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Abstract

Classical principal component analysis on manifolds, for example on Kendall’s shape
spaces, is carried out in the tangent space of a Euclidean mean equipped with a Euclidean
metric. We propose a method of principal component analysis for Riemannian manifolds
based on geodesics of the intrinsic metric, and provide a numerical implementation in the
case of spheres. This method allows us, for example, to compare principal component
geodesics of different data samples. In order to determine principal component geodesics,
we show that in general, owing to curvature, the principal component geodesics do not
pass through the intrinsic mean. As a consequence, means other than the intrinsic mean are
considered, allowing for several choices of definition of geodesic variance. In conclusion
we apply our method to the space of planar triangular shapes and compare our findings
with those of standard Euclidean principal component analysis.
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1. Introduction

Means and principal component analysis (PCA) play an important role in statistics. In shape
analysis means and principal components (PCs) are sought on a shape space which can be viewed
as a preshape sphere modulo a compact group action, i.e. a Riemannian manifold (apart from
possible singularities) with nonzero curvature; see e.g. [10, pp. 149ff.], [17], [20, pp. 69ff.],
[21], and [22]. Presently, in order to perform PCA, a Fréchet mean on the preshape sphere is
computed with respect to the Euclidean metric when embedding the sphere in Euclidean space.
In the tangent space of that mean, standard PCA is employed, again based on the Euclidean
metric; see e.g. [3] and [7]. We will give a brief review of this in Section 6.2.

Based on older works treating intrinsic means on arbitrary Riemannian manifolds in the
sense of centres of mass (see, e.g. [9] and [13, pp. 108ff.]), more recently an algorithm and
convergence bounds for computing such means have been established on general Riemannian
manifolds with applications to shape spaces [15]; also, see [6] for intrinsic means of Lie groups.

In this paper we propose a method of PCA based on the intrinsic metric. This will be
done in the following section. One might think (following, e.g. [6]) that an intrinsic mean
would qualify as an offset of a geodesic best approximating a given data set, in the sense of
least squared distances, as is the case in a Euclidean setting. Intuitively, however, owing to
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curvature, principal component geodesics might meet at a point different from the intrinsic
(Fréchet) mean. Actually, proving by example that they do so turns out to be nontrivial. The
set-up and the proof of this in the following sections are one main result of this paper. As the
intrinsic mean does not come to lie on the minimizing geodesic, various possible definitions of
total geodesic variance come to mind.

In the fifth section, based on the general method presented in Section 2.3 we develop an
algorithm finding the intrinsic mean and the principal component geodesics on spheres of
any dimension. As the shape space of planar triangles is a two-dimensional sphere in three-
dimensional Euclidean space, we can illustrate our results with planar triangular shape data.
Our method allows us to compare principal component geodesics of different data samples
graphically.

In fact, by using arbitrary geodesics instead of projections of straight lines in the tangent
space of a mean (the projections are usually also geodesics) we obtain a better fit and find an
increase in the amount of variance explained by the first principal component geodesic. These
findings encourage our effort to apply the method to more general shape spaces in future work.

We note that in the case of a hyperbolic model for simplex shape spaces, rather than Kendall’s
shape space model, which we treat here, much work has been done in finding algorithms
converging to the intrinsic Fréchet mean; see [14], [16], and [18]. In [12] planar circular shapes
were modelled in an infinite-dimensional Riemannian shape space and shape variation along
geodesics was studied.

The idea to use curves as principal components is not new. In [6] principal component
geodesics in special Lie groups were used and in [4] principal curves of low frequency were
sought for planar distributions.

2. PCA based on geodesics

Let M be an m-dimensional Riemannian manifold with induced metric d(·, ·). When
speaking of a geodesic we will mean a geodesic of maximal length. Therefore, we define

G(M) := {γ : γ is a geodesic on M of maximal length}.
For p ∈ M and γ ∈ G(M) we define

d(p, γ ) := inf
q∈γ d(p, q).

By X we denote anM-valued random variable, e.g. one given by N data points, p1, . . . , pN ∈
M , with equal probabilities.

2.1. Means and principal component geodesics

A point p̄ ∈ M is called an intrinsic mean (or an intrinsic Fréchet mean) ofX if it minimizes
the function

p �→ E(d(X, p)2) (2.1)

on M .
A geodesic γ1 ∈ G(M) is called a first principal component geodesic to X if it minimizes

γ �→ E(d(X, γ )2) (2.2)

on G(M).
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In Euclidean space the intrinsic mean and the first principal component geodesic are uniquely
determined (except for obviously generic cases), and the first principal component geodesic
passes through the intrinsic mean. We shall see that in general the latter is no longer the case for
spaces with non-Euclidean geometry. We assume in this paper that p̄, γ1, and all other means
and principal component geodesics defined below exist and are uniquely determined. In most
experimental situations this is the case.

We call a geodesic, γ2 ∈ G(M), that minimizes (2.2) over all geodesics γ ∈ G(M) that have
at least one point in common with γ1 and are orthogonal to γ1 at all common points a second
principal component geodesic toX. Every point p̂ that minimizes (2.1) over all common points
of γ1 and γ2 will be called a principal component geodesic mean (e.g. on spheres any γ1 and
γ2 have at least two common points).

Given the first and second principal component geodesicsγ1 andγ2 with principal component
geodesic mean p̂, we say that a geodesic γ3 is a third principal component geodesic if it
minimizes (2.2) over all geodesics that meet γ1 and γ2 orthogonally at p̂. Principal component
geodesics of higher order are defined analogously.

Given the principal component geodesics to X, γ1, γ2, . . . , γm, we denote by X(j) the
orthogonal projection of X onto γj , 1 ≤ j ≤ m. In most practical situations these projections
will also be uniquely determined.

A minimizer p̄(j) ∈ γj , 1 ≤ j ≤ m, of the function p �→ E(d(X(j), p)2) on the geodesic
γj will be called an intrinsic mean of X on the geodesic γj .

2.2. Geodesic variance

Suppose that we have specified the principal component geodesics γ1, . . . , γm, the intrinsic
mean, p̄, the principal component geodesic mean, p̂, and the intrinsic mean p̄(1) (on γ1) of an
M-valued random variable X.

In Euclidean space we have p̂ = p̄ = p̄(1) and, for the total variance,

VEucl.(X) := E(d(X, p̄)2) =
m∑
s=1

V
(s)
Eucl.(X),

with the variances explained by the sth principal component (1 ≤ s ≤ m) given by

V
(s)
Eucl.(X) = E(d(X(s), p̄)2) = E

(
1

m− 1

m∑
j=1

d(X, γj )
2 − d(X, γs)

2
)
. (2.3)

The generalization of (2.3) is inspired by two facts. First, we shall see that in general p̂ �= p̄

on arbitrary manifolds. Second, it is clear that the Pythagoras theorem does not extend to
arbitrary manifolds, i.e. for a geodesic parallelogram with ordered vertices q1, q2, q3, and q4
we in general have d(q1, q2) �= d(q3, q4) and d(q1, q4) �= d(q2, q3).

