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Erdés (1) has proved the following result:

Theorem A. Every integral polynomial g(n) of degree k = 3, represents for
infinitely many integers n a (k — 1)th power-free integer provided, in the case where
k is a power of 2, there exists an integer n such that g(n) # 0 (mod 2¢~4).

He conjectures that by similar methods it should be possible to prove that
every sufficiently large integer N is representable in the form

where m is (k—1)th power-free, that is, that the polynomial N—¢* represents,
for large N and some integer ¢, 1 < 1t <N®, where w = 1/k, a (k— 1)th power-free
integer. In his proof of Theorem A, Erdds uses the following theorem of Van
der Corput (3).

Theorem B. If g(n) is an integral polynomial, | a positive integer and x > 3,
then there exists a constant ¢, ¢> 1, independent of x, such that

d'(| g(m)]) = x(log x)°

12=nsx,9(n)*0
where d(n), as usual, denotes the number of divisors of a positive integer n.

As we will now show, a similar result does hold for the divisor function of
N—¢ summed over integers ? satisfying 1 < t<N® We let ¢, ¢;, ..., denote
positive constants independent of N. Using Van der Corput’s method we prove

Theorem C. If N, k and [ are positive integers, with N = 2 then there exists
¢, such that
S= Y d(N-t*) < N°logN).

1 St<Ne
If £ = 1, the result is true since
Y d(N-t)= Y d(H<N(log N)?'~*.
1 St1<N t<N

Suppose k = 2. We then define r (v) to be the number of solutions of the

congruence
t* = N(mod v) ¢}

satisfying 1 < ¢ < x and we write r(v) = r,(v). It is well known that r(v) is a
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multiplicative function of o, that is, if (v, v,) = 1, then r(v;v,) = r(v)r(v,).
This is proved, for example, in Hardy and Wright (4), Theorem 122. Clearly,
if v £ x, then

r) < Z ro).
v

In the proof of Theorem C we need the following Lemma.
Lemma. If p denotes a prime then the function r(p*) has the following

properties: )
r(pa)<62’ lfp*N’ (3)
and, if p | N, B = 1, then

(= p*~Lifa<kand B2 a,

= Q,ifa < k and f<a,

r(p) 3= 0,ifa>k, f<a and k}8B, 4
< ¢,pP7?°, if a>k, f<a and k|,

(< p*7*, ifa>kand B = a.

Proof. (3) follows from consideration of indices. If p¥N, p>2, let
ind ¢, ¢t £ 0 (mod p) denote the index of ¢ (mod p%). If ¥* = N(mod p*), then
t %= O(mod p) and k ind ¢ = ind N(mod p*~*(p—1)) and so there are at most
k values for ind t. Thus r(p*) £ k.

IfpYNandp = 2,(3)is obviousifa < 2. Ifa>21let N = (—1)"'5" (mod 2%).
If = N(mod 2%, then 2}t and, if t=(—1)"'5%2(mod 2%), we must have
8,k = y,(mod 2) and 5,k = y,(mod 2~ %). Hence there is one possible choice
for 6, and, at most, k for §,. This establishes (3).

To prove (4), we first consider the case « < k. If * = N(mod p?), we must
have ¢t = O(mod p), since N = O(mod p). Hence ¢* = 0(mod p*) and so
t* = O(mod p*). If B = a, then N = O(mod p*) and r(p*) is the number of
integers ¢ such that 1 < ¢ < p® and t = O(mod p), that is p*~*. If B<a then
r(p*) = 0, since N £ O(mod p*).

When a>k we write N = pPN, so that pYN,. If B<a and k}tB then
t* = pPNy(mod p*) cannot have a solution because p divides * to a power
which, being a multiple of k, cannot be equal to B, making an equation
t* = pPNy+ap* impossible for integral a. Such an equation is possible, if
B<a and k| B, only if p#| . Writing B = kB, we see that if ¢ satisfies
* = N(mod p®) then t = 0 (mod p#°). Hence, if S <a and k| B, the integers ¢,
1 £t £p° which satisfy * = N(modp®) are in the form t= pf°y, with
1 <y < p* %o and y* = Ny(mod p*~#). By (3) there are less than

c,pt P pm@B) = ¢, pph
such integers. Finally, if « >k and B = «, then N = O(mod p*). Thus the only
solutions of * = N(mod p*) are those integers ¢ which are divisible by p*®, if

k| o, or pl*@1* 1 if kya. There are less than p*~*® such integers (mod p*) which
establishes (4).
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1t follows from (4) that, if p | N, we have
Pl ifa Sk,

