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A CONVERGENCE THEOREM FOR RIEMANNIAN MANIFOLDS

AND SOME APPLICATIONS

ATSUSHI KASUE

§ 0. Introduction

The purpose of the present paper is first to reformulate a Lipschitz
convergence theorem for Riemannian manifolds originally introduced by
Gromov [17] and secondly to give some applications of the theorem to a
class of open Riemannian manifolds.

Let Jt(m, Λ, I, D) denote the class of compact /n-dimensional Rieman-
nian manifolds M such that | the sectional curvature KM of M\ < A2, the
injectivity radius of M> I > 0 , and the diameter of M < D. The original
Gromov's compactness theorem [17: Theorems 8.25 and 8.28] says that
given a sequence {Mn} in Jί{m, A, 7, D), there exist a subsequence {Mn,}
and a C1'1 Riemannian manifold MM such that {Mn>} converges to M^ in
the Lipschitz distance (see [17] for the definitions of CM Riemannian
manifolds and the convergence in the Lipschitz distance). Gromov gave
an outline of an argument to justify this theorem. Later, Katsuda [27]
worked out Gromov's proof in full detail. On the other hand, very re-
cently, Peters [33] and Greene-Wu [16], independently, have improved the
original version as above in a different manner. Both of them make use
of harmonic coordinates and the Peter's argument in [32]. Since the
Gromov's theorem appeared, some applications have been found by several
authors (cf. e.g., [33], [28] and the literature).

In this paper, we shall also reformulate and prove the convergence
theorem in our manner. Our proof is similar to the Peters' or Greene-
Wu's one, but more transparent than theirs. Our formulation of the
convergence theorem is stated as follows:

THEOREM A. Given a sequence {Mn}nβl|2ι... in Jΐ(m, A, I, D), there exist
a subsequence {Mn,} of {Mn}, a smooth manifold M^ and Cuβ diffeomorphisms
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Φn,: Mn> —• M r o (0 < β < 1) such that the pushforward Φn>*gn> of the metric

converges to a metric g^ of class Chβ in the Cu β'-topology (0 <

1).

Φn,: Mn> —• M r o (0 < β < 1) swcΛ 2/m2 the pushforward Φn>*gn> of the met

gn, of Mn, converges to a metric g^ of class Chβ in the Cu β'-topology (0

F<β< D

As is pointed out in [33], the regularity of the limit metric is optimal
in terms of Holder conditions.

The second half of this paper is devoted to give some applications
of Theorem A (or its proof) to Riemannian manifolds of asymptotically
nonnegative curvature. We call a complete connected, noncompact
Riemannian manifold M of asymptotically nonnegative curvature if the
sectional curvature KM of M satisfies

(H.1) KM> - kor0

where r0 is the distance function to a fixed point o of M and k(t) is a
nonnegative, monotone nonincreasing function on [0, oo) such that the

poo

integral tk(t)dt is finite. This class obviously contains the class of

Riemannian open manifolds with nonnegative curvature everywhere. From
the view point of geometry at infinity, it would be natural to study our
class rather than the latter class. In [24], we have constructed a metric
space M(oo) associated with a manifold M of asymptotically nonnegative
curvature. Let us here explain it briefly (see [24] for details). We call
two rays σ and Y of M equivalent if dis^ (σ(t), Y(t))jt goes to zero as ί->
oo. Define a distance δ^ on the equivalence classes by cLίM, [Γ]): = lim^^
dt(σ Π St, ΐ Π St)/t where St denotes the metric sphere around a fixed
point of radius t and dt stands for the inner (or intrinsic) distance on St

induced from the distance dis^ ( , ) on M. Then we have a metric space
M(oo) of the equivalence classes of rays with the distance δ^ which is
independent of the choice of the fixed point (i.e., the center of St) and to
which a family of scaled metric spheres {(l/t)St} converges with respect
to the Hausdorff distance as t goes to infinity. We note that the com-
plement M\Bto of a metric ball Bto with sufficiently large radius t0 is
homeomorphic to Sto X (t09 oo). Actually M is isotopic to Bto (for large
t0). For simplicity we call a connected component of M\Bt (for large t)
an end of M and denote it by Sa{M) (a = 1, , v(M))9 where v(M) is
the number of the connected component of M\Bt or St (for large £). We
write Ma(oo) for the connected component of M(oo) corresponding to
δa{M\ so that {(llt)St Π Sa{M)} converges to Mα(oo) with respect to the
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Hausdorff distance as t -> oo and then Ma{oo) turns out to be a compact

inner metric space. Since Vo\m-x{St Π ia(M))jtm~ι tends to a nonnegative

constant as t -> oo, let us write iroίm_ί(Ma(co)) for the limit. Although

the metric spheres of M around a fixed point are not smooth in general,

we can approximate them by smooth hypersurfaces, e.g., the level hyper-

surfaces of the Riemannian convolution of the distance function to the

fixed point. As is often the case, it is important to know the curvature

of such smooth hypersurfaces. In Section 2, we shall prove the following

THEOREM B. Let M be a manifold of asymptotically nonnegative cur-

vature. Suppose that the sectional curvature KM of M satisfies:

(H.2) κM: = lim sup fK(t) < + oo ,
ί —oo

where K(t): = sup {the sectional curvature of M at points x with dis^o, x)

> t} and o is a fixed point of M. Let St be the metric sphere around o

of radius t. Then for large t, there exists a smooth hypersurface S't of M

which has the following properties:

( i ) (lit) max {max^, disM(*, SO, max^s; dis^S;, y)} -> 0 as t -+ oo.

(ii) There is a Lipschίtz homeomorphism φt: S[ -> St with

,-«<«) <- dt(φt(x), φt(y)) < e ( ί )

d't(x,y)

where ε(t) goes to zero as t-+ oo and dt (resp., d[) denotes the inner distance

on St (resp. SJ).

(iii) The second fundamental form a't of S[ is estimated by

{- (1 + ayj~M tan aJΊΓM - ε(t)}gM < ta't < f 1 + 1 + ε(t) )gM ,

where a is a fixed constant with 0 < a < K/

Moreover if i^o^.^MJ^oo)) > 0, or equίvalently l i m ^ Vo]m (Bt Π

Sa(M))ltm > 0 for some end £a(M), then one has a smooth approximation

St with (i) and (ii) as above, the second fundamental form άt of which

enjoys the following property:

(1 ~ <t))gM < tάt < (1 + ε(t))gM

on St Π £a(M).

Theorem B says in particular that under the additional condition
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(H.2) as above, M(oo) is the limit (with respect to the Hausdorff distance)
of a family of compact (m — l)-dimensional Riemannian manifolds {Mt}
which are bounded uniformly in diameter and in curvature, and moreover
when irolm_1{Ma{oo)) > 0 for some a, the volume of the connected com-
ponent of Mt converging to Ma(oo) may be assumed to have a positive
lower bound uniformly in t. Hence in this case (noncollapsing case), it
turns out from Theorem A that Ma(oo) is a smooth (m — l)-dimensional
manifold with C1'̂ -metric (0 < β < 1). As for the other case (collapsing
case), i.e., irolm.1(Ma(oo)) = 0, we can apply the theory originated by
Gromov and developed by Fukaya (cf. e.g., [12] and the literature) to our
situation.

In the remaining sections, we shall show two applications of Theorem
B. One of them, Theorem 3.2, is concerning the total curvature of a
manifold of asymptotically nonnegative curvature and the other, Theorem
4.1, is on gap phenomena modeled after Euclidean space.

Theorem A is concerning a family of Riemannian manifolds in
Jt(m, A, I, D). However a similar result is still valid for a family of
Riemannian manifolds in Jt(jn> Λ, I, oo) (cf. § 1). In this case, we should
consider a pair (M,p) of a Riemannian manifold M and a point p of M,
and the topology of convergence in Theorem A should be appropriately
modified, because J?(m, Λ, I, oo) may contain complete, noncompact Rie-
mannian manifolds. This will be discussed elsewhere.

