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Abstract

Two satellite datasets are used to characterize winter landfast first-year sea-ice (FYI), deformed
FYI (DFYI) and multiyear sea-ice (MYI) roughness in the Canadian Arctic Archipelago
(CAA): (1) optical Multi-angle Imaging SpectroRadiometer (MISR) and (2) synthetic aperture
radar Sentinel-1. The Normalized Difference Angular Index (NDAI) roughness proxy derived
from MISR, and backscatter from Sentinel-1 are intercompared. NDAI and backscatter are
also compared to surface roughness derived from an airborne LiDAR track covering a subset
of FYI and MYI (no DFYI). Overall, NDAI and backscatter are significantly positively correlated
when all ice type samples are considered. When individual ice types are evaluated, NDAI and
backscatter are only significantly correlated for DFYI. Both NDAI and backscatter are correlated
with LiDAR-derived roughness (r = 0.71 and r = 0.74, respectively). The relationship between
NDAI and roughness is greater for MYI than FYI, whereas for backscatter and ice roughness,
the relationship is greater for FYI than MYI. Linear regression models are created for the estima-
tion of FYI and MYI roughness from NDAI, and FYI roughness from backscatter. Results suggest
that using a combination of Sentinel-1 backscatter for FYI and MISR NDAI for MYI may be opti-
mal for mapping winter sea-ice roughness in the CAA.

1. Introduction

Sea-ice surface roughness is heterogeneous in time and space, with seasonal and multiyear ice
types undergoing thermodynamic and dynamic-deformation processes. Macroscale sea-ice
topography is characterized by a range of features, including level, undeformed sea ice; struc-
tures formed by convergent or divergent stressors like pressure ridges, cracks, leads, ice rubble,
rafted ice and hummocks; snow features like sastrugi, dunes and variable depth; and melt fea-
tures like saturated snow (slush) and meltwater ponds. These surface features are linked to sea-
son; atmospheric and oceanic forcing; and ice qualities like ice age, salt content and thickness
(Weeks and Ackley, 1982). The result is a wide variety of sea-ice topographies with different
feature densities, scales and regimes.

Sea-ice surface characteristics directly impact the animals and people who use the sea ice
(Frost and others, 2004; Dammann and others, 2018) and ships that travel through sea ice
(Bertoia and others, 1998). Indirectly, they also impact ocean biological communities through
light transmittance patterns (Horner and others, 1992; Katlein and others, 2015), and the global
climate through albedo/heat feedbacks and sea-ice decay (via movement by wind drag) (Schröder
and others, 2014; Martin and others, 2016; Petty and others, 2017). Furthermore, sea-ice surface
characteristics are being altered by climate change, with greater expanses of open water leading to
increased dynamic activity, and the transition to a younger, seasonal sea-ice regime leading to the
replacement of older ice types with seasonal ice (Krupnik and Jolly, 2002; Martin and others,
2016). As a result, sea-ice surface topography (hereafter roughness) is an active area of research
across many disciplines, involving a wide variety of sensors and methods of measurement.

While in situ sea-ice data are sparse and difficult to obtain, satellites provide information at
moderate resolutions and broad scales. Currently, there are a wide variety of sea-ice roughness
characterization methodologies applicable to specific applications and sea-ice regimes. The
choice of input sensors and output roughness metrics varies depending on data availability,
quality, cost and ease of use (Nolin and others, 2002; Hong and Shin, 2010; Newman and others,
2014; Beckers and others, 2015; Landy and others, 2015; Fors and others, 2016; Martin and
others, 2016; Petty and others, 2016, 2017; Johansson and others, 2017; Dammann and others,
2018; Li, 2018; Nolin and Mar, 2019). Despite the variety of goals and datasets, baseline rough-
ness studies commonly combine or assess broader-scale datasets with finer-scale point-based
(e.g., terrestrial LiDAR), linear (e.g., transect) or 3D (e.g., airborne LiDAR) datasets.

While some studies use satellite and/or LiDAR datasets to characterize roughness, few focus
on roughness in relation to trafficability by local northern sea-ice users (Gauthier and others,
2010; Dammann and others, 2018). Most Arctic communities are situated adjacent to the
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marine environment, where sea ice plays an important ecosystem
service by connecting communities to hunting grounds, seasonal
cabins, recreation activities and other communities (Eicken and
others, 2009; Segal, 2019; Segal and others, in press). Roughness
impacts travelers, and they desire information about landfast
sea-ice surface conditions in order to plan livelihood activities
(Aporta, 2004; Ford and others, 2008; Laidler and others, 2011;
Druckenmiller and others, 2013; Bell and others, 2014;
Dammann and others, 2018; Segal, 2019; Segal and others, in
press). Smooth sea-ice/snow surfaces support rapid travel by
snowmobile (∼50–110 km h−1) as well as reduced fuel consump-
tion and wear on equipment, while rougher sea-ice/snow surfaces
cause slower travel (∼5–30 km h−1), higher fuel consumption,
increased wear on equipment, as well as difficult travel with
increased risk of accidents and breakdowns (Segal, 2019; Segal
and others, in press). Roughness is important at spatio-temporal
scales applicable to travel by snowmobile: sub-meter to
meter-scale datasets (>0.1 to ∼10 m) covering large areas at fre-
quent intervals throughout the sea-ice season. Northerners have
expressed a desire to access synthetic aperture radar
(SAR)-based maps in print and online formats that can be
checked before excursions. Consequently, data that are open
access or low cost are essential.

Assessments of potential sea-ice hazards and impediments to
trafficability are readily available to operational and industrial
sea-ice users in the form of ice charts. These charts, which typic-
ally combine C-band frequency (∼5.3 GHz) SAR image data with
ancillary sources such as optical, aerial reconnaissance and in situ
observations, are produced with standardized terminologies in
Canada, the USA, the Baltic Nations, Japan and Russia (Bertoia
and others, 1998). However, ice chart information does not cur-
rently include surface roughness characteristics. Additionally,
sea-ice hazards encountered by communities during travel differ
from those encountered by ships, as sea ice is used as a platform
for activities instead of acting as a hazard for water-based naviga-
tion. Consequently, information available to industry users may
not be accessible or useful for communities due to technological
limitations, cost, jargon and production at coarse spatio-temporal
scales (Laidler and others, 2011; Bell and others, 2014).

