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This editorial discusses the application of a novel brain imaging analysis technique in the assessment of neuroanatom-
ical dysconnectivity in psychotic illnesses. There has long been a clinical interest in psychosis as a disconnection syn-
drome. In recent years graph theory metrics have been applied to functional and structural imaging datasets to
derive measures of brain connectivity, which represent the efficiency of brain networks. These metrics can be derived
from structural neuroimaging datasets acquired using diffusion imaging whereby cortical structures are parcellated into
nodes and white matter tracts represent edges connecting these nodes. Furthermore neuroanatomical measures of con-
nectivity may be decoupled from measures of physiological connectivity as assessed using functional imaging, under-
pinning the need for multi-modal imaging approaches to probe brain networks. Studies to date have reported a number
of structural brain connectivity abnormalities associated with schizophrenia that carry potential as illness biomarkers.
Structural connectivity abnormalities have also been reported in well patients with bipolar disorder and in unaffected
relatives of patients with schizophrenia. Such connectivity metrics may represent clinically relevant biomarkers in stud-
ies employing a longitudinal design of illness course in psychosis.
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Brain dysconnectivity refers broadly to the abnormal
integration of brain processes (Stephan et al. 2009).
Although disrupted brain connectivity has long been

considered a core deficit of psychosis on clinical
grounds, recent support for the dysconnectivity
hypothesis, enabled by technical advances in the
acquisition and analysis of non-invasive in vivo neuroi-
maging data, emphasises impaired integration as a
core feature in psychosis pathophysiology (Van den
Heuvel & Fornito, 2014). Functional connectivity, refer-
ring to synchronised physiological activity between
two or more spatially separated brain regions, has
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been reported to be abnormal in individuals with
schizophrenia – for example reduced in fronto-
temporal regions during working memory tasks
(Stephan et al. 2009). Findings from such neuroimaging
investigations demonstrate that schizophrenia is
unlikely to arise from disruption to one brain region
alone, and provide biological models as a basis for
the pathophysiology of positive psychotic symptoms,
as well as negative and cognitive symptoms (Stephan
et al. 2009; Van den Heuvel & Fornito, 2014). Given
that functional connectivity between anatomically
separated regions indicates the existence of structural
connections, and there is also a considerable interest
in probing anatomical connectivity using structural
neuroimaging techniques.

Structural magnetic resonance imaging (sMRI) inves-
tigations of schizophrenia have identified regional
abnormalities, predominantly deficits in frontotemporal
and subcortical grey matter structures. Diffusion-
weighted imaging is a neuroimaging technique that
enables investigation of microstructural alterations in
the organisation and orientation of white matter tracts,
wherein diffusion of water molecules is constrained by
the anatomy of myelinated axons. Diffusion imaging
findings of schizophrenia and psychotic bipolar dis-
order report that white matter microstructural altera-
tions are present within callosal and fronto-temporal
regions in patients relative to healthy controls
(Ellison-Wright & Bullmore, 2009).

Although structural and diffusion imaging have
been used to examine focal abnormalities within grey
and white matter regions, a novel approach using
graph theory can utilise these modalities to assess
neuroanatomical connectivity. Graph theory employs
parcellations of structural MRI measures of grey mat-
ter to model cortical structures (‘nodes’), along with
diffusion measures of white matter to reconstruct the
set of white matter connections (‘edges’). One advan-
tage of this approach is that structural and diffusion
MR images can be captured in a relatively short time-
frame, allowing then for a complete reconstruction of
the brain as a network at the macro-scale. Once the
brain is represented as a graph with all the series of
nodes and edges mapped, topological properties can
be investigated to determine patterns of brain communi-
cation and efficiency (Sporns, 2011; Van den Heuvel &
Fornito, 2014). Such networks are commonly observed
across many real world patterns. For example, one can
like the anatomical wiring of the brains’ connections to
other networks such as airline patterns and the internet
(Sporns, 2011). Characteristically such networks have
‘hub’ regions that are more centrally located with
many connections passing through them, e.g. an inter-
national connecting airport. Mapping the connectivity
structure of these systems provides information on

how intact the network would remain if a ‘hub’ was
damaged. Deriving graph theory metrics from neuroi-
maging data in this way can be applied to identify neu-
roanatomically based abnormalities of connectivity that
may be present in psychotic illness.

Examples of metrics employed in studies to date
include characteristic path length, global efficiency
and clustering coefficient (Sporns, 2011). These are
graphically displayed in Fig. 1. Specifically, character-
istic path length measures the average shortest path of
information flow between any pair of brain regions, i.e.
the minimum number of edges that must be traversed
to go from one node to another, between all pairs of
brain regions (Fig. 1a). Clustering coefficient measures
the frequency with which a node’s neighbours are also
neighbours of each other – complex networks tending
to have high clustering (Fig. 1b). Global efficiency is
presented mathematically as the inverse of path length,
providing a reciprocal relationship whereby a shorter
path length reflects increased efficiency in the system
(Fig. 1a).