This paper is a revised version of a part of [23] which was completed
while the author was a member of the Mathematical Sciences Research
Institute at Berkeley. He greatly appreciates the institute for its hos-
pitality.

§ 1. Proof of Theorem A

The purpose of this section is to prove Theorem A. Before going into
the proof, we shall recall first some facts on harmonic coordinates. We
refer the reader to e.g., Jost [21] and Greene-Wu [16] for details.

1.1. Let M be a compact Riemannian manifold of dimension m with
Riemannian metric gM. Given a point o of M and a unit tangent vector
u at o, we first define the almost linear function ίu(x) associated with u
as follows: Let r(x): = dis^ (o, x), p(x): = expor(x)u, q(x): = exp0 — r(x)u

and then set ΰu(x): = {dis^ (x, q(x))2 — dis^ (x, p{x))2}jAr{x). We assume
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from now that the sectional curvature KM of M satisfies: lϋΓ Î < A2 for a

constant A and the injectivity radius of M at o > 7 for a constant 7 > 0.

Let <5 be a number less that min {1/2, 7r/4Λ} and let S(Λ ) be the vector at

x e Bδ(o) obtained by the parallel translation of u from o to x along the

radial geodesic. Then for each x e Bδ(o), we have

( i ) \h(x)\<r(x\

(ii) I grad £u(x) - ύ(x) \ < 2A2 (sinh 2Λr(:r)/sin 2Ar(x))r\x),

(Hi) I Ψ£u(x) I < {9A2 (sinh 2Ar(x)/sm 2Ar(x))Ar(x) coth Ar(x)}r(x).

Let us take here an orthonormal basis {uu , um] of T0M and set £i\ —

£ut (i — 1, . . ., m). Let ht: Bδ(o) —> /? (i = 1, , m) be the solution of the

Dirichlet problems: Aht = 0 on Bδ(ό) and ht = ίt on 3Bδ(ό), and define a

harmonic map H: Bδ(o)-+Rm by # ( * ) : = (hx(x) - A^o), , Am(x) - Aw(o)).

Then we have the following

FACT 1.1. Lei m, A and I be as before. Then there exists a positive

constant δ(m, A, I) depending only on m, A, and I that given any number

δ < δ(m, A, 7), the above harmonic map H: Bδ(o) -> Rm defines a coordinate

system around o which has the following properties:

( i ) (1 + 7o(m, δA)Y'r(x) < \H(x)\ < (1 + ηo(m, δA))r(x)

(ii) (1 + Vo(m, δA))-'\ξ\2 < ZZj=igi,j(xmj < (1 + ηo(m, δA))\ξf

(iii) \gitj\CitβiB9io)) < Vi(™, A, I, β) (0 < β < 1)

where we set gitj(x): = gM(^hu Vh3). For any harmonic function f on Bδ(o),

one has

(iv) l/k/^co)) < V2(m9 A, I, β) sup* i ( 0 ) |/|.

Moreover given an integer k and a constant Aky suppose that the norm of

the ί-th covariant derivatives (0 < i < k) of the Riccί tensor of M is bounded

by Ak. Then one has

(v) |&,j|ci+*,/»(Sί«o) < film, A, 7, β, Ak)

and for any harmonic function f on Bδ(o),

(vi) ί/U+Mu^co)) < v*(m, A, 7, β, Ak) sup^ ( 0 ) |/ |.

Here the constants ηt (ί = 1, , 4) depend only on the given constants m,

A, I, β, k, Ak as indicated respectively.

1.2. Let us now prove Theorem A in three steps.

Step 1. Let M be a compact Riemannian manifold which belongs to

Jt(m, A, T, D). Fix a positive constant δ such that 0 < 4<5 < δ (m, A, I), where

δ{m, A, I) is as in Fact 1.1. Then we take a subset Γ of finite points

p19 ,pμ of M with di8M(pi9pj) > 2δ (i Φ j) and d i s ^ Λ p ) < 4d for any
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p of M. By the Bishop's comparison theorem, we see that Volm (Bδ(Pi))

> Cj for some positive constant c1 depending only on m, A, and δ, and

furthermore Volm (M) < c2 for some positive constant c2 depending only on

772, A and Zλ Hence we have

,)) < Volm(M) < c 2.

This shows that the number μ as above is bounded by a constant μδ de-

pending only on m, A, I, D, and d. In what follows, for the sake of

simplicity, we assume that the above μ is equal to μδ, by putting pt — pμ

for i: μ < £ < μδ.

Step 2. Set £0: = δ(m, A, I), η0: = ηo(m9 δ0A), δt: = l O ^ l + ^o)~6^o, and

δk: = (1 + %)*£i (2< k< 6), where δ(m, yί, I) and ^(^^ ̂ o )̂ are as in Fact

1.1. We take δj4 as a fixed constant δ as in Step 1 and choose a subset

Γ of finite points p1 ? - -,pμ (μ = μδlβ) of M such that disM(Γ,p) < δx for

any pe M. For each i: 1 < i < μ, we have a harmonic coordinates /^:

Bδo(Pi) -> i?m with the properties described in Fact 1.1. Observe first by

Fact 1.1 that

?0)-^) c H£Bδ(Pi))

for any 3: 0 < δ < δQ, where βm(ί): = {v e Rm: \υ\ < t}. Take a smooth

function ξ: [0, oo) -> [0, oo) such that ξ(t) = 1 on [0, 32] and ξ(t) = 0 on

[̂ 3, oo). Set ft: = ξ(\Hi\) (i = 1, , μ). Then each ft is a smooth function

on M such that the support of ξt is contained in Bh{p^) and f t = 1 on

Bh(pt). Let us now define a smooth map JfM: M —> RN (N = (m + ΐ)μ)

by J^M = (f ifli> * * * 5 ξμHμy ξl9 , £,,). Then Jf M turns out to be a smooth

embedding of M into a ball BN(R0) in i?^, where i?0 is a constant depending

only on m, Λ, I, and D. We fix i: 1 < i < μ, say £ = 1 for simplicity.

Then ^M(Bh(Pι)) can be represented as a graph over H^B^pJ), namely,

= {(*, ΛΉ, , /Λ ? fi,- ,fj:x= (x» , xj € ^ (B , , ^ ) )} , where
ϊ1 and ^ = 5(1^1). Note here that H^B^p,)) c B ^ 2 ) c

Thus by Fact 1.1, we see that for any β: 0 < 0 < 1, the C2'^

norm of F, and the C2'^ norm of F, and the C2'β norm of f3 on Bm(δ2) are

bounded from above by a constant c3 depending only on m, A, I and β

This implies in particular that the length of the second fundamental form

aM of the embedding JfM: M —> BN(RQ) is bounded by a constant c4 depend-

ing only on m, A, I and β.

Step 3. Let {Mn} be a sequence of Riemannian manifolds in
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Jί{m, A, I, D). We identity Mn (resp., the metric gn on Mn) with the image

of Mn by the embedding JPM constructed in Step 2 (resp., 3^Mn*gn) Then

by the observations in Step 2, we have a subsequence {Mn,} of {Mn} and

a compact submanifold MTO of class C2'β embedded in BN(R0) such that

{Mn,} converges to M^ in the C2>βr topology (0 < β' < β < 1) as n' -> oo.

In what follows, we consider sufficiently large n' so that the projection

Πn,\ Mn.-^Mat along the normals to M^ induces a C^-diffeomorphism

from Mn, onto M*,. Hence we have a sequence of Cuβ metrics {Πn,%gn,}

on Moo. We claim here that, taking a subsequence {ή} of {n'} if necessary,

( # ) {ΠA%gfi} converges to a C1'^ metric g^ on M^ in C l ίβ/ topology

(0 < jS' < j3 < 1) as Λ -• oo.