The Multi-Angle Imaging SpectroRadiometer (MISR) is an
instrument aboard the Terra satellite with nine separate sensors,
each with four bands across the visible to near-infrared spectral
range. There is one sensor oriented at nadir, and four sensors
each at increasing angles in forward and backward orientations
relative to Terra. This configuration enables the capture of for-
ward and backward scattering of sunlight during the descending
Terra orbit. MISR has a swath width of 380 km, and provides
coverage over the study area every 1–2 d. Off-nadir data acquired
in the red band have a spatial resolution of 275 m (Jovanovic and
others, 2012; Diner and others, 2002). Directional reflectance is
used to infer surface roughness, when solar illumination permits
(Nolin, 2004; Nolin and Payne, 2007). It has been used for studies
of sea ice and glacier roughness (Nolin and others, 2002; Nolin
and Payne, 2007; Nolin and Mar, 2019), ocean texture (oil spill
detection) (Chust and Sagarminaga, 2007) and desert dune detec-
tion (Wu and others, 2009).

Sentinel-1 is a constellation of two C-band SAR systems oper-
ated by the European Space Agency (ESA), which provides high-
resolution (40 m) imagery of radar backscatter every 2–4 d in the
Arctic (ESA, 2018a). The ability of SAR to regularly obtain
imagery regardless of cloud cover or darkness, as well as the sen-
sitivity of measured backscatter to surface roughness where dielec-
tric property contrasts occur (air–snow and snow–ice interfaces),
makes it desirable for roughness mapping (Dammann and others,
2018). When surface scattering dominates, rougher surfaces have
a greater number of surface components and increased

backscatter. For sea ice, the composite of surface components of
importance to backscatter intensity can generally be divided
into micro- and macro-scales. Micro-scale components are
wavelength-dependent elevation discontinuities which, for the
5.6 cm wavelength of Sentinel-1, correspond to the cm-scale.
Macro-scale components are the topographical features, such as
ice blocks and deformed ice, upon which the small-scale undula-
tions reside (Drinkwater, 1989). For winter first-year sea ice (FYI),
C-band energy is generally understood to penetrate the overlying
snow cover such that backscatter originates from the sea ice.
Volumetric contributions to backscatter at C-band, such as
from air bubbles in the case of winter multiyear ice (MYI),
occur when the freshened upper ice layer promotes penetration
into the volume and are not linked to roughness (Hallikainen
and Winebrenner, 1992; Geldsetzer and Yackel, 2009). SAR is
widely used for sea-ice operational mapping and research, par-
ticularly at C-band, resulting in a legacy of increased understand-
ing and use of this frequency (e.g., Bertoia and others, 1998;
Melling, 1998; Makynen and others, 2002; Zakharov and others,
2015; Howell and others, 2019). SAR has been used to assess
the surface roughness of land- (Martinez-Agirre and others,
2017; Sadeh and others, 2018) and ice-scapes (Dierking and
others, 1997; Melling, 1998; Peterson and others, 2008; Gupta
and others, 2013; Fors and others, 2016; Dammann and others,
2018; Cafarella and others, 2019). Scatterometers, which are active
microwave instruments that provide backscatter at coarse spatial
resolution (several km) due to the absence of aperture synthesis,
have also been used to study ice-sheet surface properties including
roughness, grain size and melting (Long and Drinkwater, 1994;
Fraser and others, 2014). However, sea-ice roughness character-
ization using SAR and scatterometers remains an area of ongoing
research due to a diversity of surface characteristics (e.g., physical
and dielectric) and resulting complex radar interactions that yield
observed backscatter.

In this study, we investigate the utility of radar and optical
satellite-based datasets, the optical MISR and the C-band fre-
quency Sentinel-1 SAR, for estimating winter-period macroscale
surface roughness at scales applicable for serving the on-ice traf-
ficability information needs of communities in the Kitikmeot
Region of the Western Canadian Arctic (see Segal, 2019; Segal
and others, in press). First, an inter-comparison of a MISR-
based roughness index and Sentinel-1 backscatter datasets is
done for the entire study area, as well by subsets of homogeneous
samples of the three major ice types present in the region: FYI,
deformed first-year sea ice (DFYI) and MYI. Second, an inter-
comparison is made of a smaller portion of the study area con-
taining FYI and MYI, where the MISR and Sentinel-1 datasets
also overlap with the flight track of an airborne LiDAR system
used to derive high-resolution surface roughness data. Models
for estimating roughness from MISR and Sentinel-1 are also
derived. In Section 2, the datasets, processing methods and
research design are described. Section 3 provides the inter-
comparison results, derived models for estimating roughness
from MISR and Sentinel-1, as an evaluation of the capability of
Sentinel-1 for identifying MYI areas. Section 4 considers the
main strengths and weaknesses of the sensors in the context of
designing a process that results in accurate and readily under-
standable information for incorporation into maps serving the
local travel-based information needs of northern communities.

2. Methods

2.1 Study area

The study area (Fig. 1) is of interest to northern residents who
travel on sea ice (Segal, 2019; Segal and others, in press). The
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sea ice is landfast and of 100% ice concentration in late winter
and spring, which permits surface roughness comparisons
from multiple days without the need for tracking movement.
In winter, the region is predominantly comprised of FYI,
DFYI and MYI.

FYI in this region can either freeze during calm conditions and
be relatively smooth, or freeze while there are varying degrees of
wind, current and wave action and so contain sharp slabs of bro-
ken or rafted ice embedded on the sea-ice surface. Slabs vary in
density and size, which together determine the ‘degree’ of FYI
roughness, from relatively smooth to rough. Slabs are often
small (<1 m) but can be more than 6 m high (Figs 2a and b).
They are typically ∼15 cm (up to ∼60 cm) thick, depending on
the ice thickness when the surface ice sheet breaks (Fig. 2c;
Segal, 2019; Segal and others, in press). Pressure ridges (Fig. 2d)
also contribute to roughness, with type 1 pressure ridges (locally
defined; cracks with ice rubble on the edges; ∼1.2 m high but up
to ∼4.5 m high) and type 2 pressure ridges (ice that has buckled
upwards due to pressure; taller) causing ice rubble to form above
the sea-ice surface . DFYI contains the extremes of these rough

conditions, including dense areas of broken ice as well as features
due to convergent or divergent stresses, like rafted ice and pres-
sure ridges. This ice type is found in areas subject to strong
winds and currents when the ice is still consolidating.

