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1. Introduction. Semi-groups of bounded positive operators on certain 
function spaces enter the theory of stochastic processes of the diffusion type 
in an essential way. It is a matter of experience that these semi-groups cannot 
be imbedded in groups of positive operators, or, in more special terms, that 
the solution of a diffusion equation does not define a one-parameter group of 
positive operators on the natural function space. The present work originated 
with an effort to explain this circumstance by showing, under appropriate 
conditions, that a group of positive operators will solve only a first order 
partial differential equation (see §3). Aspects of this problem, however, pointed 
the way to a general study of group representations by bounded positive 
operators on Co(X), the space of real-valued continuous functions vanishing 
at infinity on a locally compact Hausdorff space X. A typical problem arising 
here, for example, was that of determining when a bounded positive group 
representation on C0(X) is equivalent to a pure flow (or isometric) representa
tion. In the main, then, this paper deals with general questions of this type. 

The existence of a certain canonical factorization of elements in a group of 
positive operators provides the technical basis for our study. Expressly, any 
representation a —» Uv of a group G by bounded positive operators on C0(X) 
splits into a product Uff = Le(.f(T)T<r of a flow representation a—^T^ of G by iso-
metries of Co(X) and pointwise multiplications by functions in P(X), the class 
of all positive continuous functions on X bounded away from 0 and infinity. 
In particular, the group of all positive operators on CQ(X) belonging to a given 
flow splits into a semi-direct product of that flow by P(X). While this theorem 
is not essentially new, its implications have not been studied extensively. 

It develops that equivalence properties of the positive representations of 
G on Co(X) hinge on the analysis of certain functional identities. The multipli
cation factors 0(-, a) arising in the factorization of Ua satisfy the characteristic 
identity 0(-, or) = 0(-o-, r) 0(-, a), and the representation [Ua] will be equiva
lent to a pure flow (in a natural sense) if and only if 0(-, a) has the form 
0(*>°") = gCO/gC'0")» for some g in P(X). To provide a natural algebraic 
vehicle for this analysis, certain elementary notions from the cohomology 
theory of Eilenberg and MacLane (2) are discussed in §4. Algebraic techniques 
suggested by this theory, and involving in particular cohomology group 
Hl(G, P(X)), are employed variously throughout the rest of the paper. 
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Our main results in this direction are contained in §§5, 6, and 7. In §5, we 
prove that a bounded positive representation belonging to an ergodic flow is 
already equivalent to that flow, and show by example that bounded repre
sentations are not in general equivalent to flows. In §6, we study the auto
morphism group of the group of all positive operators on C0(X) belonging to 
a given flow. Theorems here concern the semi-direct product structure of the 
group of bounded automorphisms, and the characterization of the group of 
flow-related automorphisms modulo inner automorphisms. In §7, we show 
that the adjoint representation of a given strongly continuous bounded 
positive representation of a topological group G on Co(X) will be equivalent to 
the adjoint of the flow representation provided only a Borel measurable 
factorization of the multiplication factor 0(-,<r) exists. Equivalence of the 
adjoint representations of two positive representations [Ua] and [Vff] of G 
on Co(X) implies that the spectra of U„ and Va coincide. 

The appendix contains an application of the foregoing theory to semi-groups 
of operators. Two one-parameter groups of operators are exhibited with the 
property that the sum of their infinitesimal operators has no extension generat
ing even a semi-group or operators. 

2. Factorization of positive operators. LetL(X) [resp., C0(X)] denote 
the algebra of all real-valued continuous functions with compact support 
[resp., vanishing at infinity] on the locally compact Hausdorff space X. We 
take these spaces with the customary norm on continuous functions, namely 

| | / | | = sup | / (x) | , 
xtX 

so that L(X) is dense in Co(X). A positive operator on L(X) [resp. CQ(X)] is 
by definition an everywhere defined linear transformation of L(X) [Co(X)] 
into itself which carries non-negative functions into non-negative functions. 
Our discussions will center on the class of bounded positive operators which 
have bounded positive inverses —a decisive restriction — and in this section, 
we derive the basic factorization theorem cited in the introduction. 

LEMMA 2.1. Let U be a bounded regular operator on L(X) [resp. Co(X)], 
which together with its inverse is positive. Then there exists a positive continuous 
function p(-) on X, bounded away from 0 and oo , and a homeomorphism x —>xa 
of X such that 
(2.1) U = LpTa, 

where Lv denotes pointwise left multiplication by p(-) and Tff is the automorphism 
(Taf)(x) = f{xa) of LiX)[CoiX)] implemented by a. Components in this factori
zation are uniquely determined, and one has \\U\\ = \\p\\. 