In fact, let {p^J^i,...,^ be as in Step 2 for MΛ, and fix an index i, say

i = 1 for simplicity. Moreover let P (resp., Pn,) be the orthogonal projec-

tion from RN onto Rm = {(x1? , xm, 0, , 0) e RN} (resp., the restriction

of P to the metric ball Bh(pn,Λ) of Mn, around pn.Λ with radius δz). Define

a C2'^ diffeomorphism φn. from Bm(β2) into i?w by φn.\ = PoΠn,op-}. Then

the C2'β-norm of ^n/ is bounded uniformly in ft', and hence φn, converges

to the identity map in C 2 ' r topology (0 < β1 < β). We set gn,.ίfj: =

(Pn'tgn'XdIdXudldxJiiJ = 1, •• ,m). Then the C^-norm of £ n , . M on

J5m( 2̂) is bounded uniformly in n'. Hence taking a subsequence {n"} of

{Λ7} if necessary, we see that as n" -> oo, φn»*Pn»*gn<> converges to a O *

metric on Bm(δ2) in C1'^ topology. Then it is easy to derive the above

claim (#) from this observation. This completes the proof of Theorem A.

1.3. It would be of some use to restate Theorem A as follows:

THEOREM A7. Let {Mn} be a sequence of Riemannίan manifolds in

JK(m, Λ, I, D). Suppose that given a nonnegatίve integer k, the norm of the

i-th coυariant derivative (0 < i < k) of the Ricci tensor on Mn is bounded

uniformly in n by a constant Λk. Then there exist a subsequence {Mn>} of

{Mn}, a smooth manifold M^, and C1+lc'β-dίffeomorphίsms Φn,\ Mn,-^M^

(0 < β < 1) such that as nf goes to infinity, the pushforward of the metric

of M%, by Φn> converges to a metric of class C 1 + M in C 1 + M ' topology

(0 < βr < β < 1). Moreover, if in addition to the above assumptions, {Mn}

is a sequence of Kdhler manifolds, i.e., Mn = (Mn, gn, Jn), then the push-

forward of the almost complex structure Jn, of Mn, converges in C 1 + M '

topology to an integrable almost complex structure J^ on M^ which is
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parallel with respect to the limit metric on MM.

Proof, The first part is a consequence of the argument of the proof

for Theorem A and Fact 1.1 (v). As for the second part, we observe that

the C1+fciiS-norm of the almost complex structure Jn on Mn (with respect

to the harmonic coordinates described in Fact 1.1) is bounded by a con-

stant depending only on m, Λ, I, D, β and Λk, since Jn is parallel with

respect to the metric of Mn. Therefore for a subsequence {n'} of {n},

{Φn>*Jn>} converges in C1+kf topology to an almost complex structure J^

of class C1+fclβ on Mω as n' -* oo. Since Jn is integrable, so is JM (cf. [30])

and moreover since Jn is parallel with respect to the metric of Mn, so is

c/oo with respect to the limit metric on Mm. This completes the proof of

Theorem A7.

Let Mn,, gn', ΛL and g^ be as in Theorem A. In the proof of

Theorem A, we used the apriori estimates in Holder spaces. If we apply

the apriori estimates in Sobolev spaces, we see that the components of

the limilt metric g^, expressed in the harmonic coordinates discribed in

Fact 1.1, are contained in the Sobolev spaces W2'p (p > 1). In particular,

the curvature tensor R^ of g^ are almost everywhere defined (cf. [31] [33:

Theorem 5.3]). Moreover the curvature tensor Rn, of gn, converges weakly

to JROO as nr -» oo, namely, for any smooth covariant 4-tensor T, the inner

product ί <Γ, Rn,) = f TijklRn,.ίjkl converges to ί <Γ, R^}. This
J Mn> J Mn' J Moo

holds for the Ricci tensors or the scalar curvatures of gn,.

Let us now give an application of Theorem A. In order to state it,

we need some notations. For a compact Riemannian manifold M of di-

mension m with metric gM, we set

GM ,

gt{M): = 1

 (n 2Vm f II SM -

M M

<e(M)\ = ~ f IIV-RJI,
V o l ( M Y m - 3 > / m J Λ " "

m

Vol (M)(w"2)/m

c(M)

m(m — 1)

where SM (resp. RM) stands for the Ricci tensor of M (resp. the curvature

tensor of M), GM is a covariant 4-tensor defined by GM{W, Z, X, Y) —

gM{W, X)gM(Z, Y) - gM(Z, X)gM(Y, W), and c(M) denotes the average of the

scalar curvature pM of M: c(M): = pMIVol(M).
J M
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THEOREM 1.1. Let M be a Rίemannian manifold in Jίijn, A, I, D) and

δ a positive number. Then there exists a positive constant ε(m, A, I, D δ)

depending only on m, A, I, D and δ, such that

( i ) if 0ί(M) < ε(m, A,I,D; δ), then M is diffeomorphic to an Einstein

manifold Mr and the Lipschitz distance between M and M' is less than δ\

(ii) if X{M) < ε(m, Λ, I, D; δ), then M is diffeomorphic to a space

form Mr of constant curvature and the Lipschitz distance between M and

M! is less than δ;

(iii) if ££(M) < ε(m, A, I, D; δ), then M is diffeomorphic to a locally

symmetric space Mf and the Lipschitz distnce between M and Mf is less

than δ.

Theorem 1.1 is a consequence from the following

LEMMA 1.2. Let Mn,, gn>, MM and g^ be as in Theorem A.

( i ) If 3&{Mn,) goes to zero as nr —> oo, then g^ is smooth and define an

Einstein metric^ i.e., the Rίcci tensor S^ of g^ satisfies: S^ = (c(MJ)jm), g^,

where c(Mn.) converges to c{MJ) as n'-^oo.

(ii) If 3f{Mn,) goes to zero as n '-xx), then g^ is smooth and has

constant curvature c{Mo)jm(m — 1).

(iii) If &{Mn,) goes to zero as nf -> oo, then g^ is smooth and M^ is

locally symmetric, i.e., the curvature tensor R^ of g^ is parallel.

Proof. Since {c(Mn,)} is a bounded sequence, we have a subsequence

{c(Mfi)} which converges to a constant c as ή —• oo. Observe first that the

components gU of the induced metric on the cotangent bundle T*Mn,,

expressed in the harmonic coordinates described in Fact 1.1, satisfies

Λ 0ij __ o y aiko^Ss 4- 9 V σP<iσrsΓ ι Γ j

^n'Sn' — ^Zj6n'5n'°n';W ^ Δ Z J Sn'Sn'1 n' pr1 n' qs
k>β p,q>r,s

where Δw/ (resp. Γ,,.*,) stands for the Laplacian of gM (resp. the Christoffel

symbols of g^). Suppose that 8&{Mn.) goes to zero as n' —> oo. Then it

follows that g*J satisfies weakly

aij = — β** + 2 y1 £pq£rsΓ i Γ ί

m P, ϊ . r, s

Hence the standard regularity argument implies that gιj is smooth, and

furthermore the Ricci tensor SL satisfies: S^ = {cjm)gO0. Moreover if

X(Mnϊ) goes to zero as nf -» oo, then JίΓ(MJ) = 0 and hence M«, has con-

stant curvature. Finally, let us assume that j2?(Mn,) goes to zero as n'.
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Since the covariant derivative VRn, of the curvature tensor Rn, of Mn,
converges weakly to the covariant derivative V jf?̂  (in the weak sense)
of the curvature tensor R^ of M^ as nf -> oo, we see that V i? M Ξθ.
Then it follows from the regularity argument that gw is smooth and R^
is parallel. This completes the proof of Lemma 1.2.

§ 2. Proof of Theorem B

The purpose of this section is to prove Theorem B in Introduction.
We shall carry out the proof, based on (the proof of) Theorem A and
some facts given in [24]. Throughout this section, let us denote by M a
manifold of asymptotically nonnegative curvature. rp, Bt(p) and St(p),
respectively, stand for the distance to a point p of M, the metric ball
around p of radius t and the metric sphere around p of radius t.

2.1. To begin with, we define a Lipschitz function Fp: M->R
associated with a family of metric spheres {St(p)} around a point p of M
by Fp(x): — lim^c t — disM(x, St(p)). In order to prove Theorem B, we
have to recall the following two facts:

FACT 2.1 ([24: Lemma 1.4]).
( i ) For any fixed point p of M, Fp(x)/rp(x) converges to 1 as x goes

to infinity. In particular, Fp: M-+R is an exhaustion function on M,

namely, {x e M: Fp(x) < t) is compact for any teR.