MYI in this region has a hummocky surface that is typically
not sharp, but rather smooth and bumpy due to weathering.
The junctions between FYI and MYI can be uneven, as MYI
may be much thicker than FYI and have a higher freeboard. On
top of the sea ice, snow also modifies the surface that is used
for travel, by filling in gaps or creating snow-hummocks (Segal,
2019; Segal and others, in press). A video clip of the 2016–2017
sea-ice season progression in the study region is found in the
Supplementary materials Section 6.1.

Data were captured from 5 to 14 April 2017, near the end of
the winter period prior to melting conditions. Mean April 2017
air temperature at Cambridge Bay (WMO ID 71925) was
−21.8°C. Given that the ice is landfast, the ice surface conditions
are generally considered representative of the winter period,
beginning after the initial freeze-up period is complete and the
ice is consolidated (though some snowfall redistribution is

Fig. 1. (a) The study area, showing MISR (blue), Sentinel-1 (orange) and LiDAR (yellow) data coverage. The dashed grey line indicates the coverage of inset (b),
which shows LiDAR-derived root mean square sea-ice roughness overlaid on Sentinel-1 imagery from April 2017. Datasets are described in Section 2.2.
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expected), to the start of melting. A mixture of ice types and a
wide spectrum of surface roughness conditions are present in
the study area beyond what is expected for smooth, thermo-
dynamically grown FYI. This variety is due to the incursion of
MYI floes during summer that freeze-in during winter, as well
as the presence of DFYI which forms when FYI is forced through
a narrow, shallow strait (Williams and others, 2018). The pre-
dominant ice type in Coronation Gulf, Dease Strait and Queen
Maud Gulf was FYI in 2017. In Victoria Strait, there was DYFI
and FYI, and in M’Clintock Channel there was a mix of MYI
and smaller regions of FYI and DFYI. Note that data used to
assess the effect of incidence angle on SAR backscatter intensity
have different collection dates (see Table S1).

2.2 Data and processing

MISR, Sentinel-1 and LiDAR data were captured from 5 to 14
April 2017, during winter (pre-melt) conditions. The areal cov-
erages of the satellite and airborne datasets are shown in Fig. 1,
and dataset specifications are provided in Table 1.

Data processing methods are summarized in Fig. 3 and
described in detail below. All datasets were re-projected to a
standard projection (WKID: 32614), and data intersecting land
was removed using The Global Self-consistent, Hierarchical,
High-resolution Shoreline Database as a mask (at full resolution
and buffered offshore by 300 m) (Wessel and Smith, 1996).

2.2.1 MISR NDAI
MISR MI1B2T data (Table 1) from the Cf and Ca cameras (±60.0°
forward/aftward of local vertical) were processed to surface
reflectance using the Simple Model for Atmospheric Correction
(SMAC) (Rahman and Dedieu, 1994), and then the individual
data blocks were projected and mosaicked using the
MIB2GEOP ancillary product, which resulted in a pixel size of
300 m × 300 m. Areas with suspected cloud cover were manually
masked out (Nolin and Mar, 2019) and then surface reflectance

was used to create the normalized difference angular index
(NDAI),

NDAI = r−60 − r+60

r−60 + r+60
, (1)

where ρ−60 and ρ+60 are the Ca and Cf hemispherical-directional
reflectances obtained from the sensor’s red channel (672 nm),
respectively. NDAI is used to approximate roughness at sub-pixel
(mm- to m-scales) scales (Nolin and others, 2001; Wu and others,
2009; Nolin and Mar, 2019) and has been proven useful over vari-
ous cryosphere surfaces such as glacier ice and sea ice, where
smooth surfaces have a negative NDAI and rough surfaces have
a positive NDAI (Nolin, 2004; Nolin and Payne, 2007). The
resulting NDAI data were subsequently averaged by gridcell in
preparation for multi-scale comparisons (see Section 2.3).

2.2.2 Sentinel-1 backscatter
The horizontal transmit-receive (HH) channel was selected due to
previously examined sensitivity to sea-ice roughness (Table S2),
and since backscatter from sea ice in this channel is typically
greater than the high Noise-Equivalent Sigma Zero (NESZ) of
Sentinel-1, nominally −22 dB (ESA, 2018b). The Sentinel-1 hori-
zontal transmit and vertical receive (HV) channel was not ana-
lyzed due to low backscatter relative to the NESZ and noisy
artifacts visible among the sub-swaths in the EW mode. A high
NESZ can increase low values (Similä and others, 2010), reducing
the effective contrast between smooth and rough ice, if the
smooth ice backscatter falls below the NESZ (Dierking and
Dall, 2007). Sentinel-1 images were processed using ESA’s
Sentinel Application Platform (SNAP) Version 6.0 using the fol-
lowing steps: (i) thermal noise removal, (ii) HH-band calibration
(γ-nought), (iii) speckle filtering (Lee 7 × 7), (iv) sub-setting (inci-
dence angle range 30–39°) and (v) map projection (Fig. 3).
Restriction to mid-range incidence angles and γ-nought calibra-
tion was used to minimize the effect of incidence angle on

Fig. 2. Sea-ice surface roughness features near
Kugluktuk on 28 May 2018 (a–b) and Cambridge Bay
on 21 May 2018 (c–d). (a) Area of snow-covered moder-
ately rough sea ice with upturned blocks (N 67°56.936′,
W 114°41.526′); (b) close-up of a typical ice block seen
in the foreground of (a), with dimensions: length = 127
cm, width = 24 cm, height = 135 cm and thickness = 14
cm; (c) image showing the thickness of sea ice when
it broke (∼10 cm, each marked interval is 1 cm); and
(d) a sea-ice fracture (pressure ridge) ∼2–3 m in height
and∼ 4.5 m wide (N 69°03.724, W 105°40.165′).
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backscatter intensity (see Supplementary materials Section 6.2).
After processing, images were mosaicked, with values averaged
in cases of overlapping scenes. The resulting HH backscatter
mosaic was subsequently averaged by gridcell in preparation for
multi-scale comparisons (see Section 2.3).

