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ABSTRACT 

Structures placed in deep snow covers are subject to 
forces caused by interruption of the down-slope snow-pack 
deformation components. The resulting creep pressures are 
often the primary design consideration. In this paper, 
accurate field data (pressures) and theoretical analysis of the 
problem using a linear creep law to define snow 
deformation are presented. Results include analytical 
expressions for the pressures, and it is demonstrated that 
the resulting linear theory underestimates the mean pressures 
by about 20%. Higher accuracy will require that a non
linear deformation law be formulated. 

INTRODUCTION 

When structures are erected in deep snow covers, snow
creep pressures are often the primary design consideration . 
Important examples include avalanche defences in starting 
zones, and ski-lift and power-line towers. Although it is 
relatively easy to design structures which can withstand 
creep pressures, the cost penalty for structures which are 
stronger than necessary is often prohibitive. Conversely, the 
failure of structures buried in deep snow covers can be 
very expensive and potentially dangerous . These con
siderations underline the importance of accuracy in the 
specification of the expected creep loads. 

For a given snow-pack, two elements control the 
distribution and magnitude of forces on structures: (I) the 
boundary conditions on the face of the structure and at 
pOSItIOns where the snow-pac k is in contact with the 
ground, and (2) the rh eology of the material. In this paper, 
the effects of boundary conditions are quantified and 
compared with field data from a plane-strain configuration. 
Calculations are given over the range of expected boundary 
conditions appropria te to the da ta . [n addition , simple depth 
variatio ns in snow-pack d e ns ity and stiffness are explored 
using linear rheolog y. Taken together, the data and 
calculations indicate th e direc ti on that must be taken for a 
complete definition of des ign loads. In particular, we are 
able to show that in th e future the focus of attention must 
be on non-linear rheo log y. 

MODELLING CONCEPTS 

Alpine snow has a unique combination of physical 
properties which have not ye t been formalized in a 
non-linear deformation law suitable for engineering 
applications. These properties include: (I) high porosity; (2) 
high temperature (re[ative to its melting point); and (3) very 
low strength (it is the weakest bonded natural geotechnical 

material) . These properties combi ne to prod uce slo w 
deformation whic h can occur eve n without an applied load. 
The high poros ity resu lts in continuous densification 

throughout the winte r , thro ugh irreversible d eformati o n 
(mainly from grain re-a rra ngemen t). This viscous (o r plastic) 
deformation may be described as non- steady creep. 

Give n the absence of a no n-lin ea r formulation, a linear 
deformatio n law is app li ed in thi s paper. The linea r theory 
yields anal y tical expressions fo r th e expected loads on the 
structure, and it provides info rmati o n on the importance 
and character of non-linea r effects. Our approach is to 
generalize linear visco-elastic behaviour from a mode l whic h 
is characterized in o ne dimens io n as a four-parameter 
Burger Fluid (see FIl'lgge , 1975, p. 22). This results in an 
engineering formulation for describing interruption of s low, 
viscous creep by a rigid st ruc ture o n a s lope with a deep 
snow cover. Transie nt visco-elastic effects induced by 
loading (new snowfall) are ignored; field data (McClung, 
1975) show that trans ient creep rates in new snow laye rs 
pers ist for several days fo ll ow in g a s torm . 

Even when rapid (transient) c reep rates are not present, 
the creep loads on a struc ture are s till time-depend en t 
because alpine snow is co ntinu ously densifying a nd settl in g, 
making steady-state creep impossible. However , the effec t is 
very slow for a d eep snow cover whic h has been present 
for several months o n a slope. For design purposes, the 
time of greatest interest is late win te r or ea rl y spring when 
snow depth is at a maximum and densification is slow. 
With a lin ea r mode l it is possible to treat thi s aspect of 
time-depe ndence by exploring s low var iations in th e modu li 
as time proceeds but with constant values at a given instant 
of time . 