We call the generalization of the second term in (2.3) the geodesic variance explained by
the sth principal component geodesic (1 ≤ s ≤ m) as obtained by projection,

V (s)gp (X) := E(d(X(s), p̂)2), (2.4)

and set

Vgp(X) =
m∑
s=1

V (s)gp (X).
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These quantities, however, can be unduly distorted as a result of curvature (see the third column
of Table 1, below).

The generalization of the third term in (2.3),

V (s)gr (X) := E

(
1

m− 1

m∑
j=1

d(X, γj )
2 − d(X, γs)

2
)
, (2.5)

will be called the geodesic variance explained by the sth principal component geodesic (with
1 ≤ s ≤ m) as obtained by residuals. Furthermore, we set

Vgr(X) =
m∑
s=1

V (s)gr (X).

For dimension m = 2, or for m > 2 when comparing only total variance with variation
explained by the first principal component geodesic, mixing both definitions we let

Vgm(X) := V (1)gp (X)+ E(d(X, γ1)
2) = E(d(X(1), p̂)2)+ E(d(X,X(1))2).

Replacing p̂ by p̄(1), we propose the following definition of mixed geodesic variance:

Vgm(X) := E(d(X(1), p̄(1))2)+ E(d(X, γ1)
2)

= E(d(X(1), p̄(1))2)+ E(d(X,X(1))2). (2.6)

The definition (2.4) is very similar to the definition of geodesic variance for Riemannian Lie
groups in [6]. There, however, p̄ is used instead of p̂. Also, in defining higher-order principal
component geodesics the authors did not require orthogonality at the point of intersection but
made use of the multiplicative structure of the group in a natural way. The results were applied
to three-dimensional medical imaging; see also [5].

2.3. A method of principle component analysis based on geodesics

In this section we propose a method of principle component analysis based on geodesics for
a special class of Riemannian manifolds. The method will produce a fixed-point equation

y = f (y),

which naturally defines a numerical algorithm yn+1 = f (yn). We apply this method in Section 5
without proving convergence of the numerical iterations in general. In fact, it turns out that the
convergence is rather good when applying the algorithms to the data in Section 6.

As is well known, every Riemannian manifold M can be embedded isometrically in a
Euclidean space of sufficiently high dimension. This is a famous theorem of Nash [19].
Sometimes a suitable non-isometrical embedding M ↪→ R

n is preferred. In any case, for
a sufficiently large n > m we assume here that an m-dimensional Riemannian manifold, M ,
and its tangent spaces are implicitly defined by

M = {x ∈ R
n : φ(x) = 0},

TxM = {v ∈ R
n : dφ(x) v = 0}, x ∈ M, (2.7)

for a suitable smooth function φ : R
n → R

n−m with dφ(x) : R
n → R

n−m having full rank for
all x ∈ M . The manifold M is closed and, thus, complete, implying that maximal geodesics
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t �→ γ (t) are defined for all t ∈ R. We denote by 〈·, ·〉 the Riemannian metric on TxM . For an
isometrical embedding this is the standard Euclidean inner product.

Before continuing we remark that in general the representation (2.7) will be possible in
local charts only. Our method, explained below, might become much more complicated if
we incorporate transitions between several charts, and might be even more complicated for
topological spaces for which only subspaces can be treated as Riemannian manifolds, as is the
case for some shape spaces (see e.g. [10, p. 62, pp. 110ff.]). In particular, if the manifold is
noncomplete, shortest geodesics might not exist. Obviously, the applicability of our method
has to be checked in the respective examples and cannot be assumed in full generality.

We return to the representation (2.7). Every geodesic on M is uniquely determined by an
offset, x ∈ M , and an initial direction, v ∈ TxM , of unit length, i.e. 〈v, v〉 = 1. Geodesics are
denoted by t �→ γx,v(t), with offset γx,v(0) = x and initial direction γ̇x,v(0) = v. Given a data
sample p1, . . . , pN ∈ M and a geodesic γx,v define (cf. (2.2))

F(x, v) :=
N∑
i=1

d(pi, γx,v)
2.

2.3.1. First principal component geodesic. Letting

�1 : R
n × R

n → R
2n−2m+1, (x, v) �→

⎛
⎝ φ(x)

dφ(x) v
〈v, v〉 − 1

⎞
⎠ ,

finding a first principal component geodesic is equivalent to solving the extremal problem

find (x∗, v∗) ∈ R
n × R

n such that

F(x∗, v∗) = inf{F(x, v) : x, v ∈ R
n with �1(x, v) = 0}. (2.8)

A standard method of solving this nonlinear extremal problem under constraining conditions
involves employing Lagrange multipliers. Every solution, (x, v) ∈ R

n × R
n, of (2.8) also

solves
dF + λ	d�1 = 0 (2.9)

for a suitable vector λ ∈ R
2n−2m+1. Of course, ‘	’ means transposition of matrices and

vectors. From (2.9) two fixed-point equations can be derived by separately considering the
partial derivatives with respect to the coordinates of x and v. These equations naturally yield
an algorithm to determine the solution (x∗, v∗), as explained above.

Making sure that a thus-obtained sequence (xn, vn) leads to decreasing values of F will
entail that we approach not a local maximum but a local minimum. Convergence to the same
local minimum from several starting values will give further evidence that we have found a
global minimum.

We will exemplify the method in Section 5.

2.3.2. Second principal component geodesic and principal component mean. Given a first
principal component geodesic t �→ γx,v(t), a second principal component geodesic must pass
through a point y = γx,v(τ ) with an initial direction, w ∈ TyM , orthogonal to γ̇x,v(τ ). Hence,
with

�2 : R × R
n → R

n−m+2, (τ, w) �→
⎛
⎝dφ(γx,v(τ ))w

〈γ̇x,v(τ ), w〉
〈w,w〉 − 1

⎞
⎠ ,
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and F2(τ, w) := F(γx,v(τ ), w), finding a second principal component geodesic is equivalent
to solving the extremal problem

find (τ̂ , ŵ) ∈ R × R
n such that

F2(τ̂ , ŵ) = inf{F2(τ, w) : τ ∈ R and w ∈ R
n with �2(τ, w) = 0}.

This will again be solved by the method of Lagrange multipliers, by solving

dF2 + λ	d�2 = 0 (2.10)

for τ ∈ R, w ∈ R
n, and λ ∈ R

n−m+2. For convenience, having found τ̂ and ŵ, let v2 := ŵ

and write γx,v as γx̂,v1 , where x̂ := γx,v(τ̂ ) and

v1 := γ̇x,v(τ̂ )

|γ̇x,v(τ̂ )| .

Note that x̂ is a principal component geodesic mean.