2.2.3 LiDAR-derived roughness
The fine-scale resolution (1.0 m × 1.0 m) airborne LiDAR data
were collected using a Twin Otter-mounted RIEGL LMS

Q-240i-80 on 11 April 2017 as part of ESA’s CryoSat
Validation Experiment (CryoVEx). The aircraft flew a data collec-
tion transect over Victoria Strait and M’Clintock Channel, to
Prince of Wales Island (Fig. 1) at ∼300 m a.g.l. The 904 nm
LiDAR collects data from the air/snow interface over a swath of
400 m by using a maximum scan angle of 80° and recording
the last returned pulse. The vertical accuracy is on the order of
∼10 cm or better due to kinematic GPS uncertainty.

Python’s SkyFilt.py program was used to remove processed
GPS points with heights falling within 50 m of the aircraft, as
in Skourup and others (2018). Gridded LiDAR points provide a
measurement of absolute surface height. The root mean square
deviation of surface height is used to estimate surface roughness,

Roughness =
����������������
1
n

∑n
i=1

(zi − �z)2
√

, (2)

where zi represents the height of the gridded LiDAR surface at n
grid points within a given gridcell and �z are the mean grid heights
within the same gridcell. Gridcell dimensions are described in
Section 2.3.

2.3 Inter-comparison of NDAI, backscatter and LiDAR surface
roughness

A two-scale spatial approach, termed broad-scale and fine-scale,
was used to aggregate data and intercompare the datasets. See
Fig. S2 for schematics of the grids used in data aggregation. For
both scales, the resolution of the MISR data (300 m after process-
ing) was considered when choosing an appropriate gridcell size
and spacing between cells. The broad-scale consisted of a regular
grid of 1.2 km by 1.2 km gridcells separated by 3.8 km intervals,
within the overlapping region of the Sentinel-1 and MISR datasets
shown in Fig. 1 (n = 2407). The selection of 1.2 km2 gridcell
allowed at least 3–4 MISR pixels in each dimension, and the spa-
cing was used to reduce spatial similarity in the sampled dataset.
This scale encompasses a wider range of ice types and conditions
than the area corresponding to the LiDAR flight track; in particu-
lar, a large area of DFYI in Victoria Strait. This aggregation
approach was used to evaluate the congruence of NDAI and
HH backscatter. Using the Sentinel-1 scene and a weekly
Canadian Ice Service (CIS) ice chart from 10 April 2017 as refer-
ence, a subset of cells representing homogeneous FYI (n = 160),
DFYI (n = 151) and MYI (n = 160) were manually delineated
(Fig. S3). Sentinel-1 backscatter samples were converted to decibel
(dB) format after broad-scale aggregation.

The fine-scale grid consisted of 1.2 km by 0.4 km cells sepa-
rated by 0.6 km intervals, centered on the LiDAR flight path.
The width of 0.4 km was chosen because it corresponded to the

Table 1. Information about the sensors and products used to assess sea-ice backscatter and surface roughness

Platform Payload Date (dd-mm-yy) Direction/mode Orbit (path/track) ID(s) Format

S1A SAR-C 09-Apr-17 Des/EW 16068 (71) DFD1, F42F GRD
S1B SAR-C 10-Apr-17 Asc/EW 5099 (173) 0A4B, B132 GRD
S1A SAR-C 11-Apr-17 Des/EW 16097 (100) 3245, E3EA,

5D71, 3AA2
GRD,
SLC

S1B SAR-C 12-Apr-17 Asc/EW 5128 (27) 2A30, B846 GRD
S1B SAR-C 13-Apr-17 Asc/EW 5143 (42) 240D GRD
S1A SAR-C 14-Apr-17 Des/EW 16141 (144) 340A GRD
Terra MISR 12-Apr-17 Des/NA 92114 (43) B30–B35 F03
Twin Otter RIEGL LMS Q-240i-80 11-Apr-17 – – – ALS
RS2 SAR 05-Apr-17 Des/FQn 48591 PDS_05711970, PDS_05711980, PDS_05711990, PDS_05712000 SLC

S, Sentinel; RS, RADARSAT; Des, descending; Asc, ascending; EW, extended wide-swath; GRD, ground range detected; FQn, fine quad pol; Bxx, band number (MISR data); Fxx, format version
number (MISR data); ALS, airborne laser scanner; SLC, single-look complex.
SLC images are used in Section 2.4 exclusively.

Fig. 3. Schematic showing MISR, LiDAR and Sentinel-1 data pre-processing (top to
bottom) for the broad-scale and fine-scale analyses. Broad-scale and fine-scale
aggregations of the MISR NDAI, Sentinel-1 backscatter and LiDAR roughness datasets
are used for inter-comparisons and are described in Section 2.3.
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LiDAR swath, and the spacing allowed 1–2 MISR pixels between
gridcells and reduced spatial similarity in the sampled dataset.
This aggregation scheme enabled inter-comparison of all three
datasets: HH backscatter, NDAI and LiDAR-derived roughness
(from a total of n = 129 gridcells). Only FYI and MYI are found
along the LiDAR flight path, so no DFYI samples were included
in this dataset. Each gridcell was labeled as FYI, MYI or mixed ice,
the latter label referring to a mixture of FYI and MYI within a sin-
gle cell. Backscatter samples were converted to dB format after
fine-scale aggregation.

Inter-comparisons at both broad- and fine-scales were done
using correlation (Pearson’s r) and least-squares regression ana-
lyses. Least-squares regression analysis was used in the broad-
scale comparison of NDAI and HH backscatter to map regression
residuals and enable assessment of the agreement between vari-
ables in a spatial context. Regression analysis was applied to the
fine-scale dataset to assess the utility of NDAI and HH backscat-
ter for estimating roughness, either for a given ice type, or for
both FYI and MYI by using a balanced sample for inputs to the
model (i.e., roughly equivalent number of samples by type).

2.4 Identification of MYI

Volume scattering from MYI is known to impact the relationship
between roughness and backscatter at C-band frequency
(Hallikainen and Winebrenner, 1992). To assess whether
Sentinel-1 can be used to accurately delineate, and possibly
mask out, MYI areas, the H-Alpha dual-pol decomposition was
computed from two mosaicked SLC format images from 11
April 2017 and the unsupervised Wishart classification applied
to the output (Table 1). The following processing chain was
used: (i) TOPSAR-Split (to select EW swaths 2–4), (ii) radiomet-
ric calibration, (iii) TOPSAR deburst, (iv) polarimetric matrices
(C2), (v) polarimetric speckle filter (refined Lee 7 × 7), (vi) polari-
metric classification (H-Alpha dual-pol Wishart classification),
(vii) sub-setting (incidence angle range 30–39°), (viii) map projec-
tion and (ix) mosaicking. The nine output classes produced by the
Wishart classifier were collapsed to two, MYI (classes ≥4) and
FYI (classes <4) using the original Sentinel-1 imagery and a CIS
ice chart for reference.