Generalization of th e one-dime ns io nal model to a 
three-dimens ional one ( including both deviato ric and 
hydrostatic components) is well known. Lang and Nakamura 
(1984) have provided a rigorous trea tme nt. For long -term 
response (with initial s tresses and tra nsie nts ig nored), the 
linear constitutive equa tio n becomes 

( I ) 

where /l ,n are shear a nd bulk viscos it y, and Ui j' i! ij are 
s tress- and strain-rate tensor co mpo nen ts (rectangular 
Cartesian coordinates in th e i,j directions), 'Oij is. the 
Kronecke r delta . Equa tIo n (I) represents a linear, 
compressible Newtonian v iscous fluid neglecting the sta tic 
pressure term . The s tati c term IS no t necessar y for 
describing alpine snow (Sall11 , 1967) because a sta te of res t 
is not possible. We bel ieve Eq ua tion (I) represen ts a 
sufficiently accura te linea r represe ntation of alpine snow for 
e ngineering applications. For a lpine snow deforming slowly, 
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strains due to viscous cree p wi ll exceed initial elastic stra ins 
by several orders of magn i t ude. 

Information about va lu es of bulk viscosity is scarce, 
but it is natural to re late th e shear and bulk viscosity to 
the viscous Poisson's ratio desc ribed by Reiner (1946, 
1949): 

37) - 21L 
v (2) 

2(37) + IL) 

Values for v have been su mmarized by Salm (1977) and 
estimates of IL have been g ive n by Haefeli (1967). This pair 
of parameters can be used to describe linear creep 
deformation in general but , fo r plane-s train solutions, v will 
be th e only param eter to appea r. 

Both IL and 7) ma y depend on snow density, 
temperature, structure, and tim e for a linear theory . For a 
non-linear formulation, they ma y also depend on invariants 
of the stress- and strain-rate tenso r (a case not considered 
in this paper). 

SNOW GLIDING 

Th e boundary conditions at positions where the 
snow-pack is in contact with the g round are crucial in 
determining structure forces when the ground is smooth and 
wet. Snow glide (s lip of th e entire snow-pack over sloping 
ground) can be initiated when the interface temperature 
between the snow-pack and the ground is at O°C and for 
slope angles in excess of 15 °. Wh en vigorous gliding takes 
place, the hi ghest fo rces o n structures are produced, and 
therefore no serious model wou ld exc lud e this force 
component. 

The fundamental problem of snow gliding is to relate 
the snow-pack drag to the glide velocity. The present 
theory contains the assumption tha t glide occurs by creep 
over the ground-roughn ess e lemen ts. Wh en the interface is 
at O°C, th ere is a guara nt eed prese nce of free wate r. This 
condition impli es th at th e ve loc it y fi e ld is tangential to the 
interface at position s where th e snow-pack contacts 
roughness elements and that th ere is neg ligible shear stress 
at all contact points. At positions for which the snow-pack 
is not in contact with the interface, the drag is negligible 
(McClung and Clarke, 1987). Assu ming the deformation 
field is governed by Equation ( I) , the tangential snow-pack 
drag To is related to th e glid e ve loc ity V by 

ILV ILV 
-------- (3) 

D* 

where DA(x,y), the stagnation depth, is a function of the 
geometry of the interface (x and y are up- and cross-slope 
directions), and A is the area for which the snow-pack is 
not in contact with th e bed. If A = 0, expression (3) 
reduces to the theory of McClung (1981) for which a 
continuous, infinitesimal thin wa ter film was assumed all 
along the interface. McClung and Clarke (1987) provided 
estimates of DA(x,y) for A et O. If A ~~, all the 
interface-roughness obstac les are drowned and To ~ 0 (an 
unstable condition). In practice, D* must be either measured 
or calculated theoretically for the interface in question (see 
McClung, 1975). For cases in which there is no glide, 
D* = DA = O. 