2.3.3. Higher-order principal component geodesics. All principal component geodesics of
order j , 3 ≤ j ≤ m, pass through the principal component geodesic mean x̂ ∈ M , i.e. each is
determined only by an initial direction vj ∈ R

n at offset x̂. In particular, vj is perpendicular to
all lower-order principal component geodesics at x̂.

Suppose that we have already found j − 1 ≥ 2 principal component geodesics, namely
γx̂,v1 , . . . , γx̂,vj−1 . Then, defining

�j : R
n → R

n−m+j , v �→

⎛
⎜⎜⎜⎜⎜⎝

dφ(x̂) v
〈v, v1〉
...

〈v, vj−1〉
〈v, v〉 − 1

⎞
⎟⎟⎟⎟⎟⎠ ,

and F3(v) := F(x̂, v), finding a j th principal component geodesic is equivalent to solving the
extremal problem

find vj ∈ R
n such that F3(vj ) = inf{F3(v) : v ∈ R

n with �j(v) = 0}.
As before, this leads to the task of solving the equation

dF3 + λ	d�j = 0 (2.11)

for v ∈ R
n and λ ∈ R

n−m+j .

2.3.4. Intrinsic mean. An intrinsic mean x̄ can be found in a similar fashion. For this purpose
consider

G(x) :=
N∑
i=1

d(x, pi)
2.

Finding an intrinsic mean is equivalent to solving the extremal problem

find x̄ ∈ R
n such that G(x̄) = inf{G(x) : x ∈ R

n with φ(x) = 0}.
The method of Lagrange multipliers yields

dG+ λ	dφ = 0 (2.12)

for x ∈ R
n and λ ∈ R

n−m.
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2.3.5. Intrinsic mean on a geodesic. Given a geodesic t �→ γ (t) := γx,v(t), we want to find
the point x̄γ = γ (t̄) best approximating the orthogonal projections onto γx,v , qi , of the data
points pi , i = 1, . . . , N . This is an unconstrained extremal problem for

G1(t) :=
N∑
i=1

d(qi, γx,v(t))
2 (2.13)

in one variable, t ∈ R.
In Section 5 we will determine the functions F, φ,ψ,G, andG1 explicitly for spheres, and

obtain the corresponding fixed-point equations and the respective algorithms. In Section 6 we
will apply the method to shape data on a two-sphere.

3. Distance to geodesics on spheres

Denote by 〈·, ·〉 the inner product of the standard Euclidean space R
m+1 and let

S = {p ∈ R
m+1 : 〈p, p〉 = 1}

be the m-dimensional unit sphere. The immersion S ↪→ R
m+1 induces a Riemannian metric,

i.e. the spherical metric on S. For any two points a, b ∈ S, the spherical distance is given by

d(a, b) = 2 arcsin

(√〈a − b, a − b〉
2

)
= arccos〈a, b〉. (3.1)

Geodesics on spheres are precisely the great circles given by

γ : t �→ a cos t + b sin t

for any a, b ∈ S, 〈a, b〉 = 0, and t ∈ R.

Proposition 3.1. Suppose that t �→ γ (t) = a cos t + b sin t with a, b ∈ S, 〈a, b〉 = 0, is a
geodesic on S. The Riemannian distance between any point z ∈ S and γ is then given by

d(z, γ ) = arccos
√

〈a, z〉2 + 〈b, z〉2.

Proof. The assertion is obvious for a point z on γ . For any other point, let e1 := a and
e2 := b and find a third unit vector e3, orthogonal to e1 and e2, such that z = z1e1 +z2e2 +z3e3
with z3 > 0. If z1 = 0 = z2, the assertion is again obvious. Otherwise, choose an α ∈ (0, π/2)
such that cosα = (z2

1 + z2
2)

1/2 and sin α = z3, introduce new orthonormal coordinates

e′1 := z1e1 + z2e2

cosα
, e′2 := z2e1 − z1e2

cosα
, e′3 := e3

and reparametrize the geodesic t �→ γ (t) as

s �→ γ (s) = e′1 cos(s)+ e′2 sin(s) = (cos s, sin s, 0).

Since z = (cosα, 0, sin α) in the new coordinates, using (3.1) we have

d(z, γ (s)) = arccos(cos s cosα),

which attains its minimum α for cos s = 1. The assertion then follows from z1 = 〈a, z〉, z2 =
〈b, z〉, and (z2

1 + z2
2)

1/2 = cosα.

Corollary 3.1. For 0 ≤ d(z, γ ) < π/2 the geodesic projection of z onto γ is the point

e′1 = 〈a, z〉a + 〈b, z〉b√〈a, z〉2 + 〈b, z〉2
.
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4. The principal component geodesics omit the intrinsic mean: an example on S2(1)

In this section we shall show that principal component geodesics do not always pass through
the intrinsic Fréchet mean. This will be a rather tedious task involving spherical trigonometry.
We first fix α, 0 < α < π/2, arbitrarily and consider a one-parameter (δ, 0 ≤ δ ≤ π/2) family
of triples of data points given by vertices of isosceles triangles on the two-dimensional unit
sphere. For each δ, define the corresponding triple (p1, p2, p3) by the following three points:

p1 := (cosα, sin α, 0),

p2 := (cosα,− sin α, 0),

p3 ≡ p3(δ) := (cos δ, 0, sin δ).

Any first principal component geodesic to these three points, i.e. to a random variableX taking
each point with probability 1

3 , will pass through a point of the form

p = (cos ε, 0, sin ε). (4.1)

Once we know that the geodesic and ε are uniquely determined (this will be established for
small δ > 0 in Theorem 4.1), we can write

ε = ν(δ) (4.2)

for a function ν. In fact, we show in Lemma 4.2 that, by (4.1), ν uniquely determines the
principal component geodesic mean for small δ > 0.

The intrinsic mean of the three points p1, p2, and p3 is uniquely determined (see, e.g. [9])
and, by symmetry, is of the form

p̄ = (cos ε, 0, sin ε)

for a unique ε. We analogously write

ε = µ(δ) (4.3)

for a function µ. Note that 0 ≤ µ(δ) ≤ δ. The main result of this section is the following
theorem, which implies that ε > ε for small δ > 0.

Theorem 4.1. Let p1, p2, p3 ∈ S2(1) (p3 ≡ p3(δ)) be the above-defined data points. Then,
for sufficiently small δ > 0 and α, 0 < α < π/2,

(i) there is a unique first principal component geodesic to these points;

(ii) this first principal component geodesic does not pass through the intrinsic Fréchet mean
of the data points;

(iii)
δ

3
< µ(δ) = δ

1 + 2α cot α
+O(δ3) < ν(δ) = δ

1 + 2 cos2 α
+O(δ3) < δ. (4.4)

Let us prepare for a first lemma. With p as in (4.1), any first principal component geodesic
with an initial direction

v = (sin η sin ε, cos η,− sin η cos ε)

at p, orthogonal to p, with η ∈ (−π, π ], will be of the form

γ1(t) = p cos t + v sin t. (4.5)
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Lemma 4.1. For small δ > 0 there is a unique first principal component geodesic to the
points p1, p2, and p3(δ). This principal component geodesic is parallel to the equator at p,
i.e. cos η = 1. As a consequence, for small δ > 0 there is a unique point p of the form (4.1) on
the first principal component geodesic.