As dual-polarization decompositions are less commonly
used and less understood for sea-ice applications than decom-
positions of fully polarimetric datasets, four RADARSAT-2
FQn scenes were processed to assess Sentinel-1 classification
performance (see Table 1 for data, and Fig. S4 for processing).
The available RADARSAT-2 images have incidence angles ran-
ging from 39.6 to 42.2°. The following processing chain was
used: (i) radiometric calibration, (ii) polarimetric matrices

(C3), (iii) polarimetric speckle filter (refined Lee 7 × 7), (iv)
polarimetric classification (H-A-Alpha quad-pol Wishart classi-
fication) and (v) map projection. The Wishart classification
product classes were collapsed using the same threshold as the
classified Sentinel-1 imagery.

Accuracies of both the dual-pol and quad-pol Wishart classi-
fications were each derived using a validation set of 100 randomly
stratified points, which were labeled FYI or MYI by expert visual
inspection of Sentinel-1 HH backscatter images. A full processing
chain summarizing the methods in this section is provided in
Fig. S4.

3. Results

3.1 Broad-scale comparison

NDAI and HH backscatter boxplots show that both variables are
generally in agreement for FYI and DFYI but not MYI (Fig. 4).
Correspondingly low values are found in smooth FYI areas,
with NDAI and HH backscatter median values of −0.04 and
−18.53 dB, respectively, as well as correspondingly high values
in DFYI areas, with median values of 0.01 and −13.49 dB, respect-
ively. In Fig. 4, the high interquartile reach of HH backscatter
from "All" ice types is likely due to MYI, where there is a clear dif-
ference between the NDAI and HH backscatter.

Overall, NDAI and HH backscatter are correlated (r = 0.54;
p < 0.0001), though significant correlations are not found for indi-
vidual FYI and MYI ice types (Table 2; Fig. S5). For DFYI, there is
a strong significant correlation (Table 2) and exponential regres-
sion relationship between NDAI and HH backscatter (R2 = 0.88;
p < 0.0001; Fig. 5), indicating that HH backscatter is related to
the reflectance properties of this ice type as captured by the
NDAI. The area containing DFYI, shown in Fig. 5, is to the
south of the LiDAR flight track in Victoria Strait (also refer to
Fig. 1). Though no LiDAR-derived roughness data for this area
were captured in this study, previous work shows that it is a nar-
row, shallow strait (20–30 m deep), where DFYI measured in 2016
had a modal roughness of ∼0.3 m (Williams and others, 2018;
Cafarella and others, 2019). A qualitative comparison of winter

Fig. 4. Box and whisker plot showing NDAI (left) and HH backscatter (right) values by sea-ice type. Whiskers indicate the 90th and 10th percentiles.

Table 2. Correlations (Pearson’s r) between NDAI and HH backscatter

Ice type r p-value n

First-year ice 0.09 0.25 160
Multiyear ice 0.15 0.06 160
Deformed first-year ice 0.91 <0.0001 151
All 0.54 <0.0001 2407

Annals of Glaciology 289

https://doi.org/10.1017/aog.2020.48 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2020.48


period Sentinel-1 imagery from 2016 and 2017 reveals a consist-
ent pattern for the area shown in Fig. 5c. This similarity suggests
that the narrow and shallow strait influences the annual formation
of DFYI in this area.

3.2 Fine-scale comparison

The NDAI and HH backscatter datasets generally trace the
LiDAR-derived roughness along the flight line (Fig. 6). As
expected, NDAI and HH backscatter from FYI have lower values
than MYI and mixed ice areas. Fig. 7 shows that the
LiDAR-derived roughness follows a relatively normal distribution,
whereas the NDAI and HH backscatter distributions are
bi-modal, with an FYI peak at lower values.

Table 3 shows correlation results from the inter-comparison of
NDAI, HH backscatter and LiDAR-derived roughness. For FYI,
NDAI is not significantly correlated to roughness (Table 3),
whereas HH backscatter is significantly correlated. Conversely,
for MYI, NDAI is significantly correlated to roughness, whereas
HH backscatter is not. Using all available samples, both satellite
datasets are correlated with roughness. However, due to the
known impacts of volume scattering on MYI and the weak correl-
ation of HH backscatter and roughness for MYI, correlations
between HH backscatter and roughness for mixed and MYI ice
types are likely unreliable.

Based on the outcome of the correlation analysis, two
least-squares regression models were created from the fine-scale
data: a model for predicting FYI and MYI roughness from
NDAI (Fig. 8a), and a model for predicting FYI roughness from
HH backscatter (Fig. 8b). Both models are statistically significant.

Using the models in Fig. 8, predicted sea-ice roughness is
visualized in Fig. 9. Models of roughness are useful because
they output data in relatable and comparable formats
(Dammann and others, 2018; Gegiuc and others, 2018;
Cafarella and others, 2019). Smooth and rough ice areas are gen-
erally consistent between maps. For example, smooth ice ringed
by rougher ridges is observed in Queen Maud Gulf, and deformed

ice is observed in Victoria Strait. The NDAI-derived roughness is
generally higher than HH backscatter-derived roughness in areas
of FYI (e.g., Dease Strait and portions of M’Clintock Channel)
and DFYI (e.g., Victoria Strait). In areas of MYI, NDAI shows
a wide range of roughness values, while the HH backscatter-
derived roughness is masked.

3.3 Ice type classification

The Sentinel-1 and RADARSAT-2 ice type classification results
are similar, and both have high overall accuracy (κ = 0.83), as
shown in Fig. 10 and Table 4. There is also generally good agree-
ment with the coarser-scale CIS regional weekly ice chart for the
same time period (Fig. 10c). MYI, seen in the Sentinel-1 HH
backscatter image in Fig. 10d as bright and (typically) rounded

Fig. 5. DFYI in Victoria Strait: (a) exponential regression between NDAI and HH backscatter, (b) NDAI, (c) HH backscatter and (d) residuals from the regression
plotted spatially over HH backscatter.