PLANE-STRAIN SOLUTIONS 

In this paper we compare fi e ld data from western 
Norway (1976-present) with predict ions a t the centre of a 
long retalOlng wall (avalanche defence structure) erected 
perpendicular to the snow-earth interface on a long slope 
without curvature (Fig. I). The boundary condition at the 
top of the snow-pack is taken as a free surface. 

The plane-strain configuration is simple enough that 
one-dimensional anal ytica l solutions are available (e.g. 
McClung, 1982; McClung and others, 1984) to describe the 
average pressure on th e face of the structure using 
Equations (I) and (2). Th ese solutions depend only on v, 
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Fig. I . Schematic of plane-strain configuration for measuring 
creep pressures. 

the slope angl e, t/J, fo r a snow-pac k with depth-averaged 
density , p, and constant thi ckness , H. 

One-dimensional equat ions (geome try in Figure I), are 
defined by depth-averaged quantiti es (denoted by a bar): 

H 

(4) 

With D* and v taken as constant throughout the zone of 
influence of the st ructure, the solution for the compressive 
st ress perpendicular to the structure is given by (McClung, 
1982; McClung and Larse n, in press): 

t 

[[I ~J ~* + ~]] sin t/JpgH + [I ~Jaz(o) (5) 

where a z (O) is depth-a veraged normal stress at the structure, 
and g is accelerati on due to gra vi ty. In Equation (5), both 
Gz(O) and the dim ensionl ess parame ter L / H (defined by 
McClung (1982» depend on v, <}J , and the boundary 
conditions on the structure. 

BOUNDARY CONDITIONS ON THE STRUCTURE: 
PLANE-STRAIN SOLUTIONS 

The boundary conditions at the face of structures buried 
in snow covers are unknown . However, it is possible to 
place bounds on them. Regardless of the conditions of 
traction or displacement parallel to the structure, the creep 
velocity perpendicular to that structure may be taken as 
u = 0 along the face. 

For a rough structure in a cold snow-pack, the vertical 
creep velocity may be approximated as v = 0. The pair of 
boundary creep velocities (u = v = 0, will be referred to as 
the no-slip condition. This condition is to be expected from 
results on snow gliding; glide is not observed on a rough 
surface unless free water (wet snow) is available. The 
no-slip condition implies a shear stress along the structure 
face and causes the maximum force to occur at an angle 
(rather than perpendicular) to the structure. 

A t the other extreme, for a smooth structure lubricated 
by free water, a traction-free condition T xz = 0 along the 
structure is expected . This pair of conditions (u = T xz = 0) 
is called the traction-free condition. For the intermediate 
case (both slip and traction occur parallel to the structure), 
a relation analogous to that in Equation (5) may be 
appropriate. This situation is not explored here explicitly; it 
should produce pressures intermediate between the no-slip 
and traction-free conditions which bound the problem. 

In order to make a comparison with field data, it is of 
interest to predict the forces perpendicular and parallel to 
the structure (shear forces) as well as the maximum 
principal stress. 

(i) Traction-free boundary condition 
The traction-free boundary condition is the easier of the 

two extremes to model in one dimension . Also, two
dimensional finite-element solutions show that the normal 
forces are not appreciably changed from their values 
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without the presence of the wall, and therefore the 
depth-averaged normal stress is approximately 

az(O) '" t pgH cos 1/1 . (6) 

An extensive series of finite-element solutions (McClung and 
Larsen, in press) showed that an empirical expression for 
L/ H (traction-free condition) is 

L 

H 
0.27 + 

v 
12 

(7) 

With Equations (5)--(7), the depth-averaged value ofax(O) 
(or maximum principal stress, 0'1) is given by: 

+ .!.[_v_ ]cos .p. (8) 
2 I - v 

The two terms in Equation (8) result from gravity loads 
applied parallel and perpendicular to the slope, respectively. 
These terms may be calculated separately by application of 
gravity loads (body forces) in these directions. Equation (8) 
was derived from solutions in the ranges 25 0 ~ 1/1 ~ 55 0

; 

o ~ v ~ 0.4; and 0 ~ D* / H ~ 3 (see McClung (! 982) for 
an explanation of these ranges) . Maximum stresses 
determined by using Equation (8) compare with two
dimensional finite-element solutions within a few per cent 
(Figure 2 gives examples). For the traction-free condition , 
the resultant force is perpendicular to the face of the 
structure with a magnitude given by Equation (8). 