Proof. Let a := cosα and

A := cos2 ε cos2 α + sin2 α = 1 − a2 sin2 ε,

B := sin ε sin α cosα,

C := cos2(δ − ε).

First, we claim that cos η = 1 for any first principal geodesic with δ > 0 sufficiently small.
To see this we use Proposition 3.1, write

∑3
i=1 d(pi, γ1)

2 as a function of η and ε, and verify
that ( 3∑

i=1

d(pi, γ1)
2
)
(η, ε) = arccos2

√
A+ 2B sin η cos η − (A− a2) sin2 η

+ arccos2
√
A− 2B sin η cos η − (A− a2) sin2 η

+ arccos2
√
C + (1 − C) sin2 η.

Series expansion yields
∂

∂η

( 3∑
i=1

d(pi, γ1)
2
)
(0, ε) = 0,

∂2

∂η2

( 3∑
i=1

d(pi, γ1)
2
)
(0, ε) > 2(1 − a2),

for ε sufficiently small, which implies, as claimed, that for small δ > 0 any first principal
geodesic will be parallel to the equator at p, i.e. v = (0, 1, 0).

Second, consider the derivative with respect to ε:

∂

∂ε

( 3∑
i=1

d(pi, γ1)
2
)
(0, ε) = −2(δ − ε)+ 4a cos ε

arccos
√
A√

A
.

Thus, γ1 is minimizing only if

δ = ε + 2 cos ε cosα
arccos

√
1 − cos2 α sin2 ε√

1 − cos2 α sin2 ε
. (4.6)

Note that (d/dε)(cos ε arccos
√
A/

√
A) is strictly decreasing in ε, 0 < ε < π/2 (recall that

0 < a ≤ 1). Hence, the right-hand side of (4.6) is a strictly concave function in ε, 0 < ε < π/2,
taking values from 0 toπ/2. Thus, given δ, 0 < δ ≤ π/2, there is a unique ε, 0 < ε ≡ ε(δ) < δ,
solving (4.6).

Finally, we see that this solution of (4.6) yields a local minimum, since

∂2

∂ε2

( 3∑
i=1

d(pi, γ1)
2
)
(0, ε) > 2

(
1 + 2a2 cos2 ε

A
−

(
π

2
− ε

)
tan ε

1 − a2

A

)
> 0

because (1 − a2)/A < 1 and (π/2 − ε) tan ε < 1 for 0 < ε < π/2.
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Next we establish that (4.2) uniquely determines the principal component mean for suffi-
ciently small δ > 0.

Lemma 4.2. For small δ > 0 there is a unique second principal component geodesic and, thus,
a unique principal component mean, given by (4.2). The second principal component geodesic
is of the form

γ2(s) = (1, 0, 0) cos s + (0, 0, 1) sin s.

Proof. For sufficiently small δ > 0, let γ1 be the first principal component geodesic
determined by (4.5). For a suitable t ∈ [−π, π), any second principal component geodesic
will be of the form

γ2(s) = (cos ε cos t, sin t, sin ε cos t) cos s + (− sin ε, 0, cos ε) sin s,

as it orthogonally intersects the first principal component geodesic at some point γ1(t). More-
over, from Proposition 3.1 and

D ≡ Dε(t) := (cos ε cosα cos t + sin t sin α)2 + sin2 ε cos2 α,

E ≡ Eε(t) := (cos ε cosα cos t − sin t sin α)2 + sin2 ε cos2 α,

H ≡ Hε(t) := cos2 t cos2(δ − ε)+ sin2(δ − ε),

we have

fε(t) :=
3∑
i=1

d(pi, γ2)
2 = arccos2

√
D + arccos2

√
E + arccos2

√
H.

Note that fε(0) = 2α2 for all ε ∈ R, that f0(t) = 3t2 + 2α2, and that (d/dt)fε(0) = 0 as
Dε(0) = Eε(0), Hε(0) = 1, and

d

dt
Dε(0) = 2 cosα cos ε = − d

dt
Eε(0).

This implies that, for small δ > 0 (i.e. small ε > 0), the minimum of fε(t) over t ∈ [−π, π) is
uniquely attained at t = 0. This yields the assertion.

We are now in position to prove Theorem 4.1.

Proof of Theorem 4.1. In conjunction with Lemma 4.1 and Lemma 4.2, all we need to prove
is the assertion in (4.4). Suppose that p̄ is the intrinsic mean given by ε = µ(δ) in (4.3).
Recalling (3.1), consider the derivative of the squared distances for the intrinsic mean,

d

dε

( 3∑
i=1

d(pi, p̄)
2
)

= −2(δ − ε)+ 4a sin ε
arccos(a cos ε)√

1 − a2 cos2 ε
,

which vanishes if and only if

δ = ε + 2 sin ε cosα
arccos(cosα cos ε)√

1 − cos2 α cos2 ε
.

For small ε, the right-hand side is(
1 + 2

a arccos a√
1 − a2

)
ε +O(ε3) = (1 + 2α cot α)ε +O(ε3).
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ε
π/3

π/4

π/6

π/6 π/4 π/3 π/2
0

0
δ

Figure 1: The four means, for α = π/4: from top to bottom we display the function ν(δ), yielding the
principal component mean for small δ > 0; the Euclidean mean (see (4.7)); the function µ(δ), yielding

the intrinsic mean; and the intrinsic mean on the second principal component geodesic.

which, in conjunction with α < tan α for 0 < α < π/2, yields the first part of the assertion.
By series expansion of (4.6) we further obtain

δ = (1 + 2a2)ε +O(ε3).

This proves the rest of the assertion.

Remark 4.1. Note that the linear approximation in 4.4 is rather good, i.e. that µ(δ) and ν(δ)
are almost linear in δ. It turns out that – unlike in Euclidean geometry – even in the equilateral
case (α = δ/2 = π/4), the horizontal geodesic γh(t) = (cos ε, 0, sin ε) cos t + (0, 1, 0) sin t is
a better approximation than the vertical geodesic γv(t) = (1, 0, 0) cos t + (0, 0, 1) sin t , with

3∑
i=1

d(pi, γh)
2 < 1.14 < 1.23 < 2

(
π

4

)2

=
3∑
i=1

d(pi, γv)
2.

See also Table 1, below. In Figure 1 we illustrate the case α = π/4.

