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Erdo's (1) has proved the following result:

Theorem A. Every integral polynomial g(n) of degree k ^ 3, represents for
infinitely many integers na(k — Y)th power-free integer provided, in the case where
k is a power of 2, there exists an integer n such that g(n) ^ 0 (mod 2*"1).

He conjectures that by similar methods it should be possible to prove that
every sufficiently large integer N is representable in the form

N = f+m, (1)

where m is (A:— l)th power-free, that is, that the polynomial N—f represents,
for large N and some integer t,l^t <Nm, where co = l/k, a(k— l)th power-free
integer. In his proof of Theorem A, Erdo's uses the following theorem of Van
der Corput (3).

Theorem B. Ifg(n) is an integral polynomial, I a positive integer and x ^ 3,
then there exists a constant c, c>\, independent of x, such that

£ dl(\g(n)\)^x(logxy
1 S n g x, fl(n) * 0

where d(n), as usual, denotes the number of divisors of a positive integer n.

As we will now show, a similar result does hold for the divisor function of
JV— t* summed over integers / satisfying 1 ^ t<Nm. We let cu c2, •••, denote
positive constants independent of JV. Using Van der Corput's method we prove

Theorem C. If N,k and I are positive integers, with N ^ 2 then there exists
cy such that

S= £ d'(N - «*) g JV^log N)ct.

If k = 1, the result is true since

X d'(N-t)= £ d'W^NQogN)2'-1.
1 g t<N t<N

Suppose k ^ 2. We then define rx(v) to be the number of solutions of the
congruence

tK = JV(mod v) (2)
satisfying 1 ^ t g x and we write r{v) = rv(v). It is well known that r(v) is a
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multiplicative function of v, that is, if {vu v2) = 1, then r(vtv2) =
This is proved, for example, in Hardy and Wright (4), Theorem 122. Clearly,
if v ^ x, then

rx(v) g ^ r(v).
v

In the proof of Theorem C we need the following Lemma.
Lemma. If p denotes a prime then the function r(jf) has the following

properties:
iip*)<c2, ifpW, (3)

and, ifp"\\N,p^l, then

= p'~\ ifagfcand j?^a,

= 0, if agfcand J?<a,

r(p') - = 0, if a>k, 0<a and kJfP, (4)
°, \i<x>k, P«x and

Proof. (3) follows from consideration of indices. If pJfN, p>2, let
ind t, t 3= 0 (modp) denote the index of t (mod/?1). If f = iV(mod p"), then
f ^ 0(mod/>) and A: ind t = ind N(mod p"~l(j>— 1)) and so there are at most
k values for ind t. Thus rQ;") ^ k.

ifpXNan&p = 2, (3) is obvious if a ^ 2. If a>2 let N s (-1)^572 (mod 2").
If f = iV(mod20[), then 2J(t and, if t s (-i)il5i2 (mod2a), we must have
d^k = V!(mod 2) and 5Jc = y2(tnod 2"~2). Hence there is one possible choice
for (5l5 and, at most, k for <52. This establishes (3).

To prove (4), we first consider the case a g k. If f = iV(mod pa), we must
have / = 0(mod p), since Â  = 0(mod p). Hence t* = O(mod />*) and so
t* = Otmodp*). If £ ^ a, then Â  s 0(modpa) and rOa) is the number of
integers t such that 1 ^ t ^ p" and r = 0(mod/>), that is p*"1. If 0<a then
r(/>a) = 0, since iV ^ (Xmod/?01).

When a>k we write JV = p"N0 so that P ^ Q . If ]8<a and fc^ then
t* = p^Noimodp") cannot have a solution because p divides f to a power
which, being a multiple of &, cannot be equal to p, making an equation
f = p^No + op" impossible for integral a. Such an equation is possible, if
j8«x and k | p, only if pp \\ t*. Writing p = kp0 we see that if t satisfies
f = Niraodp") then f = 0 (mod p"°). Hence, if )S <a and k \ p, the integers t,
I ^ t ^ p", which satisfy /* = //(mod />a) are in the form f = p^°y, with
1 ^ y ^ / ~ ? 0 and y = A^oCmodp01" .̂ By (3) there are less than

such integers. Finally, if a >k and j8 ̂  a, then N = 0(modpa). Thus the only
solutions of f* = ^(mod pa) are those integers / which are divisible by p°"°, if
k | a, or ptao)]+x, if fc^a. There are less than p"~aco such integers (mod p") which
establishes (4).
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It follows from (4) that, if p | N, we have

We write

S= £ d'(N-tk)=
KJV<

where
l, if j> = N-f* for some f, 1 ^ t<Nm,

0, otherwise.
Hence

and, if v<Nm we have

I ) ^
y<N, )i = O(modD) V

Each >>, 1 ^ y ^ JV, is uniquely decomposed in the form

y = PlP2—PmVl»2-~»n>

where an empty product is defined to be 1. Here, if m 4= 0, pj is prime and
Pj ^ Na,j = 1, 2, ..., m, while if « 4= 0, r^ is the largest integer less than Na

which divides y, and, in general, vt is the largest integer less than Na which
divides y/PiP2---Pmviv2---vi-i- Since y ^ N we have m ^ k and since at most
one of the u's is less than NaU we have n g 2fc+1. Thus

d'(y) ^ 2m'd'

We may write

s = I um
n = 0

where [/„ is the contribution to S of the y's with « u-factors. Thus

If «>0 , we have

y = 1 \ i = 1 v, = 2

where the £' extends over the integers y, I ^ y ^ N, having n t>-factors,
vu v2, ••-, vn. Therefore

UnZ2'k £ I d«2k+lXv) lTT(y),
I = 1 v = 2 y = 1

where the E" extends over the integers y, 1 ^ y ^ iV, having « u-factors and
E.M.S.—P
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u-factor. Thus

N<°

u = 2

^2lk+\2k+\)Nm

y = 1
y = 0 (mod v)

Ny dlm+1\v)r(v)

T(y)

By (3), if pJ{N, we have

+ f
If p\N, we have, by (5), that

1 p01 J~ l 1 p *

Let c5 = max (c3, c4). Then

Um ̂  2lk+\2k+ IJN" f [

^ 2lk+i(2k+1)^1" exp | 5 X
( p g iv» P

Finally, summing over n, Theorem C follows.
In the case / = 1, Erdos (2) has proved the following theorem which is

stronger than Theorem B and which he uses to prove Theorem A.

Theorem D. If g(n) is an irreducible integral polynomial and x jg 2, there
exists a constant c', independent of x, such that

t d(\g(n)\)<c'x logx.
n = 1

If p{u) denotes the number of solutions of the congruence

g(n) = 0(mod u), 1 ^ n ^ u

then a powerful tool in the proof of Theorem D is the following relation (Erdos
(2), Lemma 7),

^ ( ^ \ (6)
p S x log X \l°g */

(6) is a consequence of the prime ideal theorem.

In order to attempt to prove Erdos' conjecture concerning the representa-
bility of every sufficiently large integer N as in (1), it is necessary to have more
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information about £ d(N — tk), k ^ 3, than is contained in Theorem C.
r<N<»

Hooley (5) has given an asymptotic formula for £ d(N — t2) but a similar
| t\<N"2

estimate for £ d(iV —r*), fc> 2, would seem to be difficult.

Comparison of relation (6) with relations (3) and (4) would indicate that
more information about £ r(p) than is at present available would be

p S N°>, pXN

necessary in order to prove the conjecture of Erdo's.
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