(ii) As xeM goes to infinity,

max {<£ (u, υ): u,ve V-rp(x)} ->0,

max {< (u, υ): u e V rp(x), veV Fp(x)} -> 0,

where V rp(x): = {υeTxM: \v\=l, t + rp(exp, - to) = rp(x) (0 < t < rp(x))}

and VFP: = {i e ^ t f : \v\ = 1, F^exp.ίi;) - t = F/x) (ί > 0)}.

FACT 2.2 ([24: Lemma 1.5]). Let o be the base point in (H.I) and Jk

the solution of an equation: J" + kJk — 0, subject to the initial conditions:

Jfc(0) = 0 and Jί(0) = 1, where k is as in (H.I). Then for any large £>0

and small ε > 0, there is a constant δ(t, ε) > 0 such that the Riemannian

mollίfier rδ of r (: = r0) (0 < δ < δ(t, ε)) is well defined and smooth on Bt(o),

and it has the following properties:

( i ) \r-rδ\<ε,

(ii) 1 — ε — θx(r — ε) < |Vrδ| < 1 + ε,

(iii) 1 — ε < \Vrδ\(x) if dis^x, #0) > ε,
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(iv) Ψrδ<(l + ε)(logJk)Όrδ,

where <?0 stands for the cut locus of M with respect to the base point o and

θ^s): = max{^C (u, v): u, υeV r(x), r(x) > s}. Moreover the Rίemannίan

mollίfier F§ of F(: = Fo) is also well defined and smooth on Bt(ό), and it

satisfies:

( v ) \F-Fδ\<ε,

(vi)

(vii) ΨFδ > - (1 + ε) Γ k{s)ds on {x e Bt(ό): F(x) > 0} if k =έ 0 near
J F

ΨFδ > - ε - P° k(s)ds on {x e Bt(o): F(x) >0}ifk~0 near + 00,
J F

where Θ2(s): = max {<£(&, v): ueV-r(x), veV-F(x), r(x) > s}.

2.2. Let us now give the proof of Theorem B which is devided into

three steps. In what follows, we assume that M satisfies (H.2) in Theorem

B.

Step 1. Let F(: = Fo) be the Lipschitz function associated with a

family of the metric spheres {S^o)} around a point, say the base point

o in (H.I). Let us fix sufficiently large numbers T and T with T <, T'

and sufficiently small numbers ε, δ (> 0) with δ < δ(T\ ε) as in Fact 2.2.

We consider the Riemannian mollifier Fδ of F on Bτ,{o), and set ΩδtT: =

{xeM: Fδ(x) < T) and ΣδfT: = dΩδ)T. For any xeΣδ,τ, we denote by ηx:

[0, 00) —> M the geodesic which emanates from x and which is tangent to

the outer unit normal of Σδ)T at x. We define three numbers τt(x), τ2(x),

and τs(x) e (0, 00] associated with ηx as follows: τλ{x) \ — inf {t e (0, 00) :

ηx(t)e Ωδ)T}, τ2(x): = inf {t e (0, 00): ΣδtT has no focal points along ^|[Osί]},

and τs(x): = sup{ίe (0, 00): dis^O^s), ΣδfT) = s for se [0, t]}. Clearly, τs(x)

< min {τλ(x)l2, r2(x)}. For the sake of simplicity, we assume that k is not

constantly equal to zero. Then we have

where Λ(t): = t\/K(t), K(t): = sup {the sectional curvature of M at points

x with r(x) > t}9 λ(t): = ί°° k(s)ds, θ(t, ε): = 2ε + Θ1(t - ε) + Θ2(t - ε), and θt

(i = 1, 2) are as in Fact 2.2. Note that

(2.2)
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as ε-»0 and T-+00. In order to prove (2.1), we first observe that the

second fundamental form aδtT of ΣδfT with respect to the outer unit normal

satisfies

(2.3) « ι r

because of Fact 2.2(vi), (vii). Let JTtB be the solution of an equation:

J'τ't* + (T - ε)-2Λ\T - ε)JTjt = 0, subject to the initial conditions: JΓ)fi(0)

= 1 and J£,M = - (1 + ε)λ(T)l(l - Θ3(T, ε)), and set μ2(T, ε): = inf {t > 0;

JTε(t) = 0}. Then Σδ>τ has no focal points along ^^o,*] as long as ^([0, t])

C M\ΩδtT and t < μ2(T, ε), because we have (2.3) and the sectional cur-

vature of M is bounded from above by (T - e)~2A\T - ε) on M\ΩδfT.

Since /^(ϊ7, <0 > /̂ lίΓ, ε), we have obtained

(2.4) r,(*) > μi(T, ε)

if r2(x) < Γ^Λ:). Suppose now that min{r3(x): x6-ΣίfΓ} < ^lίϊ7, ε). Then it

turns out from (2.4) that there exists a geodesic η: [0, 2£] -> M such that

^ = min{τ3(Λ;): xeΣδfT}9 η(t) = ^(ί) (ίe [0, ̂ ]) for some xeΣδtT, and oy(ί) =

ηy(2£ - t)(te[£,2£]) for some yeΣδlT. Since we have by Fact 2.2(vii):

dΨδ(η(t))ldt2> - (1 + ε) Γ fe(s)ds on [0, 2^], it follows that (F9oηY(2£) -
J T

(Fδ°τ))f{ϋ) > - 2^(1 + ε) Γ k{s)ds. This implies that
J T

ε)λ(T)

On the other hand, i is assumed to be less than μ^T, ε), and hence we

have

A(T - ε) < _ f _ (1 - Θ(T9 ε))Λ(T - ε) ^ (1 - *(Γf ε))^(Γ - ε)
a r c t a n <

(1 + ε)λ(T) (1 + ε)^T) (1 + ε)λ(T)

This is a contradiction. Thus we have shown (2.1).

Step 2. Fix positive constants a, b with a < 6 < τr/2\/^ (< + 00). Then

taking a sufficiently large number T and a sufficiently small number ε,

we may assume by (2.1) and (2.2) that min{r3(x): xeΣδtT] > bT. Set pδtT

: = dis^ (ΩδfT, *), Ωδ>τ: = {xe M: 0 < pδ>τ(x) < bT} and i? J f Γ : = {xeM: pδ)T{x)

= aT}. Since pδ>τ is smooth on ΩδlT, ΣδfT is also smooth. Moreover it

follows from (2.3) that
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yopδτ(gM - dpltT)

on ΏδtT, where JTt£ is as in Step 1. In particular, the second fundamental

form άδtT of ΣδfT satisfies

(2.5) άitT > μ*(T, ε, a)gM (μ3(T, ε, a): = (log JτJ(aT)).

Note that

(2.6) (1 + ά)Tμ3(T, ε, a) -> - (1 + α)V^ tan ajJ~M

as ε —> 0 and T —> oo. In order to get an upper bound of &δtT, we compare

ρδ>τ with r ( = r0). Since

^ 1 - (1 + s) Γ k(s)ds-1 (by Fact 2.2 (vii))
JT

> 1 - (1 + e) Γ sk(s)ds • L

> 1 - (1 + ε)υλ(T)

for any xeΣδiT and te [0, 6T], we see that

(2.7) <VFδ, VplfΓ> > 1 - (1 + e)6i(Γ)

on Ωδ>τ. In particular, we have by Facts 2.1 and 2.2

(2.8) min {<fylfΓ, u>: i; € V r(x\ x e Ωδ,τ) > 1 - (1 + ε)bλ(T) - ε,{T)

where εx{T) goes to zero as T-» oo. Moreover it follows from (2.7) that

Fδ > T + {1 - (1 + ε)sλ(T)}pδtT

and hence

(2.9) r > T - ε + {1 - (1 + ε)W(Γ)KΓ

on βδ j Γ, since Fδ < F + ε < r + ε. On the other hand, by Fact (2.1(i)),

we have

(2.10) r < pδtT + (1 + ε2(T))(T + ε)

where ε2(T) goes to zero as T->oo, It turns out from (2.9) that

(2.11) ΨP,,T < U _ + JiT7*l
L pa.r (2 — ε){l — (1 + ε
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on ΩδtT. In fact, by (2.9), we see that the sectional curvature at ηx(t) >