In conclusion we note that the intrinsic mean on γ2 of the points p1, p2, and p3 is given by
(see Section 5.5)

ε = δ

3
,

and the Euclidean mean (the mean of the three data points in R
3 projected to the unit sphere)

takes the value
(cos ε, 0, sin ε)

with

ε = arctan
sin δ

2 cosα + cos δ
. (4.7)

From Theorem 4.1 we infer that all four means disagree for small δ (in Figure 1 we display
them as functions of δ). Indeed, for 0 < α < π/2 and small δ > 0,

δ

3
< µ(δ) < arctan

sin δ

2 cosα + cos δ
< ν(δ).
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5. Algorithms for geodesic PCA and means on spheres

In this section we apply the method of principal component analysis based on geodesics, as
put forth in Section 2.3, to a unit sphere S := Sm ⊂ R

m+1 and N data points p1, . . . , pN ∈ S.
The unit sphere is defined by

φ(x) = 〈x, x〉 − 1 = 0,

and every tangent space is given by TxS = {v ∈ R
n : dφ(x) v = 2〈x, v〉 = 0}. Thus,

�1(x, v) := (〈x, x〉 − 1, 2〈x, v〉, 〈v, v〉 − 1)	

for x, v ∈ R
m+1. Observe that

γx,v(t) := x cos t + v sin t

is a geodesic on S if and only if �1(x, v) = (0, 0, 0)	. Moreover (see Proposition 3.1), we
have the following two distance functions:

F(x, v) =
N∑
i=1

d(pi, γ(x,v))
2 =

N∑
i=1

arccos2
√

〈x, pi〉2 + 〈v, pi〉2,

G(x) =
N∑
i=1

d(pi, x)
2 =

N∑
i=1

arccos2〈x, pi〉.

5.1. The first principal component great circle

Note that if (x∗, v∗) is a solution to (2.8), then any (ax∗ +bv∗, cx∗ +dv∗) is also a solution
when (

a b

c d

)
∈ O(2).

This ambiguity can be overcome most simply by requiring that xj0 = 0 and xj1 ≥ 0 (or
xj1 < 0) for suitable component indices j0 and j1, 1 ≤ j0 �= j1 ≤ m+ 1.

By using a Lagrange multiplier λ = (λ1, λ2, λ3)
	 and writing

ζi :=
√

〈x, pi〉2 + 〈v, pi〉2, ξi := − 1

2ζi

d

dζi
arccos2 ζi = arccos ζi

ζi

√
1 − ζ 2

i

,

the Lagrange equation (2.9) can be rewritten as

N∑
i=1

ξi〈x, pi〉pi = λ1x + λ2v,

N∑
i=1

ξi〈v, pi〉pi = λ3v + λ2x.

Note that ζi �= 1 unless pi lies on γ(x,v), in which case we replace ξi by 1.Moreover, ζi �= 0 if
x and v are such that pi is sufficiently close to γx,v . We want to assume the latter. By solving
for x and v we obtain the fixed-point problem

N∑
i=1

ξi(λ3〈x, pi〉 − λ2〈v, pi〉)pi = (λ1λ3 − λ2
2)x,

N∑
i=1

ξi(λ2〈x, pi〉 − λ1〈v, pi〉)pi = (λ2
2 − λ1λ3)v,

(5.1)
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with

N∑
i=1

ξi〈x, pi〉2 = λ1,

N∑
i=1

ξi〈x, pi〉〈v, pi〉 = λ2,

N∑
i=1

ξi〈v, pi〉2 = λ3.

Denoting by �1(x, v) and �2(x, v) the two left-hand sides of the fixed-point problem (5.1), in
a natural way we define the algorithm

(xn, vn) �→ (xn+1, vn+1), where

xn+1 = �1(xn, vn)

‖�1(xn, vn)‖ ,

vn+1 = �2(xn, vn)− 〈�2(xn, vn), xn+1〉xn+1

‖�2(xn, vn)− 〈�2(xn, vn), xn+1〉xn+1‖ .
(5.2)

In practice (see Sections 6.4 and 6.5) the natural ambiguity in the above-mentioned parametriza-
tion of spherical geodesics seems irrelevant. Nevertheless, to compare with an intrinsic mean
p̄, for example, after each iteration reparametrize the geodesic t �→ x cos t + v sin t such that
xj0 = p̄j0 and sgn(xj1) = sgn(p̄j1) for suitable indices j0 and j1, 0 ≤ j0 �= j1 ≤ m+ 1.

As starting point x0 choose either one of the pi or, more subtly, the spherical mean, p̄, of
p1, . . . , pN , which can be computed using the algorithm of [15] or, in our special case, using
the algorithm introduced below. For the starting direction v0 either take the normalized part of
any vector x0 − pi orthogonal to x0 or choose among the vectors pi − p̄ of maximal spherical
length and again normalize that part orthogonal to p̄.

5.2. The second principal component great circle

Having found a first principal component geodesic, γ1 = γx,v , determined by x, v ∈ S,
〈x, v〉 = 0, suppose that γ2(t) = γy,w(t) = y cos t+w sin t , with y = y(τ) = x cos τ+v sin τ
for a suitable τ ∈ R, is a second principal component geodesic. According to Section 2.3, we
consider

dφ(γx,v(τ ))w = 〈2(x cos τ + v sin τ), w〉 = 0,

〈γ̇x,v(τ ), w〉 = 〈−x sin τ + v cos τ,w〉 = 0.

This equation system is equivalent to

〈x,w〉 = 0, 〈v,w〉 = 0.

Thus, instead of �2(τ, w) = 0, we consider the equivalent constraint

�̃2(w) = (〈x,w〉, 〈v,w〉, 〈w,w〉 − 1)	 = 0,

under which we want to minimize the function

F2(τ, w) :=
N∑
i=1

d(pi, γy(τ),w)
2

=
N∑
i=1

arccos2
√
(〈x, pi〉 cos τ + 〈v, pi〉 sin τ)2 + 〈w,pi〉2.

https://doi.org/10.1239/aap/1151337073 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337073


312 • SGSA S. HUCKEMANN AND H. ZIEZOLD

Writing
ai = ai(τ ) := 〈x, pi〉 cos τ + 〈v, pi〉 sin τ,

bi = bi(τ ) := 〈v, pi〉 cos τ − 〈x, pi〉 sin τ,

ζi = ζi(τ, w) :=
√
a2
i + 〈w,pi〉2,

ξi = ξi(τ, w) := arccos ζi

ζi

√
1 − ζ 2

i

and defining a Lagrange multiplier λ = (2λ1, 2λ2, λ3)
	, from the Lagrange equation (2.10)

we obtain
N∑
i=1

ξiaibi = 0,
N∑
i=1

ξi〈w,pi〉pi = λ1x + λ2v + λ3w,

which implies that

N∑
i=1

ξi〈w,pi〉〈x, pi〉 = λ1,

N∑
i=1

ξi〈w,pi〉〈v, pi〉 = λ2,

N∑
i=1

ξi〈w,pi〉2 = λ3.