Fig. 6. Sea-ice surface roughness measured using LiDAR (top). The dominant type of
sea ice underlying each gridcell along the flight line is shown, with FYI, MYI and mixed
ice shown as black, light grey and mid-grey, respectively. LiDAR roughness is com-
pared to NDAI (middle) and HH backscatter (bottom). The LiDAR flight line runs
from Victoria Strait to M’Clintock Channel.
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ice floes, qualitatively corresponds to MYI in each classification.
The Sentinel-1 classification identified more MYI than the
RADARSAT-2 classification, as seen by the blue color in Fig. 10e.

4. Discussion

4.1 MISR NDAI

NDAI from this study is comparable to results from other snow-
covered ice regimes such as the Greenland ice sheet, Antarctic sea
ice and an Antarctic ice shelf (Nolin and others, 2001; Li, 2018).
Unfortunately, data about expected NDAI values for cryospheric
environments are not readily available. Nolin and others (2002)
and Nolin and Payne (2007) found that NDAI and LiDAR rough-
ness from glacier ice are strongly related, with R2 values of 0.27–
0.74 and correlations approaching r = 0.9 (except in areas of
smooth ice; r = 0.1), respectively. Better functionality of NDAI
for rougher surfaces is also seen in our study, with significant cor-
relations found between NDAI and roughness for MYI, and
between NDAI and HH backscatter for DFYI. The non-
significant correlation between roughness and NDAI for FYI
may be due in part to the low range of roughness levels that are
difficult to detect using reflectance variations.

More research is needed to understand the sub-pixel geophys-
ical properties like feature spatial scale, orientation and solar illu-
mination that impact angular MISR reflectance and multi-angle
roughness estimates. For sea ice, this means that accounting for
snow properties (e.g., grain size and density) as well as feature dis-
tributions and orientations (e.g., of snow dunes and sastrugi) will
likely lead to stronger and more consistent relationships between
NDAI and sea-ice roughness. A better understanding of sub-pixel
geophysical properties may also help reconcile the findings of two
studies that observed different relationships with roughness using
MISR-based (but not NDAI-based) techniques, described below.

Using a nearest neighbor approach within an optimal predic-
tion radius, Nolin and Mar (2019) found that their MISR-based
roughness calculations are more strongly related to measured

roughness over smooth sea ice (0–20 cm; R2 = 0.52) than rough
sea ice (0–100 cm; R2 = 0.39) in the Beaufort Sea. In the same
study, they also found that MISR-based roughness has about
half the variance of LiDAR-based roughness, especially in areas
of roughness exceeding 20 cm. This discrepancy may be due to
Nolin and Mar’s LiDAR-MISR comparison methods, inclusion
of the nadir camera angle, the application to a different and
potentially mobile ice regime or sub-pixel influences that are
not yet fully understood.

Contradictions in MISR observations of roughness were also
found in a study of Chinese dunes (Wu and others, 2009).
Backscattering was stronger from the site with the least macro-
scale roughness and Aeolian sandy soils, compared to rougher
sites with small coarse-grain sand dunes and Aeolian sandy
soils. Wu and others concluded that rough surfaces usually, but
not always, produce more backward scattering than smooth sur-
faces. Exceptions may be due to sub-pixel sand ripples (which
rise and fall vertically) and the orientation of dune facets that
modify the angular pattern of reflectance.

4.2 Sentinel-1 HH backscatter

As expected, HH backscatter from smooth FYI is low and the range
of values small, meaning that high backscatter from DFYI may be
separated with minimal overlap between the two categories. Results
from this study, and previous studies covering various Arctic
regions, show that HH backscatter from FYI generally increases
with increasing deformation (Table S2). HH backscatter values
for FYI and DFYI within and near the Canadian Arctic
Archipelago are remarkably similar to this study, and extrapolation
of our mapping methods across this region may be possible with
minimal modification. However, contextual knowledge is critical
because SAR backscatter is influenced by a number of parameters
in addition to surface roughness, including the local radar beam
incidence angle (at scales greater than the wavelength), inhomo-
geneities in the ice (e.g., air bubbles, cracks, crystal structure),
orientation of ice features, dielectric properties including brine in
snow and brine at the snow–sea-ice interface, the signal to noise
ratio, as well as frequency, polarization and spatial resolution
(Dierking and Dall, 2007). Moreover, the assumption made here
is that the snow is transparent and Sentinel-1 backscatter originates
at the sea-ice surface. For situations where backscatter occurs at the
snow surface, such as wet snow and reduced radar penetration
depth, azimuth angle controls on backscatter due to orientations
of snow dunes would need to be considered (e.g., see Fraser and
others, 2014). Other regions or ice types may require specialized
datasets for mapping surface properties; for example, to map
Koksoak River ice near the community of Kuujjuaq, Gauthier
and others (2010) required fine-scale radar, hydrographic vectors
and digital elevation models.

Low MYI salinity allows C-band SAR to penetrate the upper
sea-ice volume, where scattering occurs from air bubbles and
other particles within the sea-ice volume; this results in consist-
ently high backscatter regardless of surface roughness (Kim and
others, 1984; Hallikainen and Winebrenner, 1992; Perovich and

Fig. 7. Histograms showing datasets used in the fine-scale comparison. Roughness
measured using LiDAR (top), NDAI (center) and HH backscatter (bottom). Data
from FYI are displayed using light grey whereas data from mixed/MYI are dark grey.

Table 3. Correlations (Pearson’s r) between NDAI, HH backscatter and
LiDAR-derived roughness

Ice type

NDAI and roughness
HH backscatter and

roughness

Pearson’s p-value N Pearson’s p-value N

First-year ice 0.36 0.07 26 0.76 <0.0001 29
Multiyear ice 0.68 <0.001 23 0.12 0.54 28
All 0.71 <0.0001 102 0.74 <0.0001 129
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others, 1998; Geldsetzer and Yackel, 2009). The salinity of MYI
is typically much lower than FYI, in the range of 0.1–3 ppt for
MYI compared to 5–8 ppt for 1–2 m thick FYI (Weeks, 1981)
due to desalination processes that occur at warmer melt season
temperatures. Freshened sea ice due to riverine inputs also
behaves similarly (Segal, 2019; Segal and others, in press). We
recommend further study of low salinity roughness using
X-band and higher frequency SAR (see Supplementary
materials).