) s)
@ {czp"'“’, ifa>k.
We write
S= Y dWN-H= Y dWTQy
t<Ne 15ysN
where
1,if y= N—¢t*for some t, 1 £t<N®°,
T(y)= .
0, otherwise.
Hence
> T(»)SN®
y<N

and, if v <N® we have

T(y) = rya(v) < %‘-:’— o).

y<N, y = 0 (modv)
Each y, 1 £ y £ N, is uniquely decomposed in the form
Y =P1P2---PmV1V2---Up,
where an empty product is defined to be 1. Here, if m + 0, p; is prime and
pi=N®j=12, .., m whileif n + 0, v, is the largest integer less than N®
which divides y, and, in general, v; is the largest integer less than N® which

divides y/p,p,...pmV103-.-U;;. Since y £ N we have m < k and since at most
one of the v’s is less than N/ we have n < 2k+1. Thus

d(y) £ 2"d'(v)d'(vy)..d'(v) £2¢ Y A D).
1

Sisn
We may write

n=0

where U, is the contribution to S of the y’s with n v-factors. Thus

N
Upgs2¥ Y T = 2MN©,
y=1
If n>0, we have

U, 2% 3 ( s d""“’(v,)) ),

y=1\i=1pv;=2

where the I’ extends over the integers y, 1 < y £ N, having n v-factors,
vy, U3, ..., U,. Therefore

Uﬂézlk i Nz“’ d1(2k+1)(v)

i=1v=2 ¥y

IIMz

" T(y)s
1

where the " extends over the integers y, 1 £ y £ N, having n v-factors and
E.M.S.—P

https://doi.org/10.1017/50013091500011743 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500011743

218 S. McDONAGH

having v as the ith v-factor. Thus

Ne N
U, 2%2k+1) Y d*00) Y T()
v=2 y= )E)Tmlod v)
No  Jl(2k+1)
_S_ 21k+ 1(2k+ I)Nm Z d (v)r(v)
v=2 v
0 1(2k+ 1)/ a
é 2lk+1(2k+ I)Nm H {1+ Z d (P )"(P )}
p S Ne a=1 "
By (3), if p¥N, we have
@ 1(2k+ 1)/ o o ) 1(2k+1)
{1+ § 4 )} < {1+ § @i cz} < {1+ c_}
a=1 D a=1 p P
If p | N, we have, by (5), that
©  JU2k+ 1) ay,. o« k 1(2k+1) 1(2k+1)
{1+ 5 4T )}g{u § @D N (a+1) cz}

=1 P =1 4 a=k+1 e

k o 2k+1)
<liv L 5 @rpyerny § @HEED TP N )y cal
Ple=1 a=1 2% p

Let ¢ = max (c;, ¢;). Then
U, £ 2%*12k+1)N° ] {1+ ﬁ}

Ms

Ead

pEN® §4

< 2%+ 12k + 1)N® exp {Cs > ~1} < 2%*1(2k+1)N*(log N)*>.
pS N« D
Finally, summing over n, Theorem C follows.
In the case / =1, Erd8s (2) has proved the following theorem which is
stronger than Theorem B and which he uses to prove Theorem A.

Theorem D. If g(n) is an irreducible integral polynomial and x = 2, there
exists a constant ¢’, independent of x, such that

Zl d(|g(m)|)<c'x log x.
If p(u) denotes the number of solutions of the congruence
gn) =0modw), 1 <n=su

then a powerful tool in the proof of Theorem D is the following relation (Erdds
(2), Lemma 7),

2 p(p)= Oxx+0< ad ) (6)

pEx log log? x
(6) is a consequence of the prime ideal theorem.

In order to attempt to prove Erdds’ conjecture concerning the representa-
bility of every sufficiently large integer N as in (1), it is necessary to have more
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information about Y d(N—1*), k = 3, than is contained in Theorem C.

t<Ne«
Hooley (5) has given an asymptotic formula for Y d(N—t?) but a similar
|t <NY2
estimate for ), d(N—f*), k>2, would seem to be difficult.

t<N@
Comparison of relation (6) with relations (3) and (4) would indicate that

more information about Y r(p) than is at present available would be
p S N, pYN
necessary in order to prove the conjecture of Erdds.
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