By letting

�1(τ, w) :=
∑N
i=1 ξi〈w,pi〉pi∑N
i=1 ξi〈w,pi〉2

, �2(τ, w) :=
N∑
i=1

ξiaibi

we obtain the following algorithm: start with suitable initial values τ (0) and w(0), e.g.

(τ (0), w(0)) =
(

0,
p1 − p0 − 〈p1 − p0, x〉x − 〈p1 − p0, v〉v

‖p1 − p0 − 〈p1 − p0, x〉x − 〈p1 − p0, v〉v‖
)
,

and compute (τ (n+1), w(n+1)) from (τ (n), w(n)) by setting

z(n+1) := �1(τ
(n), w(n)),

w(n+1) := z(n+1) − 〈z(n+1), x〉x − 〈z(n+1), v〉v
‖z(n+1) − 〈z(n+1), x〉x − 〈z(n+1), v〉v‖ , (5.3)

τ (n+1) := solution to �2(τ, w
(n+1)) = 0 in [−π/2, π/2).

5.3. Higher-order principal component great circles

For simplicity, set x := x̂. Suppose that we have found principal component geodesics
γx,v1 , . . . , γx,vj−1 , 3 ≤ j ≤ m. Introducing

ζi :=
√

〈x, pi〉2 + 〈v, pi〉2, ξi := arccos ζi

ζi

√
1 − ζ 2

i

,

and Lagrange multipliers λ0, . . . , λj ∈ R, we can rewrite the Lagrange equation (2.11) as

N∑
i=1

ξi〈v, pi〉pi = λ0x +
j−1∑
s=1

λsvs + λjv. (5.4)
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Starting with a suitable v(0), we thus compute v(n+1) from v(n) using the following algorithm,
which follows in a natural way from (5.4):

z(n+1) :=
N∑
i=1

ξ
(n)
i 〈v(n), pi〉pi,

λ
(n+1)
0 := 〈z(n+1), x〉,
λ(n+1)
s := 〈z(n+1), vs〉, 1 ≤ s < j,

λ
(n+1)
j :=

N∑
i=1

ξ
(n)
i 〈v(n), pi〉2,

v(n+1) := sgn(λj )
z(n+1) − λ

(n+1)
0 x − ∑j−1

s=1 λ
(n+1)
s vs

‖z(n+1) − λ
(n+1)
0 x − ∑j−1

s=1 λ
(n+1)
s vs‖

.

5.4. The spherical mean

Here we set ζi := 〈x, pi〉 and ξi := arccos ζi/(1 − ζ 2
i )

1/2 and consider a single Lagrange
multiplier λ ∈ R, to obtain

N∑
i=1

ξipi = λx,

with
N∑
i=1

ξi〈pi, x〉 = λ,

from the Lagrange equation (2.12). Thus, with�(x) := (1/λ)
∑N
i=1 ξipi we have the following

algorithm for the intrinsic mean:

xn �→ xn+1 = �(xn)

‖�(xn)‖ .

5.5. The intrinsic mean on a great circle

Suppose that we have specified a spherical geodesic, t �→ γx,v(t), determined by γx,v(0) = x

and γ̇x,v(0) = v. With

αi := arctan
〈v, pi〉
〈x, pi〉 ∈

[
−π

2
,
π

2

)
and

[−π, π) � ti :=
{
αi mod 2π if 〈v, pi〉, 〈x, pi〉 > 0 or 〈v, pi〉 < 0 < 〈x, pi〉,
αi + π mod 2π otherwise,

from Corollary 3.1 we see that the geodesic projections of the data points p1, . . . , pN onto γx,v
are given by

qi = x cos ti + v sin ti , i = 1, . . . , N.

The function G1 (see 2.13) is then given by

G1(t) =
N∑
i=1

arccos2(cos t cos ti + sin t sin ti ) =
N∑
i=1

(
εiδi(t − ti )+ 1 − εi

2
2π

)2

,
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where δi = sgn(t − ti ) and εi = sgn(2π − |t − ti |). This quantity is uniquely minimized by

t = 1

N

N∑
i=1

ti − 2π

N

N∑
i=1

εiδi
1 − εi

2
.

The second sum can assume any integer values between −N and N . In practice, we will
determine t∗ := (1/N)

∑N
i=1 ti and check which of the values

t∗ + 2πk

N
, k = 0, . . . , N − 1,

minimizes the function G1. This value yields an intrinsic mean on the geodesic.
In the following section the above algorithms are applied to planar triangles whose shape

space is a two-dimensional sphere.

6. Geodesic PCA for planar triangular shape spaces

The consideration of spheres in matrix spaces modulo suitable rotation groups leads to
Kendall’s shape spaces. Denote by M(m, k) the set of all real matrices with m rows and k
columns with the inner product 〈a, b〉 := tr(ab	) and ‖a‖ = √〈a, a〉, where tr(·) is the trace
function, and by SO(m) the special orthogonal group in M(m,m).

6.1. Kendall’s shape spaces

Shape analysis is based on configurations consisting of k labelled vertices in R
m, called

landmarks, that do not all coincide. Each configuration is a point in M(m, k). Disregarding
location and size, these configurations are mapped by a Helmert matrix to preshape space
(see, e.g. [3])

S ≡ Skm := {s ∈ M(m, k − 1) : ‖s‖ = 1}.
Additionally, disregarding rotation leads to the definition of shape space. Define on S a smooth
action of SO(m) by

gs := (gs1, . . . , gsk−1) ∈ S,
for g ∈ SO(m) and s = (s1, . . . , sk−1) ∈ S. Then the orbit [s] = {gs : g ∈ SO(m)} is the
shape of s ∈ S and the topological quotient

� ≡ �km := S/SO(m)

is called the shape space.
Shape spaces of one-dimensional objects are just the corresponding preshape spheres, as

SO(1) = {id} is trivial. For m = 2 and k = 3, i.e. planar triangular shapes, the above
projection will be explicitly given below: it is the Hopf fibration projecting the preshape sphere
of radius 1 in four-dimensional Euclidean space onto the two-dimensional shape space sphere
S2( 1

2 ) of radius 1
2 in three-dimensional Euclidean space.

6.2. Euclidean PCA for shape spaces

Two preshapes p, x ∈ S are in optimal position to each other if

‖p − x‖ = inf
g∈SO(m)

‖gp − x‖.

https://doi.org/10.1239/aap/1151337073 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337073


Principal component analysis on manifolds SGSA • 315

As SO(m) is compact, any preshape p can be rotated into optimal position to a given preshape
x. We will denote the optimally rotated version of p with respect to x by px , also called the
partial Procrustes fit of p onto x.