4.3 Maps for communities

The intended goal of this study is to use Sentinel-1 HH backscat-
ter to make roughness maps for communities. Therefore, marking

the spatial extent of MYI and riverine output areas could be an
alternative to using optical-derived roughness indices in place of
backscatter because travelers have a wealth of contextual informa-
tion about MYI navigation. Using the Sentinel-1 H-Alpha
Wishart classification, we found evidence that MYI areas are iden-
tifiable during the winter (pre-melt) period. The use of Sentinel-1
polarimetry to identify ice type is opportune because the fresh-
ened ice can be separated from FYI areas using the same images
as the roughness classification, resulting in temporally and
spatially-cohesive information. However, while we found similar
classification accuracy for Sentinel-1 and RADARSAT-2
(κ = 0.83 for both sensors), Engelbrecht and others (2017) used a
polarimetric comparison between Sentinel-1 and RADARSAT-2
and found that Sentinel-1 had lower overall accuracy and κ values

Fig. 8. Linear regressions predicting LiDAR-based
roughness from satellite-derived (a) NDAI, for a
balanced number of gridcells by ice type: n = 26 for
FYI and n = 23 for MYI; and (b) HH backscatter, for
FYI: n = 29. Plots show linear regressions with 95%
confidence intervals. Note that the scales of
the LiDAR-based roughness change between plots.

Fig. 9. Modeled roughness based on regression fits of measured roughness and (a) NDAI, and (b) HH backscatter. The models use the relationships determined in
Fig. 8, which were trained on balanced FYI and MYI data (NDAI) and FYI data (HH backscatter). The largest roughness class in each region (darkest) represents data
that are outside (rougher) than the data used to train the model. In (b), the model is not applied to MYI, shown in blue and obtained from the 10 April 2017 weekly
regional Canadian Ice Service chart.
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than RADARSAT-2 by ∼3% and 0.15, respectively. They sug-
gested the difference might be due to dual-pol scattering mechan-
ism separation difficulties. Furthermore, it is likely that in a region
with DFYI, there would be some overlap with the MYI class. The
area in Fig. 10 that was classified contains MYI floes surrounded
by FYI, but lacks DFYI. Further studies are needed to understand
the findings in areas with DFYI, as well as different scales and
environments like riverine output areas. High noise effects and
artifacts in the HV channel used in dual-polarimetric techniques
may be problematic.

NDAI and HH backscatter thresholds were used to create
pseudo-roughness maps in a format useful for guiding on-ice travel
by people in northern communities. The maps display smooth ice,
moderately rough ice and rough ice types (Fig. 11). Thresholds were

Fig. 10. Evaluation of (a) the Sentinel-1-based H-Alpha dual-pol Wishart classification and its ability to detect areas of MYI (yellow) and FYI (green). Images are from
April 2017 in M’Clintock Channel. Comparisons are made to: (b) the RADARSAT-2-based H-A-Alpha quad-pol Wishart classification, (c) the corresponding weekly
regional sea-ice chart produced by the Canadian Ice Service; and (d) Sentinel-1 HH backscatter (in dB). In (e) the difference between (a) and (b) is shown,
with grey representing areas where the two classifications agree, and blue (red) representing areas where Sentinel-1 found MYI (FYI) but RADARSAT-2 found FYI
(MYI). Images (f) and (g) are insets of (a) and (b) respectively, denoted by the white boxes in the outset images.

Table 4. Confusion matrices for MYI detection using an H-Alpha Wishart
classification on Sentinel-1 imagery (dual-pol) and H-A-Alpha Wishart
classification on RADARSAT-2 imagery (quad-pol)

Classification Class MYI FYI User’s accuracy κ

Dual-pol First-year ice 0 32 1
Multiyear ice 59 8 0.881
Producer’s accuracy 1 0.8 0.919
κ 0.827

Quad-pol First-year ice 4 36 0.9
Multiyear ice 55 4 0.932
Producer’s accuracy 0.932 0.9 0.919
κ 0.832

Producer’s accuracy measures the probability of omission error whereas user’s accuracy
measures commission error. κ is a measure of actual vs. chance agreement in the
classification, as calculated in Congalton (1991).

Annals of Glaciology 293

https://doi.org/10.1017/aog.2020.48 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2020.48


determined by visually inspecting the measured roughness along the
LiDAR track. The moderately rough ice category serves to provide
space between the smooth ice and rough ice categories. An MYI clas-
sificationwas overlaid on theHHbackscatter roughnessmap (Fig. 11;
see Section 3.3). Note that where the Sentinel-1maps (Figs 11b andd)
show areas of MYI, NDAI still shows the roughness categories.

4.4 Snow surface roughness

Snowmobile trafficability is impacted by a combination of snow
and ice surface roughness. As an optical sensor, MISR reflectance
originates at the snow surface, provided there is no atmospheric
interference. In winter conditions, Sentinel-1 C-band SAR pene-
trates through cold and dry snow to either the sea-ice surface,
or the point in the snow where there is a saline and high dielectric
layer in the case of FYI. Consequently, areas with ice rubble cov-
ered by snow may remain rough according to C-band SAR
(Manninen, 1997), but are actually perceived as smooth, traffic-
able surfaces by travelers. Conversely, surface relief can be created
by snow on the sea ice, rather than the ice itself (Polashenski and
others, 2012), and wind-roughened snow decreases trafficability.
This roughening may or may not increase SAR roughness
(Manninen, 1997): microwave sensors can be impacted by snow
properties (e.g., density, grain size, salinity, temperature, ice
crusts) (Perovich and others, 1998; Johansson and others, 2017).

Snow depth distributions depend on wind speeds, particularly
during distinct storm events (Sturm and others, 2002), as drifting
snow particles interact with ice and snow topography (Massom

and others, 2001; Moon and others, 2019), with the degree of
sea-ice deformation playing a role (Fetterer and Untersteiner,
1998; Herzfeld and others, 2006). Snow and the upper ice layers
are systematically related: studies have observed that snow
dunes are largely stationary throughout the ice growth season
(Barnes and others, 1979; Petrich and others, 2012). The snow
cover progresses seasonally; for example, from nearly featureless-
ness (January), to dunes mostly perpendicular to the dominant
wind direction (February), to more consistent dunes parallel to
the dominant wind direction (March–April) and finally to ice
islands (June) (Petrich and others, 2012). However, only coarse
estimates of ice roughness can be made from ice surface measure-
ments (Manninen, 1997), and mismatches between the snow and
sea-ice surface will decrease the accuracy of SAR-based roughness
maps.