(ii) No-slip boundary condition 
Field data show that, in general, the resultant force is 

not perpendicular to the face of the structure (e .g. 
Kiimmerli, 1958). This result is expected physically; if slip 
along the structure is inhibited, shear force will be present 
causing the resultant force to have a component 
perpendicular to the slope. In general, the face of a 
structure will not be completely traction-free, and we feel 
that the no-slip boundary condition (u = v = 0) is a close 
approximation to conditions encountered in the field except 
when the snow-pack is melting rapidly. 

Numerical solutions show that the no-slip condition is 
more complex than the traction-free 
Not only are shear forces produced on 
normal forces in the vICtnlty of 
significantly reduced from their values 
not present; a simple estimate such as 
not available. 

condition to model. 
the structure but the 

the structure are 
when a structure is 
approximation (6) is 

1.1 ~---r----~--~----T---~----~---'----~ 

0 .9 

. -0 
... 0 .... · .. · 

al o · 

I .......... . 

",=55' .. /.,/ 
·0 

0 · .. · .. · .. ·/ 

0 ··· .. · 

... 0 ···· 

",=37' ......... . 
o 

.. 0 ·/ .. · .. · 

o 

o 

0 '" 0.3~--~----~--~----~--~----~--~--~ 

0. 00 0.05 0.10 0. 15 0.20 0.25 
'\) 

0.30 0.35 0. 40 

Fig. 2. Comparison of maximum principal stress as a 
function of the constant-density (depth-averaged)
stiffness model for the traction-free boundary condition 
D* = O. ( .. . ) Model predictions; (0) finite-element 
calculations. 
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We have evaluated Equation (5) numerically using finite
element solutions to get an approximate empirical expression 
for ax(O). If the form of Equation (8) is retained (McClung 
and Larsen, in press), L / H is given by: 

L 

H 
-- sin 1/1 + -- --I [ ] t I [v2 ) 
4 4 I-v 

(9) 

which completes the definition ofax(O) in Equation (8). 
An approximate expression for 1"(0) (depth-averaged 

shear stress on the structure) has also been derived from 
finite-element calculations: 

1"(0) 

pgH 
(10) 

A note of caution applies to approximations (9) and (10); 
they are not as accurate as Equation (7) for the 
traction-free boundary condition and therefore finite
element solutions are preferable. Errors of up to 15% may 
be expected using approximation (10) but the errors are less 
than 10% for total resultant force on the structure. 

For the no-slip boundary condition, the vertical stress is 
derived from plane-strain solutions with e zz = 0: 

v _ 
-- ax(O) 
I - v 

(I I) 

to complete the definition of stresses in expressions (8)--(11) . 
The maximum principal stress (0'1) is not equal to ax(O) for 
the no-slip boundary condition but it can be calculated by 
standard methods using expressions (8), (9), (10), and (I I). 
Figure 3 gives an example. 

RESULTANT FORCE AND DIRECTION 

When a structure is erected perpendicular to a slope, the 
stress components of interest are eT x(O) and 1"(0). The 
magnitude of the resultant force (per unit area) is 

(12) 

and its direction may be defined (Haefeli, 1948) 

I 
Ol la. 