Given preshapes p1, . . . , pN ∈ S, call a preshape x̄Eucl. ∈ S a preshape of an extrinsic mean
shape (or a preshape of an extrinsic Fréchet mean shape) if

min
g1,...,gN∈SO(m)

N∑
i=1

‖gipi − x̄Eucl.‖2 = min
x∈S

(
min

g1,...,gN∈SO(m)

N∑
i=1

‖gipi − x‖2
)
.

In [8] Gower proposed an algorithm to find a preshape of an extrinsic mean shape; see also [22].
Euclidean PCA for Kendall’s shape spaces is performed as follows (see, e.g. [2], [3, p. 96],

[7], and [11]). Having found a preshape x̄ = x̄Eucl. ∈ S of an extrinsic mean shape, all data
points are brought into optimal position to x̄ and projected onto the tangent space Tx̄S at the
preshape of the extrinsic mean shape. Standard PCA is then performed with respect to the
residuals

ri := px̄i

〈px̄i , x̄〉
− x̄ ∈ R

m(k−1), i = 1, . . . , N.

6.3. Planar triangular shapes

Now consider n triangles, Q1, . . . ,Qn ∈ M(2, 3), in the plane (m = 2), each determined
by k = 3 landmarks. For any such triangleQ = (q1, q2, q3), q1, q2, q3 ∈ R

2, a corresponding
point P in preshape space S3(1) is given by

P =
(
a c

b d

)
= QH

‖QH‖ , H =
⎛
⎜⎝

1/
√

2 1/
√

6

−1/
√

2 1/
√

6

0 −2/
√

6,

⎞
⎟⎠

where H is a so-called Helmert submatrix (see, e.g. [3]). In the complex notation z = a + ib
and w = c + id , the Hopf fibration is then the composition of the map

(z, w) �→ ζ = z

w
= zw̄

‖w‖2 ,

the inverse stereographic projection

ζ �→ 1

|ζ |2 + 1

⎛
⎜⎝

2 Re(ζ )

2 Im(ζ )

|ζ |2 − 1

⎞
⎟⎠ ,

and the following ‘halving’ (in order to have an isometry):

S3(1) → S2( 1
2 ),

(z, w) �→
(

Re(zw̄), Im(zw̄),
|z|2 − |w|2

2

)
,

(
a c

b d

)
�→

(
ac + bd, bc − ad,

a2 + b2 − c2 − d2

2

)
.

https://doi.org/10.1239/aap/1151337073 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337073


316 • SGSA S. HUCKEMANN AND H. ZIEZOLD

The spherical metric of the preshape sphere then naturally pushes forward to the spherical
metric of the shape sphere S2( 1

2 )
∼= �3

2 .
For planar triangular shapes, having found a first principal component geodesic γ1(t) =

x cos t + v sin t using (5.2), any second principal component geodesic will be of the form
γ2(t) = y cos t + w sin t , where y = x cos τ + v sin τ for some suitable τ , −π < τ ≤ π , and
x, v, and w form an orthonormal basis of R

3. Hence, we only need to determine τ from (5.3).
If x was obtained from starting at p̄, τ will be close to 0. In fact, the algorithms converge rather
quickly. We illustrate our method in two examples.

6.4. Example 1: An isosceles triangles family

Reconsider the family of isosceles triangles introduced in Section 4, in particular the 11 data
triples (p1, p2, p

(n)
3 ) with the following points on the shape sphere:

p1 = 1

2

(
cos

π

4
, sin

π

4
, 0

)
,

p2 = 1

2

(
cos

π

4
,− sin

π

4
, 0

)
,

p
(n)
3 = 1

2

(
cos

nπ

20
, 0, sin

nπ

20

)
, n = 0, 1, . . . , 10.

Every triple (p1, p2, p
(n)
3 ) corresponds to the shapes of the three planar triangles respectively

having the points p1, p2, and p(n)3 as representatives.
At this point we note that a preshape of an extrinsic mean shape as defined in Section 6.2

is different from the Euclidean mean computed directly on the shape sphere. For the above
isosceles data it turns out that the projection of the preshape of an extrinsic mean shape onto
the shape sphere lies between the Euclidean mean and the intrinsic mean (which are already
fairly close to each other; see Figure 1) both computed on the shape sphere itself.

In Table 1, for the data triples above we present the relative amount of variance explained
by the first principal component using the classical Euclidean method in the tangent space of
the preshape sphere (see Section 6.2), and the respective computations for the three different
definitions of geodesic variance proposed in (2.4), (2.5), and (2.6). In Table 2 we display the
relative improvement of the fit with respect to shape distances. The first Euclidean PC in the
tangent space of the preshape sphere S3 is first projected onto the preshape sphere and then
onto a curve, δ, on the shape sphere. The percentages given compare the improvement of data
fit when the sum of the squared distances of the data shapes to that projection is related to the
sum of the squared distances of the data shapes to the first geodesic PC γ : we calculate

1 −
∑3
i=1 d(pi, γ )

2∑3
i=1 d(pi, δ)

2
.

From the bottom rows of Table 1 we can observe the effect of curvature on the various
geodesic definitions for highly curved triangles. From the top rows of Table 1 it seems that the
first Euclidean PC approximates the data nearly as well as the first geodesic PC. In comparing
the two fits on the space directly in Table 2, however, we note that the first geodesic PC is also
considerably closer to the data in the neighborhood of a great circle.

For 0 ≤ n < 10, the Euclidean and geodesic first PCs are ‘horizontal’ in the sense that they
intersect the respective ‘vertical’ second PCs t �→ (cos t, 0 sin t), which describe a meridian,
with a direction parallel to the equator.

https://doi.org/10.1239/aap/1151337073 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337073


Principal component analysis on manifolds SGSA • 317

Table 1.

Relative variance explained by the first principal component

Euclidean Geodesic PCA (%)

n PCA (%) By projection By residuals Mixed

0 100.00 100.00 100.00 100.00
1 98.96 98.53 99.01 99.01
2 95.99 94.41 96.16 96.22
3 91.43 88.41 91.78 92.05
4 85.76 81.46 86.31 87.06
5 79.48 74.36 80.22 81.82
6 73.02 67.69 73.94 76.80
7 66.67 61.77 67.77 72.35
8 60.66 56.77 61.97 68.76
9 55.09 52.76 56.69 66.37

10 50.00 49.88 52.05 65.87

Table 2.

n Relative improvement of geodesic data fit (%)

0 0.00
1 8.93
2 9.05
3 9.25
4 9.56
5 9.97
6 10.51
7 11.23
8 12.18
9 13.48

10 15.29

Finally, more subtly, consider the last row in each table, which corresponds to an equilateral
triangle. In this case, any (of the infinitely many) first and second Euclidean PCs in the tangent
space of a preshape of an extrinsic mean shape explains equally well half the projected data
variation. In contrast, numerical investigation reveals that there are three first geodesic PCs, one
of them ‘horizontal’, and three second geodesic PCs, one of them ‘vertical’. Any first geodesic
PC explains almost two-thirds of geodesic variance in the mixed sense and more than half of
the variance explained by residuals. In the case of variance explained by projection, the roles
are reversed and any second geodesic PC explains a little more than half of the data variance.