- k{r{ηx{t))) > - k(T - ε + {1 - (1 + ε)bλ(T)}t). Let Jτ>ε be the solution

of an equation: J £ , - k(T - ε + {1 - (1 + ε)bλ(T)}t)Jτ,ε = 0, with e7Γit(0)

= 0 and Jί,,(0) = 1. Then we have

^2pδ,T ^ G°S Jτ,eY ° Pδ,τ(§M — dpδ,τ)

and

(log JτJ(t) = -Λ-U + fA(Γ- e + {1 - (1 + ε)bλ(T)}s)Jτ,E(s)ds]

T - e + {1 - (1 + ε)bλ(T)}s)ds]
Jτ,ε(t)

^ + λ(T-e)

- ί (Γ - ε){l - (1 + e)bλ(T)}

In particular, (2.11) implies that

(2.12) * , < ̂ Γ, „ αfe (MΓ, e,«): - i + ( j , _

Note that

(2.13) (1 + a)Tμ,(T, e, a) -> 1 + i
α

as ε->0 and T—> oo. Finally, let us summarize the results obtained

above. For any large number T, we choose sufficiently small δτ > 0 with

l i m Γ _ δτ = 0 and set Sτ: = ^ . ^ (f: = Γ/(l + α)). Then we have

( i ) max {maxxeSτi0) dis^ (x, Sτ), m a x y 6 ^ dis,, (Sτ(ό), y)}/T -> 0

as T goes to infinity (cf. (2.9) and (2.10));

(ii) the integral curve of rδτl\Vrδτf defines a Lispchitz homeomorphism

φτ from Sτ onto Sτ(ό) such that

α-ε{T) ^ dτ(φτ{x),ψτ(y)) ^ β ( Γ )

tί 2^2 ^ _ i ^ >

dΓ(x, y)

where ε(T) goes to zero as T—•oo and dΓ (resp., dΓ) denotes the inner

distance on Sτ (resp., Sτ(o)) (cf. (2.8) and Fact 2.1);

(iii) the second fundamental form άτ of Sτ in M satisfies

(1 + α)V^ tan α^Έ^ - ε(T) < Tατ < 1 + — + e(T),
α
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where a is a constant with 0 < a < π/2^κ^ (cf. (2.5) and (2.12)). Thus we

have proved the first assertion of Theorem B.

Step 3. We are now in the position to prove the second assertion of

the theorem, by applying Theorem A to our situation. Suppose that

Volm (Bt(ό) Π ia{M))ltm is bounded away from zero as t —> oo, for some end

Sa(M) of M. This is equivalent to saying that

Tolm-1(Ma(oo))^ lim V o l ^ φ ί o ) Π
ί-oo

= ]imVolm.,(S< Π S
t-*oo

> o,

where {St} is as in Step 2. For the sake of simplicity, we assume that M

has one end, so that irolm_1{M{oa)) is positive. Then if the dimension m

of M is greater than or equal to 3, the family {{ljt)St} of compact Rieman-

nian manifolds is bounded uniformly in curvature, diameter and volume,

and hence it turns out from Theorem A that when m > 3, M(oo) is a

smooth manifold with a Riemannian metric of class C1>/S(0 < β <1), since

M(oo) is the limit of {(llt)St} with respect to the Hausdorff distance. In

order to construct smooth approximations {St} stated in the second

assertion of Theorem B, we first observe that the injectivity radius of M at

a point x is bounded from below by cr(x) for some positive constant c.

Actually, this follows from the argument in the proof of the first assertion

of the theorem. Secondly, let us consider a family of Riemannian mani-

folds {(l/t)M} and set At(a, b): - {xe(l/t)M: b < dis, (o, x) < a}, where

die; (o, x): = (lit) dis^ (o, x). Then we have the following

LEMMA 2.3. Fix two positive numbers α, b with a > 6. Then for large

t, there exists a C2>β-diffeomorphίsm Πt (0 < β < 1) from At(a, b) into the

cone <&(M(oo)) over M(oo), i.e., #(Λf(oo)): = [0, oo) χ,2M(oo) which has the

following properties: as t goes to infinity, Πt(At(a, b)) converges to [a, b]

Xt2M(oo) and Πt*Gt converges to the metric dt2 + tfg^ in Cuβ topology

(0 < β' < β < 1), where Gt (resp., gj is the Riemannian metric of (l/t)M

(resp., M(oo)).

The second assertion of Theorem B is an immediate consequence of

Lemma 2.3. Actually, (after fixing constants a, b as above with b < 1 <

α,) we can take the hypersurfaces St: = Π^\{1} X M(oo)) as required ap-

proximations for the metric spheres St(o).
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Proof of Lemma 2.3. We first observe that the injectivity radius of

(l/t)M on At (10a, 6/10) is bounded from below by a positive constant c

(independent of t) and the sectional curvature Kt of (l/t)M (for large t) is

pinched as follows: — ε(t) < Kt < 1046~2Λ;M, where ε(t) goes to zero as

t -> oo. Given a small positive constant δ < 10"26, we take a finite number

of points xttu-"9Xttμ of At(4a, 6/4) (for large t) such that dis, (xtfU xt)j)

>2δ(iΦj), dis, (JCM, o) > 6/10 + 2<5, and the union of the metric balls

Bti2δ(xt,i) of (llt)M around xtti of radius 2δ covers At(2a, 6/2). Then the

number μ is bounded from above by a positive constant μ0 which is in-

dependent of t. In fact, by setting A: = 106~V^> we have

du < Volm ( U Bt>δ(xtfί))
A

< i V o l m ( β β α ί / o ) )

(cf. [24: Lemma 1.2])

m

where Jk is as in Fact 2.2 and Jΐ(oo): = lim^^ J'k(t)(< exp Γ ^ ( ί ) ^ ) (cf.

[14: Theorem C])). Thus we can apply the argument of the proof of Theorem

A to our situation and obtain the maps Πt: At(a, 6) -^^{M{oo)) (for large

t) mentioned in Lemma 2.3, since At(a, 6) converges to [a, b] X ί2M(oo) with

respect to the Hausdorff distance as t goes to infinity. This completes

the proof of Lemma 2.3.

2.3. Let us now give two corollaries to Theorem B.

CORLLARY 2.4. Let M be as in Theorem B. Suppose that the dimen-

sion m of M is greater than or equal to 3 and, for some end £a{M) of M,

irolm.ι{Ma(oo)) is positive. Then:

( i ) Mα(oo) is a compact smooth manifold of dimension m — 1 with

Chβ metric (0 < β < 1) such that the diameter diam (Ma(oo)) is not greater

than π and the volume Volm.ι(Ma(oo)) is equal to i/Όlm.ί(Ma(oo)) and not

greater than the volume of a metric ball with radius diam (ikfα(oo)) in the
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sphere of constant curvature 1.

(ii) If κM < 3 and Ma(oo) is simply connected, or if m is odd and

Ma(oo) is orίentable, then the ίnjectivίty radius of Ma{oo) is not less than

π/Vl + fcM and Volm_! (Mα(oo)) is not less than the volume of a metric ball

with radius π/Vl + κM in the sphere of constant curvature 1 + κM.

(iii) If diam(Mα(oo)) > π/2, Volm_j (Λfα(oo)) is not less than the volume

of a metric ball with radius π\2\l\ + κM in the sphere of constant curvature
1 + Ku.

Proof. Since Mα(oo) is the limit (in Cuβf topology) of a family of

compact Riemannian manifolds {St} such that their diameters are uni-

formly bounded from above, their volumes are uniformly bounded from

below by a positive constant, and further the curvature Kt of St satisfies:

1 — ε(t) < Kt < 1 + κM + ε(t), where ε(t) goes to zero as t -> oo, the first

assertion (resp., the second assertion, the last assertion) turns out to be

true because of the Rauch's comparison theorem (resp., the Klingenberg's

theorem (cf. [4: Ch. 5]), Lemma 2 in [3]). This completes the proof of

Corollary 2.4.