S 
,6 

tan E (13) 
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Fig. 3. Model comparison for the same conditions as in 
Figure 2 for the no-slip boundary condition .p = 45

0

• 
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The ratio in Equation (13) has been estimated in the field 
(Kiimmerli, 1958). Salm (1977) has given a range for tan E 

from field measurements. With .p = 37 0, D* = 0, tan E 

= 0.7 for low-density snow and tan E = 0.3 for high-density 
snow. From Bader's data (Salm, 1977), with v = 0.0 
(Iow-density snow) and v = 0.25 (high-density snow), 
calculations using expressions (5), (9), and (10) give tan E = 

0.61 and tan E = 0.29, respectively. For these same 
assumptions, finite-element calculations give tan E = 0.77 
(v = 0.0) and tan E = 0.36 (v = 0.25). The agreement is 
surprisingly good for the linear, depth-averaged density 
case. 

COMPARISON WITH FIELD DATA 

Our data were taken from a low-altitude high-latitude 
site in western Norway. The region is classed as a maritime 
climate regime and strong wind-packing effects are present. 
The experimental procedures have been given by Larsen and 
others (1985). The press ure data consist of maximum (am) 
and average pressure (aR), estimated at the centre of a 15 m 
long avalanche-defence structure erected perpendicular to the 
slope. The incline at the site is almost constant (25°) for a 
long distance up-slope. Although the ground surface 
up-slope from the structure is fairly smooth rock up-slope 
from the structure, measurements have shown that glide is 
negligible (D* = 0). We also measured snow-pack properties 
near the site, including p and H. 

Since most of our data were take n when the snow-pack 
temperature was below O°C (mid-winter), we believe that 
the no-slip boundary condition is physically more realistic 
than the traction-free condition. Similar data from Switzer
land (Salm, 1977) show clearly that the resultant force is 
not perpendicular to the structure, indicating the presence 
of shear forces and very little slip on the face of the 
structure. 

A regression analysis of the field data gives 

a R 0.65pgH 
(14) 

r2 0.70, Se = 1.61 kPa, N = 53 

where r is the correlation coefficient, Se is the standard 
error, and N is the number of data points. 

To compare with the model, consider first the average 
pressure a R on the face of the structure. For either 
boundary condition , the ratio CJR/ pgH should depend only 
on v and .p. From data reviewed by Salm (1977), we regard 
the extreme range of v as 0-0.4 for depth-averaged 
densities varying between 200 and 600 kg / m3. Finite-
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Fig. 4. Comparison of CJR versus pgH (both in kPa) for 
measurements (0) and finite-element solutions for the 
ranges of expected structure boundary conditions and v. 
(--) , no slip; ( ... ), traction-free. Constant-density 
(depth-averaged) and stiffness are assumed and D* = O. 
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element calculations show that the meall value of our data 
(aR/ pgH = 0.64) implies v '" 0.4 and a range of 0-0.45 for 
the no-slip boundary condition. From Equations (14), the 
ratio aR/ pgH is near 0.65 by regression analysis. For the 
traction-free boundary condition, the ratio aR/ pgH = 0.75 
for v = 0.4. 

Figure 4 shows a comparison of the data with 
calculations (units are in kPa) for both boundary conditions 
for the range 0 ~ V ~ 0.4. These comparisons show that 
v = 0.0 does provide a good lower bound on our data, but 
many of the data points lie outside the extreme limits 
predicted for either boundary condition. It appears that the 
mean of our data is close to the extreme limits predicted 
by the linear constant-stiffness model. Bader and others 
(1951) presented data indicating that v increases with 
density from 0.1 to 0.25 for the density range in our 
experiments. Since we have used a wider range of v in our 
comparison, the underestimates of the model may be even 
greater than indicated in Figure 4. If Bader's data are 
accepted as correct, the linear constant-stiffness model 
underestimates the mean pressures by at least 20%. 

Numerical calculations were performed to explore depth
dependent density variations. Assuming a linear increase in 
density with depth, these results showed almost no effect on 
the average pressure and the maximum pressure changes 
only slightly for either the no- slip or traction-free boundary 
condition. 

Sensitivity with respect to variations in snow-pack 
stiffness may be analyzed us ing viscosity data summarized 
by Haefeli (1967). He showed that the shear viscosity of 
snow varies by approximately two orders of magnitude 
(10 10-1012 kg/m s) for densities in the range 300-500 kg/ m3 . 