6.5. Example 2: Rat cranium growth

Finally, we consider the well-known Bookstein ‘rat data’ (see [1, pp. 408ff.] and, e.g. [17]),
eight landmarks of 18 rat skulls measured on eight different days in their early lives: days 7,
14, 21, 30, 40, 60, 90, and 150. Working with triangles only we picked three out of the eight
landmarks, namely landmarks 1, 5, and 6. Specifying different triples leads to qualitatively
similar results. For every specimen we sought a first PC best approximating the data.
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Figure 2: A simultaneous depiction of the first principal component geodesics to the temporal evolution
of the shapes of the first four rats. The distances are measured in radians. Filled circles and the solid
geodesic represent the first rat, crosses and the long-dashed geodesic represent the second rat, diamonds
and the dash–dot geodesic represent the third rat, and asterisks and the short-dashed geodesic represent
the fourth rat. All first PCs have approximately the same direction and, as they nearly pass through the

origin, they are mapped to almost straight lines.

In Figure 2 we have simultaneously depicted the shapes of several rats (each having eight
shapes) using their proper first principal component geodesics, calculated using our method.
The image is a projection of shape space onto tangent space under the inverse Riemannian
exponential taken at the intrinsic mean over all principal component geodesic means of the 18
rats. During growth, the rat shape data move from the left-hand side of the figure to the right-
hand side. Obviously, the first PCs of the four rats point in approximately the same direction.
Such a vizualisation is possible only for triangular shapes.

The data cover only a very small portion of the shape sphere (the scaling in Figure 2 along
radial rays from the origin is precisely shape distance; the maximum possible shape distance
is π/2). On average, the amount of variance explained by the first Euclidean PCs is 95.48%,
whereas going by the mixed geodesic definition explains 95.52%, and geodesic first PCs fit the
data about 0.8% better than do Euclidean PCs.

Upon closer visual inspection it seems that the rat data follow a parabola rather than a line.
We might pursue this observation in a later paper.

Acknowledgements

The numerics were carried out with the computer algebra tool MuPAD. Many thanks go to
Walter Oevel at the MuPAD group for suggesting the above algorithmic approach. We would
also like to thank the two referees for their instructive comments, which led to considerable
improvements to the paper.

References

[1] Bookstein, F. L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University
Press.

[2] Cootes, T. F., Taylor, C. J., Cooper, D. H. and Graham, J. (1992). Training models of shape from sets of
examples. In Proc. British Mach. Vision Conf., eds D. C. Hogg and R. D. Boyle, Springer, Berlin, pp. 9–18.

[3] Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. Wiley, Chichester.
[4] Ducham, T. and Stuetzle W. (1996). Extremal properties of principal curves in the plane. Ann. Statist. 24,

1511–1520.

https://doi.org/10.1239/aap/1151337073 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337073


Principal component analysis on manifolds SGSA • 319

[5] Fletcher, P. T., Joshi, S., Lu, C. and Pizer, S. (2004). Gaussian distributions on Lie groups and their
applications to statistical shape analysis. Preprint.

[6] Fletcher, P. T., Lu, C. and Joshi, S. (2003). Statistics of shapes via principal geodesic analysis on Lie groups.
Proc. Computer Vision and Pattern Recognition 2003, Vol. 1, IEEE, Piscataway, NJ, pp. 95–101.

[7] Goodall, C. R. and Lange N. (1998). Growth curve models for correlated triangular shapes. In Proc. 21st
INTERFACE Symp., Interface Foundation, Fairfax Station, VA, pp. 445–454.

[8] Gower, J. C. (1975). Generalized Procrustes analysis. Psychometrika 40, 33–51.
[9] Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30,

509–541.
[10] Kendall, D. G., Barden, D., Carne, T. K. and Le, H. (1999). Shape and Shape Theory. Wiley, Chichester.
[11] Kent, J. T. (1994). The complex Bingham distribution and shape analysis. J. R. Statist. Soc. B 56, 285–299.
[12] Klassen, E., Srivastava, A., Mio, W. and Joshi, S. H. (2004). Analysis of planar shapes using geodesic paths

on shape spaces. IEEE Trans. Pattern Anal. Mach. Intellig. 26, 372–383.
[13] Kobayashi, S. and Nomizu, K. (1969). Foundations of Differential Geometry, Vol. II. Wiley-Interscience, New

York.
[14] Kume, A. and Le, H. (2003). On Fréchet means in simplex shape space. Adv. Appl. Prob. 35, 885–897.
[15] Le, H. (2001). Locating Fréchet means with application to shape spaces. Adv. Appl. Prob. 33, 324–338.
[16] Le, H. and Barden, D. (2001). On simplex shape spaces. J. London Math. Soc. 64, 501–512.
[17] Le, H. and Kume, A. (2000). Detection of shape changes in biological features. J. Microscopy 200, 140–147.
[18] Le, H. and Small, C. G. (1999). Multidimensional scaling of simplex shapes. Pattern Recognition 32, 1601–

1613.
[19] Nash, J. (1956). The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63.
[20] Small, C. G. (1996). The Statistical Theory of Shape. Springer, New York.
[21] Ziezold, H. (1977). On expected figures and a strong law of large numbers for random elements in quasi-metric

spaces. In Trans. 7th Prague Conf. Inf. Theory, Statist. Decision Functions, Random Process., Vol. A, Reidel,
Dordrecht, pp. 591–602.

[22] Ziezold, H. (1994). Mean figures and mean shapes applied to biological figure and shape distributions in the
plane. Biometrical J. 36, 491–510.

https://doi.org/10.1239/aap/1151337073 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337073

	1 Introduction
	2 PCA based on geodesics
	2.1 Means and principal component geodesics
	2.2 Geodesic variance
	2.3 A method of principle component analysis based on geodesics
	2.3.1 First principal component geodesic.
	2.3.2 Second principal component geodesic and principal component mean.
	2.3.3 Higher-order principal component geodesics.
	2.3.4 Intrinsic mean.
	2.3.5 Intrinsic mean on a geodesic.


	3 Distance to geodesics on spheres
	4 The principal component geodesics omit the intrinsic mean: an example on S2(1)
	5 Algorithms for geodesic PCA and means on spheres
	5.1 The first principal component great circle
	5.2 The second principal component great circle
	5.3 Higher-order principal component great circles
	5.4 The spherical mean
	5.5 The intrinsic mean on a great circle

	6 Geodesic PCA for planar triangular shape spaces
	6.1 Kendall's shape spaces
	6.2 Euclidean PCA for shape spaces
	6.3 Planar triangular shapes
	6.4 Example 1: An isosceles triangles family
	6.5 Example 2: Rat cranium growth

	Acknowledgements
	References