There is currently no efficient and cost-effective method for
using satellites to measure on-ice snow depth at the fine scales
(<∼300 m) desired to improve sea-ice roughness maps for com-
munity use. However, snow depth has been estimated at larger
scales using passive microwave data (Stroeve and others, 2006;
Rostosky and others, 2018), Ku and Ka band altimeters
(Lawrence and others, 2018) and spaceborne scatterometer data
(Yackel and others, 2019) or at small temporal scales using air-
borne or in situ studies (e.g., using Operation IceBridge data)
(Kurtz and Farrell, 2011; Newman and others, 2014; Lawrence
and others, 2018). Models like SnowModel can reproduce FYI
snow distributions given significant inputs for a region, including
data on meteorology; sea-ice topography; sea-ice presence, depth

Fig. 11. Thresholded roughness maps from (a) NDAI and (b) HH backscatter. Overlaid gridcells show measured roughness along the LiDAR flight path. Insets of (c)
NDAI and (d) HH backscatter are indicated by a dotted black line.
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and age; sea-ice mass balance; as well as snow depth mean, std
dev. and dune wavelength (Liston and Hiemstra, 2011; Liston
and others, 2018). However, the knowledge of (a) prevailing
winds, which redistribute snow; (b) location, as the central
Arctic has very thin snow depths (Newman and others, 2014);
(c) ice type, as smooth FYI generally has shallower snow depths
than DFYI and MYI (Kurtz and Farrell, 2011; Newman and
others, 2014; Merkouriadi and others, 2017); and (d) date, as
snow accumulates over the season (Petrich and others, 2012);
all allow experienced sea-ice users to infer probable snow cover-
age. However, snow accumulation may be decreasing in the west-
ern Arctic as freeze-up is delayed, from an average of 35.1 ± 9.4 to
22.2 ± 1.9 cm (by 37 ± 29%) (Webster and others, 2014). In situ
measurements show a mean snow depth on smooth FYI of ∼8
cm at Cambridge Bay between October and May, decreasing by
∼0.8 cm a−1 (1960–2014), with linear growth over the season,
peaking in May (Howell and others, 2016).

4.5 Other data and recommendations

This study mainly focuses on evaluating the utility of Sentinel-1
for providing information to communities due to its availability.
Other satellites or satellite modes that are available for a cost
would offer other benefits, but are more difficult for individuals
to access (e.g., RADARSAT-2). For example, northern sea-ice
users would benefit from high-resolution data. While the spatial
resolution of open-access Sentinel-1 images in this region
(40 m) is significantly higher than the MISR images (275 m),
both provide data at scales useful for investigating roughness.
However, with higher resolution datasets, information from
small-scale roughness features like pressure ridges and other fea-
tures (e.g., ice cracks) could be resolved. These finer-scale features
also impact trafficability and safety, as features like pressure ridges
may not be crossable along their entire length.

Other data types like multi-angle and stereo-pair imagery, or
other radar frequencies like L- and X-bands, also offer the poten-
tial to provide information on sea-ice roughness (Table S3).
However, there are currently no other radar frequencies with
freely available and current data, or as extensive a research history
for sea-ice mapping applications as C-band. See Supplementary
materials Section 6.5 for a discussion of current and near-future
satellite datasets that may be useful (high quality and/or afford-
able) for providing sea-ice surface trafficability information to
northern communities.

5. Conclusions

A broad-scale inter-comparison was done of the MISR-derived
roughness index NDAI and calibrated HH backscatter from
Sentinel-1 for an area of winter sea ice comprising FYI, DFYI
and MYI. Overall, NDAI and HH backscatter are significantly
correlated (r = 0.54). Analysis of correlations by ice type revealed
that NDAI and HH backscatter are strongly correlated for DFYI
(r = 0.91) and not correlated for FYI and MYI. Agreement
between NDAI and HH backscatter for DFYI follows an exponen-
tial relationship (R2 = 0.88). For FYI, it is likely that the low range
of roughness for this smooth ice type is not captured by the NDAI
which leads to disagreement. For MYI, the influence of volume
scattering on HH backscatter leads to disagreement with NDAI.

A fine-scale inter-comparison of NDAI, HH backscatter and
LiDAR-derived surface roughness was done along a LiDAR flight
line covering FYI and MYI only (i.e., no DFYI). NDAI and HH
backscatter are similarly correlated with surface roughness, at r
= 0.71 and r = 0.74, respectively. Analyses by ice type revealed
that NDAI is correlated with surface roughness for MYI (r =
0.68), and not FYI, whereas HH backscatter is correlated with

surface roughness for FYI (r = 0.76), and not MYI. However, by
using a balanced dataset of FYI and MYI samples (i.e. similar
number of input samples), a significant regression relationship
between NDAI and roughness is found (R2 = 0.65). Between
HH backscatter and roughness, a significant regression relation-
ship is found for FYI only (R2 = 0.58). In the context of providing
roughness information from Sentinel-1 only, a dual-polarization
classification technique is shown to be effective at identifying
and potentially masking out the MYI areas. Ultimately, results
from the statistical analyses point to the potential use of
Sentinel-1 HH backscatter for mapping FYI roughness, and
MISR NDAI for mapping MYI roughness, to create an integrated
roughness product. A more generalized approach involves separ-
ating smooth ice, moderately rough ice and rough ice types using
NDAI or HH backscatter thresholds and overlaying a multiyear
ice layer on the HH backscatter map to provide extra utility and
accuracy. A comparison of these thresholded maps to
LiDAR-derived roughness data reveals that it is possible to create
clear and simple roughness products for use by northerners from
open-access datasets.

Future quantitative data collection would be useful for further
refining the roughness thresholds considered trafficable in nor-
thern communities. The collection and analysis of high-resolution
validation data close to the focus communities, as well as an
evaluation of higher resolution (i.e., <40 m) and complementary
datasets (e.g., RCM, X-and L-band SAR, multispectral) would
provide additional data for the understanding of community-scale
sea-ice roughness. Further analysis could also address other iden-
tified information needs like ice fractures and slush/water on ice,
and discrepancies between metrics of roughness and the real
experience of roughness in the context of travel (Scharien and
others, 2017; Segal, 2019; Segal and others, in press).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/aog.2020.48.
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