We also performed finite-element calculations with both 
density and stiffness increasing linea rly with depth for these 
ranges . The results show (McClung and Larsen, in press) 
that the predicted pressures are lower than for the 
constant-stiffness model for either the traction-free or 
no-si ip boundary cond i tion. For .p = 25 0, the ratio 
CJR/ pgH = 0.53 for the no-slip boundary condition with 
linear variation in stiffness and density, and v = 0.40. This 
ratio may be compared with CJR/ pg H = 0.68 for constant 
stiffness and the values 0.64 (from the mean of our data) 
and 0.65 (from the regression analysis) . 

Our data also contain important information about 
maximum pressure on th e stru ct ure. A regression analysis 
gives 

0.91, Se 1.36 kPa, N 55. (15) 

For the constant density-viscos it y model, the calculated ratio 
(am/ CJR ) declines from 1.39 to 1.18 as v increases from 0 to 
0.4 (no-slip boundary condition) . From finite-element 
calculations, CJm / CJR decreases from 1.54 to 1.46 for the 
same range of v, if both den s it y and stiffness increase 
linearly with depth, th e reb y providing an excellent fit to 
our data. For the less- reali st ic traction-free boundary 
condition, the ratio decreases from 1.43 to 1.11 as v 
increases from 0 to 0.4. 

SUMMARY AND DISCUSSION 

Our re-formulation of th e co nstant viscosity-constant 
density one-dimensional treatm ent of the plane-strain snow
pressure problem is of bo th hi sto rica l and practical interest. 
The solution represents the analytical model first sought by 
Haefeli (Bader and others, 1939) in his doctoral thesis. Also, 
our analytical model is o f practical interest, since it allows 
average pressures to be roug hly estimated using a 
hand-calculator. It appears that this simple model under
estimates our field data by about 20%. 

The analytical model we have presented departs from 
previous formulations, because initial stresses are not 
accounted for. Instead, the long-term loads on the structure 
are defined in terms of viscous stresses and strain-rates. 
These assumptions have a long history in snow mechanics 
(e.g. Melior, 1975). We feel that the new model presents a 
more accurate representation of the linear problem than our 
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previous attempts which included initial stresses . 
Comparison of field data w ith the two models (constant 

and linearly varyi ng stiffn ess a nd d e nsity) shows that 
neither can explain the high values of average pressure or 
the width of the data-scatte r band . Since density variations 
alone do not provide a con siste nt ma tch to field data, we 
believe that va ri a ti o ns in stiffness (non-linear viscous 
relations) a re the key. Our at tempt to vary the stiffness 
(linear increase wi th depth) is the simp lest approach 
consistent with snow-defo rmati on properties in the field 
(McClung, 1975). It is e ncouragi ng that linear variations in 
stiffness appear to ma tc h th e ratio am / aR for our data. 
Calculations assuming lin ear va riation in stiffness with depth 
(McClung and Larse n , in press ) ha ve s hown that most of 
the data are far in excess of the limits implied by the 
expected upper ran ge of v (0.4). It is tempting to attribute 
the data which fall ou tside the limits in Figure 4 to data 
scatter. However, the assumption of constant st iffness 
(Fig. 4) will not allow an explanation of the h igh values of 
am/ aR . We believe that a comprehens ive explanation of the 
field data will require a non-lin ea r v iscous relat io n. Until a 
non-linear deform at io n la w is formulated and applied , a 
proper treatment of stiffn ess variations will not be possible . 
Based on finite- ele me nt so lutions and our data , we 
recommend a safety fac tor of at least 25% over the 
analytical mode l (co nstant stiffness ) when expected values 
for v (e.g. Bad e r and others, 1951) are applied. For 
maximum pressure , o ur data in d ica te that values should be 
considered to be 50% hi ghe r than predicted average 
pressures. 
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