A number of studies to date have reported abnormal
connectivity metrics in cohorts of patients with psych-
otic illnesses compared with controls. For example,
patients with schizophrenia are reported to display
longer path length than controls in frontal and tem-
poral regions (Van den Heuvel et al. 2010) and impair-
ment of connectivity in a network connecting medial
frontal to parietal and occipital regions (Zalesky et al.
2011). Patients with euthymic bipolar disorder display
longer path length, lower global efficiency and lower
clustering coefficient than controls, with particular def-
icits in interhemispheric integration (Leow et al. 2013).
A summary of studies is provided in Table 1.

Further exploration of brain organisational proper-
ties has led to the development of social theory mea-
sures in network analysis. The term ‘rich club’
originates from the analogy of being ‘rich’ in connec-
tions, and forming a ‘club’ because the set of regions
are densely interlinked among themselves (Fig. 1c).
The rich club coefficient metric derived from social the-
ory represents the hierarchy, power distribution and
conduction of information flow throughout the brain
(Van den Heuvel et al. 2013). An association between
global efficiency and rich club organisation suggests
rich club organisation is affiliated with global brain
communication (Van den Heuvel et al. 2013). The
rich club metric identifies crucial circuits for establish-
ing and maintaining efficient global brain communica-
tion (Van den Heuvel & Sporns, 2013). Collin et al.
(2014) employed this metric and identified substantial-
ly reduced connectivity between rich club hubs in
patients with schizophrenia compared with healthy
volunteers and additionally intermediate levels of
rich club connectivity among unaffected relatives of
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the patient cohort, suggesting a genetic contribution to
impaired rich club connectivity in schizophrenia.
These recent investigations implicate rich club dyscon-
nectivity as a core feature of psychosis, in which the
rich club coefficient may prove to represent an endo-
phenotype of psychosis (Van den Heuvel et al. 2013;
Collin et al. 2014). Crossley et al. (2014) utilised norma-
tive DTI data to identify a series of high degree hub
nodes that were efficiently interconnected to form a
rich club, and linked these maps to a meta-analysis
of voxel based morphometry data across a range of
brain disorders including schizophrenia, demonstrat-
ing that brain disorders tended to involve deficits in
hub node regions and that involved hubs demon-
strated disorder specificity, incorporating frontal and
temporal regions in schizophrenia.

While investigations of structural dysconnectivity
have been increasingly implemented, few studies
have applied graph analysis to both diffusion MRI
and functional MRI modalities to study the patho-
physiology of schizophrenia. However, one has raised
the potential for reduced structural connectivity to
contribute to increased functional connectivity
(Skudlarski et al. 2010). Fornito and Bullmore (2015)
discuss the various mechanistic contributions to such
de-coupling in connectivity findings in schizophrenia,
in which functional hyperconnectivity may represent
a neurodevelopmental or compensatory feature. Such
decoupling of structural and functional connectivity

highlights the need to examine network abnormalities
at both anatomical and physiological levels and to
incorporate multimodal imaging to develop a deeper
understanding of dysconnectivity in psychotic illness.

In summary, cross-sectional studies indicate that
graph theory metrics can be applied to MRI data to
detect neuroanatomical dysconnectivity in psychotic
illnesses, extending neuroanatomical research beyond
identifying focal deficits in grey matter regions or
white matter tracts, and providing further material evi-
dence from in vivo neuroimaging to support the long
held clinical construction of psychosis as a dysconnec-
tion syndrome. Abnormal connectivity may underpin
the development of positive psychotic symptoms,
with initial studies identifying short and long range
frontal connectivity deficits in schizophrenia, and
also widespread dysconnectivity in bipolar disorder
that includes intrahemispheric integration. These
novel analytical techniques are of considerable interest
for application in epidemiological study designs into
the aetiopathogenesis of psychotic illness. They can
be potentially analysed on large, representative
cohorts of patients with psychotic illness since they
can be acquired from clinical MR scanners in a reason-
able timeframe and processed using automated meth-
odology. Preliminary studies suggest potential utility
as biomarkers present at trait level in well patients
(Leow et al. 2013) and in genetically susceptible rela-
tives (Collin et al. 2014) of patients with psychotic

Fig. 1. Graphical representation of some key graph theory metrics. This brain map expresses the series of connections as a
network, with white matter connections (edges) linking parcellated cortical regions (nodes). (a) Characteristic path length: a
measure of the graphs average shortest distance between node A and node B; global efficiency: measured as the inverse of path
length; (b) clustering coefficient: the number of connections that exist between the nearest neighbours of a node as a proportion of
the maximum number of possible connections; (c) rich club coefficient: highlights nodes that are more densely interconnected
among themselves than with the rest of the nodes in the network.
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illness. Investigations are underway to assess their util-
ity as clinically relevant biomarkers in studies employ-
ing a longitudinal design tracking these network based
metrics through development of and recovery from
psychosis.
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