COROLLARY 2.5. Let M be as in Theorem B. Suppose that the di-

mension m of M is greater than or equal to 3 and for an end Sa(M) of

M, irolm_1(Ma{oo)) is positive. Then Ma(oo) is isometric to the space form

of constant curvature 1, if an integral | ^ / K r + l ) 2 p ~ w is finite for some

p > 1, where ρM (resp, r) denotes the scalar curvature of M (resp. the di-

stance to a fixed point).

Proof. In what follows, we assume for the sake of simplicity that M

has one end and we keep the same notations as in Lemma 2.3. Suppose

that the integral \pM\p(r + iyp-m is finite for some p > 1. We observe

that this is equivalent to the condition that the integral \\RM\\p(r + l)2^-m

J M

is finite, since H-R̂H < cJ\pM\ + kor) for some constant cm depending only

on m, where RM denotes the curvature tensor of M and k is as in (H.I).
Then it follows that \\Rt\\ converges to zero as t—> oo, where Rt is

Jilt(α,6)

the curvature tensor of (l/t)M. Therefore, applying the same argument of

Lemma 1.2 to the family {At(a, b)}, we see that the cone ^(M(oo)) is flat,

nemely M(oo) has constant curvature 1. This completes the proof of
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Corollary 2.5.

Remark. In Corollary 5.5, the condition: ί \pMHr + l ) 2 p " m < +oo

can be replaced by a weaker one: lim inίt2p'm \ρM\p = 0, where

A(at, bt) = {xeM: bt< r(x) < at} (0 < b < a).

Remark 2.6. Let M be a manifold of asymptotically nonnegative

curvarure. Then the condition (H.2), namely, the finiteness of κu> is ob-

viously equivalent to the condition that the scalar curvature pM of M

satisfies: sup r2ρM < + oo. Moreover given a nonnegative integer k, sup-

pose that the Ricci tensor SM of M satisfies: UV̂ Ŝ  || < cjr ί + 2 for each i:

0 < i < k and some positive constants c*. Then according to Theorem A',

Lemma 2.3 can be restated as follows: Fix two positive numbers α, b with

a > 6. Then for large t, there exists a C2+fc-diffeomorphism Πt (0 < β < 1)

from At(a, b) into the cone <^(M(oo)) over M(oo), i.e., ^(M(oo)): = [0, oo)

Xί2M(oo), which has the following properties: as t goes to infinity,

Πt{At{a, b)) converges to [α, b] χ ί 2M(oo) and Πt*Gt converges to the metric

dt2 + fgn in C 1 + M ' topology (0 < β' < β < 1), where Gt (resp. gj is the

Riemannian metric of (ljt)M (resp. M(oo)).

§ 3. The total curvature of a manifold of asymptotically
nonnegative curvature

A well known theorem of Cohn-Vossen [8] states that if the total

curvature integral KM on a complete oriented two dimensional Rieman-
3 M

nian manifold M is absolutely convergent, then (Iβπ) KM < 1{M), where
J M

KM (resp., X(M)) denotes the Gaussian curvature (resp., the Euler charac-

teristic) of M. Later, several authors, e.g., Huber [19, 20], Finn [11], Maeda

[29], Shiohama [35, 36] etc., interpreted the difference: X(M)-(l/2π) ί KM.
J M

On the other hand, some authors, e.g., Greene-Wu [13], Poor [34], Walter

[38] etc., made their attempts to generalize the Cohn-Vossen's inequality

to 4- (or 6-) dimensional Riemannian manifolds of nonnegative sectional

curvature (outside a compact set). The purpose of this section is to study

some relations between the total curvature and the geometry at infinity

of a manifold with asymptotically nonnegative curvature.

Throughout this section, M is an oriented manifold of asymptotically
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nonnegative curvature and m denotes the dimension of M.

3.1. To begin with, we shall prove the following

PROPOSITION 4.1. Let M be as above and suppose m — 2, then the

following assertions hold:

( i ) The total curvature KM is absolutely convergent.
J M

(ii) X(M) - (l/2τr) ί KM + diam(M(oo))/7r.
JM

(iii) In the case: KM > 0,

2 diam (M(oo)) - inf Length {βl) = inf t L e n

eM *
nf f

D 2 Area (D)

where ^ : = {ue TPM: \ v| = 1, expp ίu e ^ p (the set of all rays starting at p)}

and D ranges over all compact domains of M with smooth boundary 3D.

Proof. We shall prove the first assertion, referring to [24]. We write

KM (resp., KM) for max {0, KM] (resp., max {0, — KM}). Then observe first

that the integral K~A is finite, because of Hypothesis (H.I) (cf. [24: 1.3]).
JM

We fix a point p of M and denote by @τ

v the part of 3tτ

v which consists

of a finite number of closed subarcs in the tangent unit circle parametrized

by the arc-length θ (0 < θ < 2ττ). Then for sufficiently large t, we have

X(M) = X(Bt(p))

where St(p): = St(p) Π exp^ί^J, κgtt is the geodesic curvature of St(p) and

δ(t) goes to zero as t -> oo (cf. [24: Lemma 1.2 and Proposition 2.3]). Since

liminf κgtt > 0 (cf. [ibid.: Lemma 1.2 (iii)]), we have
ί-oo JSt(p)

(3.1) f o o .

This proves the assertion (i). To show the second assertion, it is enough

to prove that

(3.2) f κg , - 2 diam (M(oo)) = lim Length (Sf(p))

as £ -> oo. This is done as follows. For any v(θ) = (sin θ9 cos 0) e ^p, set
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Jθ(t): = dexτρp]tV(θ)t(dldθ) (the Jacobi field along the ray expptυ(θ) with Jθ(0)

= 0 and j;(0) = d/dθ at v{θ)). Then it turns out that Jθ{t) astisfies

In partucular, we have

I Jθ(t) γ = 1 - f' KM (exp p sv(θ)) I Jθ(s) \ ds .
Jo

It follows from (3.1) that for almost all v{θ\ the limit λ(θ) of \Jβ(t)\ as

t -> oo exists and it is given by

=1- Γ KM (ex?p sv(β)) I Jθ(s) \ ds .
Jo

Observe here that λ(θ) = l i m ^ | Jθ(t) \ jt for almost all v(θ). Therefore we

get

ί κg,t= L \J&)\'dθ->[_ λ{θ)dθ
Jsp(t) i*ι 3*1

Length(Sp(t)) _ f h M ^
ί J 5fj t

as ί -> oo. This shows (3.2), because 2 diam (M(oo)) = lim^^ Length (Sp(t))/t

(cf. [24: Proposition 2.3]). Moreover it turns out from the above observation

that

(3.3) 2 diam (M(oo)) = Length {βτ

p) - [ KM ,
3aP

where 2P\ = {expp ίι (^): ί > 0, v(θ) e @τ

p}. Let us now suppose that KM > 0

everywhere on M. Then we may assume that M is diffeomorphic to R2,

because otherwise, M i s a flat cylinder R X S\ Taking account of the

Toponogov's splitting theorem, we see that for any (small) number ε > 0,

there is a point pε of M with

(3.4) f KM<ε

(cf. [29: p. 457]). Now it follows from (3.3) and (3.4) that for any ε > 0,

inf Length (βl) > 2 diam (M(oo))

> Length (βζ) - ε

> inf Length (βΐ) - ε .
M
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Thus we have shown that 2 diam (M(oo)) = infpGilf Length (@ζ). Finally

we shall prove that diam(M(oo)) = I2(M)\ where I2(M): = inf Length (dD)j

Area(D)1/2. This is a consequence of the second assertion (ii) as above

and an isoperimetric inequality due to Fiala [10] and Huber [18]. Actually

their isoperimetric inequality tells us that, for any simply connected do-

main D of M,

Length (3D)2

> i - — ί
4π Area (D)

Thus we have

diam(M(oo)). I2(M)2

~~ 4π

_ diam (ikf(oo))

Remarks, (i) The second assertion can be also derived from the first

assertion and a result by Shiohama [35] (cf. also Finn [11] and Huber [20]).

