0 is the asymptotic amplitude of the x-component of
the magnetic field. For small θ (θ � 15◦), the maximum growth rate is not significantly
modified by either Bg or V0 since k is quasi-perpendicular to the guide field direction. As
θ increases, for small and intermediate jet speeds (V0/B0 ≤ 0.5), the maximum growth
rate drops with the guide field. As already shown by Shi et al. (2020), in the no-flow case,
the guide field raises the growth rate only at large-k (the so-called constant-ψ) regime,
but overall the maximum growth rate of the oblique mode (θ > 0) decreases with an
increasing guide field strength. However, figure 7(c) (V0/B0 = 1) shows a very different
result. For small guide field Bg/B0 ≤ 0.5, the maximum growth rate increases with θ ,
similar to the result shown by figure 6, because the streaming mode of the jet has larger
growth rate than the tearing mode. As Bg/B0 continues to increase (Bg/B0 = 0.75 and 1.0),
max(γ) does not monotonically increase with θ but may start to drop with θ . Clearly, there
is a competition between the jet and guide field. The jet tends to increase max(γ) as k
rotates from the x direction towards the z direction, while the guide field overall plays a
counter role but at certain θ it may raise max(γ) first before declining it (see curves for
θ = 30◦, 40◦ and 45◦). Figure 8 displays the maximum growth rate of the sausage mode
as a function of θ in the case S = 104, V0/B0 = 1, and α = 90◦, with different Bg/B0
ratios. Without the guide field, max(γ) monotonically increases with θ as already shown
in figure 6. But as Bg/B0 increases, peaks appear in the max(γ)–θ curves, because the
guide field effectively stabilizes both the oblique tearing mode and the streaming sausage
mode, and hence a finite Bg can significantly decrease the growth rate of the perpendicular
mode (θ = 90◦).
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FIGURE 8. Maximum growth rate of the sausage mode as a function of θ for S = 104,
V0/B0 = 1, α = 90◦ and different Bg/B0.

5. Summary

In this study, we adopt a BVP solver to study the instabilities inside a current sheet with
the presence of a plasma jet. When the jet is collimated with the antiparallel component
of the magnetic field, both of the sausage mode and kink mode can be stabilized by the
magnetic field. Without resistivity, the stability thresholds for the kink mode and sausage
mode are V0/B0 ≈ 2 and V0/B0 ≈ 1, respectively (figure 3). With a finite resistivity, the
streaming sausage mode couples with the tearing mode, but the streaming kink mode is
not modified by the resistivity significantly unless the resistivity is very large (S < 100).
Thus, in most of space and laboratory current sheets where S is extremely large, the
kink mode can be excited only if the jet speed is large (V0/B0 � 2). For V0/B0 � 1, the
sausage mode is tearing-like, with a power-law relation between the maximum growth
rate and the Lundquist number max(γ) ∝ S−1/2 in the large S limit, same as the tearing
mode without flow, while the values of the maximum growth rate increase with the ratio
V0/B0. For V0/B0 � 1, the sausage mode gradually transits to more streaming-like, and
the maximum growth rate becomes less dependent on S (figure 4). In the case of a jet
flowing along the direction perpendicular to the antiparallel component of the magnetic
field, our result reveals that, once the jet speed exceeds a threshold which is determined
by the Lundquist number, the maximum growth rate of the sausage mode may increase
with the angle between the wavevector and the reconnecting magnetic field component
(figure 6). This is because the mode transits from the pure tearing to pure streaming as the
wavevector rotates from the antiparallel magnetic field direction to the jet direction. Last,
the out-of-plane jet combined with a finite guide field leads to a complex behaviour of the
maximum growth rate of the sausage mode. With certain V0/B0 and θ values (figures 7c
and 8), the maximum growth rate increases with the guide field strength. But the increase
is not very large and is non-monotonically dependent on θ . For example, figure 7(c) shows
that the increase in max(γ) with Bg from Bg/B0 = 0 to Bg/B0 = 0.5 is larger for θ = 30◦

and 45◦ than that for θ = 40◦. More importantly, overall the guide field quenches both
the oblique tearing mode and the streaming sausage mode. As a result, increasing Bg will
gradually turn the monotonically increasing max(γ)–θ curve to a curve that increases at
first and then drops (figure 8).

These results indicate that plasma flow plays an important role in destabilizing the
current sheets in space and laboratory plasma. A jet whose width is comparable to that
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of the current sheet and peak speed similar to the upstream Alfvén speed can enhance
the maximum growth rate of the tearing mode to more than twice of that in the no-flow
case (figure 3). When the jet has a finite component along the direction perpendicular to
the antiparallel component of the magnetic field, even if the component is much smaller
than the upstream Alfvén speed, the oblique sausage mode (θ > 0) may have comparable
or even larger growth rate than the parallel sausage mode (θ = 0), and the most unstable
mode may be perpendicular (k = kêz) (figure 6). The reason is that the out-of-plane flow
(along the z direction) does not feel the stabilization effect by the magnetic field along x,
and the growth rate of the pure streaming sausage mode is usually much larger than the
pure tearing mode in the large S limit. When the out-of-plane jet and guide field coexist,
the most unstable mode may be oblique rather than parallel or perpendicular (figure 8).

We note that several factors which are absent in this study may have non-negligible
effects on the analysed instabilities. Here we assume a uniform density profile and
incompressibility. However, compressible MHD simulations show that a non-uniform
background plasma density such as in the magnetotail can modify the growth rate of both
tearing and streaming modes (Hoshino & Higashimori 2015). In addition, if the Hall effect
is included, out-of-plane components of the magnetic field and velocity perturbations are
generated even for the parallel mode (k = kêx). Therefore, the out-of-plane jet will modify
both the oblique and the parallel modes. Moreover, different widths of the jet and current
sheet will change the results (Einaudi & Rubini 1986; Hoshino & Higashimori 2015).
As a final remark, it is worth noting that in the collisionless regime where the electron
inertia is the only mechanism that breaks the frozen-in condition, an out-of-plane plasma
jet plays a stabilizing role of the tearing mode even if the mode is parallel (k = kêx) (Tassi,
Grasso & Comisso 2014). This is very different from the resistive-MHD regime where the
out-of-plane jet only modifies the oblique tearing mode.
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