(ii) Let M be a manifold of asymptotically nonnegative curvature.

Then as is mentioned in Introduction, for each end δa(M), we have the

limit "rolm_x{Ma(oo)) of Vo\m-x(St{o) Π £a(M))\tm-χ as ί->oo, which is in-

dependent of the choice of the reference point o. Moreover it is not

hard to see that

m m(t() Π
~ tm

- lim [ V o l ( S ( o ) n

Thus -r0/ra_,(Λf(oo)): = Σl(=i 'f°L-x(Ma(co)) is related to an isoperimetric

constant Im(M) defined by

I (MY-in£1ΛM).-mt
[γ0lm(Ω)γm.1)/n >

where Ω ranges over all bounded domains of M with smooth boundaries.

Then, we have
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Moreover if the Ricci curvature of M is nonnegative everywhere, we see
that

Im(M) > C(m) [^α/m-1(M(oo))]1/w ,

where C(m) is a positive constant depending only on m. Actually, in this
case, the measure of rays starting at p with respect to the metric on the
unit tangent sphere at p is bounded from below by irolm_1(M(oo))f so that
we can apply a theorem of Croke [7] to our situation.

3.2. As we have seen just above, the situation on M is much simpler
when the dimension m is two. However it is more complicated in higher
dimensional cases. In the next theorem, we consider the case as in
Theorem B.

THEOREM 3.2. Let M be a manifold of asymptotically nonnegative cur-

vature satisfying the condition (H.2) as in Theorem B. Suppose that the

dimension m is greater than or equal to 3. Then the following assertions

hold:

( i ) If the Gauss-Bonnet-Chern integral: ΩM is absolutely conver-
J M

gent, then

KM) - f QM Λ(m,

where κM is as in (H.2), Λ(m, κM) is a nonnegative constant depending only

on m and κM9 and ωm.ι denotes the volume of the unit (m — ϊ)-sphere of

Euclidean space. Moreover if κM = 0, or \ρM\p(r + ΐ)2p~m is finite for some
J M

p > 1, then

1(M) = f

J M

where the summation is taken over the ends <$a{M) with ^<Λm-1(^(00)) > 0.

(ii) The Gauss-Bonnet-Chern integral ΩM is absolutely convergent,
J M

if one of the following conditions holds:
(ii-a) m is odd (ΩM: = 0 by definition).
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(ii-b) m = 4.

(ii-c) The total scalar curvature \ρM\m/2 is finite.

(ii-d) The sectional curvature of M is nonnegative everywhere and M

is not diffeomorphic to Rm (in this case, irolm_1 (M(oo)) = 0).

(iii) In the case: m — 3, 4 or 5, one has

°^> 0.
ωm_1

COROLLARY 3.3. Let M be as in Theorem 3.2 and suppose that m is

odd. Then one has the following assertions:

(i) χ(M)^0φ^/w_1(M(oo))>0.

(ii) X(M) Φ 0 <=> ToU-dMioo)) > 0, if κM = 0, or [ \pM?(r + l)2p-m

J M

is finite for some p > 1.

(iii) X(M) φ 0 <=> 'Toln^ (M(oo)) > 0 if m = 3 or 5.

(iv) X(M) ̂  0 <=φ ^o/^.j (M(oo)) > 0 φ^> M is diffeomorphic to Rm,

if M has nonnegative sectional curvature.

Proof. The assertions (i)-(iii) are direct consequences of Theorem 3.2.

The last one is derived from Theorem 3.2 and the structure theorem by

Cheeger-Gromoll [6].

COROLLARY 3.4. Let M be as in Theorem 3.2. Suppose that m = 4

and

f ΩM.
2(V1 + KM)

Then:

(i) ΨΌl%(Λf(oo)) < Vol3(B r { M )(l + κM))> where r(M): = TΓ/2Λ/Γ+ K~M and

Br(l + tcM) is the metric ball of radius r in the 3-sphere of constant curva-

ture 1 + tcM.

(ii) diam(Mα(oo)) < τr/2, if f o ί 3 (Ma(oo)) > 0 for an end ia(M).

(iii) All of the Busemann functions on M are exhaustion, if ^o/3(M(oo))

> 0 and the sectional curvature is nonnegative.

Proof. The first assertion is just a consequence of Theorem 3.2. The

second one follows from the first one and Corollary 2.4(iii). The last one

is derived from the second one and Corollary 4.4 in [24].

https://doi.org/10.1017/S0027763000001380 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001380


44 ATSUSHI KASUE

Proof of Theorem 3.2. To begin with, let us recall the definition of

the Gauss-Bonnet-Chern integrand ΩM of M (cf. [7]). Let {eu , em} be

an orthonormal frame over a coordinate neighbourhood of M and {θ\ ,

θm] the dual 1-forms. Then the structure equations on M are given by

dθj = ωτj A θ3, dωtj = Ωi} + ωik A ωkj,

where ω{j and Ωtj are, respectively, the connection 1-forms and the cur-

vature 2-forms of M. The Gauss-Bonnet-Chern form is the m-form on M

defined by

Q • = ί f e ^ T Σ S(ίu " ' ' ' ̂ ^ Λ ' ' " Λ Ωi'~^ (m = 2U)

I 0 (m = 2n + 1),

where the summation is taken over all permutations {iu , im) of {1, , m}

and ε(it, , im) is the signature. For an integer k: 0 < k < i[m — 1],

define (m — l)-forms ΠH on the tangent sphere bundle SM of M by

Πk(ϋ) = C*>m Σ β(»». , ίm-i)βίιί3 Λ Λ flto+liM Λ ωUk+lV Λ Λ ω,..,,

for i; e SM, where the constants Ck,m are given by

( - D* 1
πn2n+kk\ 1.3 . . ( m - 2A -

(m =

Let D be a compact domain with smooth boundary dD. Then the Gauss-

Bonnet-Chern formula of [7] reads

(3.5) X(D) = f ΩD- Σfc(-VWΛ3 f * * # * -

where y denotes the unit outer normal to dD. Let {λi}imίt...,m be the eigen-

values of the second fundamental form a of 3D (i.e., a(X, Y): = <v^ ? ί7))-

If we take an orthonormal frame {el9 , βTO} so that y = em, α(e€, e^ =

λiδfi (i,j = 1, , m — 1) along 3D, then the boundary integrands in (3.5)

can be expressed as follows:

v*Πk = ( - l r - ^ C ^ Σ ^ i , , i«-i)O*1<a Λ Λ βί2fc_lί2fc

Λ ii t t + 1^M + 1 Λ Λ A,m_/— .

Here it is convenient for us to introduce the following notations: for
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t > 0, Mι\ = (l/t)M, B>: = the metric ball of Mι around a fixed point of

radius 1, Sι\ = 9J3f, £?': = the Gauss-Bonnet-Chern integrand of Mι, and

i7| : = the (m — l)-form on the tangent sphere bundle of Mι (0 < k <

[m — l]/2). Since S* may not be smooth, we take the smooth approxima-

tion S ί for S* (for large t) as in Theorem B. Then the second funda-

mental form a1 of S' satisfies

(3.6) \&\<>c{κM) + l

for large t, where c(tcM) > 0 depends only on κu. Moreover in the case

that irolm_1(Ma(oo)) > 0 for some end SJJM), we may assume that

(3.7) (1 - ε(t))gt <ά*<(l + e(t))gt

on S£ Π £a(M), where ε(t) goes to zero as t —> oo and gt is the Rieman-

nian metric of Mι. Let us now apply the formula (3.5) to the domains

JB* which are bounded by S*. Then since Mι is isotopic to B\ we have

X(M) =

= ί a* - Σ^T I ) / 2 ] ί vtm,

where vt is the outer unit normal to £K The hypotheses (H.I), (H.2) and

(3.6) imply that if the integral ΩM is absolutely convergent, then
J M

X(M) - f O A(m, O

Suppose further that κM = 0, or ί [/o^Kr+l)223-771 is finite. ThenMα(oo)
J 31

has constant curvature 1 if iroίm.1(Ma(oo)) is positive, and we have

because of (3.7) and the argument in the proof of Corollary 2.5. This

proves the first assertion of Theorem 3.2.

Since ί \\QM\\ < cjί \pM\m/2 + ί korm/2\ for some constant cm, the
J M \ J M J M /

integral ΩM is absolutely convergent, if the condition (ii-c) holds. In
JM
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the case of (ii-d), M has a soul of dimension n > 0 and hence the volume

element of M grows like at most rm~n (cf. [22]). This shows that the

integral ΩM is absolutely convergent. Let us now examine more closely

the cases: m = 3, 4, 5. At first, we assume that m = 4. In this case, we

have

M — ~—Λ 1212-^3434 "T -^1313^2424 "T -ttl414-"2323 I -^1234 ~Γ -^1324 "T

where ΩtJ = %Rμkβ
k A P and du*: = θι A θ2 Λ θz A θ\ If we put Ω~M\ =

max{0, — ΩMjdvM}, then we have

where k and lf(r) are as in (H.I) and (H.2), and r is the distance to the

base point o in (H.I). Since the volume element dυM is estimated (within

the cut locus of M with respect to the reference point o) by dυM < Jk(rfdr

A dθ in terms of the polar coordinates (r, θ) around o, we have

ί Ωradv < + oo .
JM

Thus it is enough to show that

( 3 g ) ^oίΛM(co)) ^ χφt) _ f Qt + ε(t) ^

where ε(i) goes to zero as t —> oo. (3.8) is derived by the following ob-

servations :

lim — vf Π\ = ^ — i — I L .
t-co Jst ωz

lim inf - ί v* Π[ = lim inf J L ί Jl^ 3 2 3 + λlRίm + λίRim > 0 ,

where λ\ (i = 1, 2, 3) are the eigenvalues of a1.

We consider next the case: m = 5. In this case, we have

im inf - ί vfΠ[
£-oo J5«
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1 C
Ί-ί yvi ΐiΛ p I ^2^ 2^ 7?^ I ")ί ")ί ϋ ί I ^t^lt'Dt 2^ 5^ 7?^ I *}ί ")£ D ( I "lί "Jί TZ>t

— A i m 1 Ω I ~ I \^3^4-^*'1212 I ^2^4-^Ί313 I ^2^3-^^1414^1^4-^'2323 I ^1^3-"2424 I ^1^2"^ ^3

lim inf - ί vfU\

— m i l 1111 - I V-Π'1212jΠ/3434 T^ -Γtl313-n'2424 ΠΓ -Γt1414-n'2323 ~Γ -t '1234 "I -tx1324 Π^ -ίt1423 ,

These imply that 1(M) > rTol, (Λf (oo))/ω4.
Finally we assume that m = 3. Then we have

lim-f CT=^
ί-»oo JS« 2

lim inf - ί v*Π[ = lim inf— ί J?ί2l2 > 0 .

These shows that %(M) > rΓol2(M(oo))lω2. This completes the proof of
Theorem 3.2.

Remark. Let M be a complete, minimal submanifold of dimension /n

in Euclidean space RN. Suppose that the total scalar curvature: \aM\m

J M

is finite, where aM denotes the second fundamental form of M. Then
Anderson [1] shows that | aM \ < cjrm for some positive constant c, where r
is the distance to a fixed point of M. In the case of m > 3, M satisfies
(H.I) and (H.2) with κM = 0 and, since M is a minimal submanifold of
Euclidean space, Mα(oo) is isometric to the unit (m — l)-sphere of Rm for

each end &a(M). Thus it follows from Theorem 3.2 that X(M) = f ΩM +

v{M), where v(M) stands for the number of the ends of M.

% 4. Gap Theorems for asymptotically flat manifolds

A result of Greene-Wu [15] says that a complete, connected, non-
compact Riemannian manifold M of dimension m must be isometric to
Euclidean space Rm, if M is simply connected at infinity, the sectional
curvature KM is everywhere nonnegative, and moreover (#): KM vanishes
outside a compact set. Here M is called simply connected at infinity if
for any compact set C, there is a compact set O containing C such that
M\O is connected and simply connected. Moreover, Remark in p. 59 of
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Ballmann-Gromov-Schreoder [2] states (without proof) that the above fact
still holds under a weaker condition: dis^(x, ofKM{x) goes to zero as xe M
tends to infinity, instead of the condition (#). We note that this stronger
statement was actually proved by Greene-Wu [15] under the additional
condition that M possesses a pole o, namely, a point o of M where the
exponential map exp0: T0M -> M induces a diίfeomorphism. (They imposed
there a further additional assumption on M when m = 4 or 8, but it turns
out to be a consequence from the other conditions. See [25, 26] for the
reasoning and also more elementary proofs of the gap theorems in [15].)
On the other hand, we have similar results for the cases of manifolds with
nonpositive curvature (cf. [2: pp. 57-58] [15] [25,26]).

In this section, we shall prove the following

THEOREM 4.1. Let M be a manifold of asymptotically nonnegative

curvature satisfying (H.2). Suppose that the dimension m > 3 and

irolm_ί(M(<χ>)) > 0, and suppose that κM = 0, or ί \pM\p(r + ΐ)2p'm < + co
J M

for some p > 1. Then M is isometric to Euclidean space Rm if one of the

following conditions holds:

( i ) The sectional curvature is nonnegative everywhere.

(ii) The Ricci curvature is nonnegative everywhere and m is odd.

(iii) The Ricci curvature is nonnegative everywhere and M is simply

connected at infinity.

(iv) The sectional curvature is nonpositive everywhere.

COROLLARY 4.2. Let M be a manifold of asymptotically nonnegative

curvature satisfying (H.2). Suppose that the dimension m is odd and the

Euler characteristic χ(M) does not vanish, and suppose that κM = 0, or
\pM\p(r + l) 2 p " m < + oo for some p > 1. Then M is isomorphίc to Euclίd-

J M

ean space Rm if the Ricci curvature is everywhere nonnegative, or if the

sectional curvature is everywhere nonpositive.

Corollary 4.2 follows from Theorem 4.1 and Corollary 3.3.

Proof of Theorem 4.1. We first observe that if m > 3 and irolm_ι{Ma{oo))

> 0 for some end S\(M), then Ma(oo) is isometric to the quotient space
of the unit sphere Sm~\ΐ) of Rm by a group Γa of isometries of Sm'\ΐ)
(cf. Corollary 2.5). Moreover it turns out from this observation, the as-
sumption: irolm_1 (M(oo)) > 0, and the splitting theorem by Cheeger-
Gromoll [5] that i£ the Ricci curvature of M is nonnegative everywhere,
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then M(oo) is isometric to S771"^)//1. On the other hand, we know that

if the Ricci curvature of M is nonnegative everywhere and i/tolm.1(M(oo))

= ωm_j(: = VolOT_1(Sm-1(l))X then M must be isometric to Euclidean space

Rm. Thus we have shown Theorem 4.1 under the condition (i) (cf. [6]),

(ii) or (iii). It remains to prove the theorem under the condition (iv).

Suppose the condition (iv) holds. We note then the following

FACT (cf. [25: Lemma 13]). Let M be a complete, connected, and non-

compact Riemannian manifold of nonposίtίve curvature. Suppose there is

a compact subset C of M such that the fundamental group of a noncompact

component of M\C is finite. Then M is simply connected.

Thus it turns out that M is simply connected, and hence M is dif-

feomorphic to Rm. This implies that M(oo) is isometric to Sm~\ϊ), so that

M is isometric to Rm, because of the Rauch comparison theorem.

Remark. Let M be as in Theorem B and suppose the dimension is

greater than or equal to 3. Then very recently, Uesu [37] has proved

that M is isometric to Euclidean space if M is simply connected and M

has no focal points.
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