Proof. Suppose that U is a bounded positive operator on CoiX) having a 
bounded positive inverse. We prove first the useful fact that U maps LiX) 
onto itself. For this, it suffices to prove that Uf lies in LiX) for each / in the 
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positive cone of L(X), namely L+(X). Consider then a n / G L+(X) and choose 
an h G L+(X) which assumes the value 1 on all of the support of/. We approxi
mate to Uh by a function g G L+(X) chosen so that 

I l ^ - S l l < (2 | |^- 1 | | ) - 1 , 0<g<Uh. 

We have 0 < U~lg < h and \\U~lg - h\\ < §. It follows that E/-1^ > J on the 
support of/, and therefore, the support of Uf lies in the (compact) support of g, 
proving our assertion. In view of this fact, it will clearly suffice to prove the 
theorem for L (X). 

We next show that there exists a one-to-one map of X on itself, x —» xc, 
such that g(x<r) = 0 if and only if Ug(x) = 0 for each g G L(X). Again it is 
clear that we can restrict our considerations to L+(X). We further note that 
U and its inverse being positive implies that U describes a linear order iso
morphism in L(X) so that U(f V g) = Uf V Ug. Now for fixed ^ 1 , 
we set 

J s s [h;h G L+(X), Uh(x) = 0]. 

It follows from the above remarks that / is a closed positive cone, closed with 
respect to the lattice operation V, and neither empty nor all of L+(X). Let 
Z(h) = [y; h(y) = 0]. If hh h2 G J, then hi V h2 G / and 

Z(Ax V A2) = Z(Ai) A Z(A2). 

Consequently if F = P\ [Z(h)m, h G / ] is disjoint from a given compact set 
C, then there is an A G / with Z(A) H C = </> (the null set). Now if g € L+(X) 
has C as its support, then 0 < g < «A for a sufficiently large and therefore 
0 < Ug(x) < aUh{x) = 0 so that g G / . Since / is a proper subset of L+(X), 
it follows from this that F is necessarily non-empty. On the other hand, F 
can contain no more than one point. For if y%, y2 G F, it is easy to construct 
functions fei, k2 G L+(X) such that ki(yl) > 0, i = 1,2, and k\ /\ k2 — 0. 
Thus 

0 = U(k! A Jfe2)(*) = [ t / i i W ] A [Uk2(x)]. 

Consequently either ki or k2 lies in / , so that F cannot contain both yx and y2. 
Denote the single point in F by xa. We see that Ug(x) = 0 implies g(xo) = 0, 
and xa is the only point for which this assertion holds for all g G L+{X). 
On the other hand if / G L+(X) a n d / vanishes identically in a neighborhood 
of xa, then a compact support for / is disjoint from F = {xa} and hence as 
above / G / . Now any g G L+{X) with g(xo-) = 0 can be approximated in 
norm by functions of the type / and hence any such g belongs to / ; that is 
g{xa) = 0 implies Ug{x) = 0. Finally to show that a maps X onto itself we 
have only to derive the corresponding assertions for U~l and note that these 
involve a~l in place of a. 

For each x ^ X choose a gx G L (X) so that gx (xa) = 1 ; set p (x) = Ugx (x). 
Then for a n y / G L(X), f — f{xa) gx vanishes at xa and therefore 

Uf{x) =f(xa) Ugx(x) = P(x)f(xa). 
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This is the desired representation of U. I t follows from this representation 
t h a t p(x) is non-negative and bounded on X and, since 

U~lf{x) = \p(x<r*)]-if(x<r% 

we see t h a t p (x) is also bounded away from 0. T o prove t h a t x —» xa is a 
homeomorphism let a neighborhood N(xo<r) be given and choose / 6 L+(X) 
so t ha t N(XQ<J) is a support f o r / and/(x0o\) > 0. Since Uf £ L(X), the set 

7V(xo) = [*, p(x)f(xo) > 0] 

defines a neighborhood of x0 with the property t h a t [N(xo)]a C N(X0<T). 
T h e mapping <r is therefore continuous and a similar a rgument applied to 
U~x establishes the continuity of cr_1. I t is now easy to prove t h a t p is continuous 
on X. In fact if N(x0a) is chosen to have a compact closure, then there exists 
an / Ç L+(X) with / ( # ) = 1 for all x £ N(xo<r). In this case £(x) , which 
is identical with Uf(x) in N(xo) = N(xoa)a~1, is seen to be continuous a t 
a t XQ. Finally we note t ha t the uniqueness of the factorization (2.1) follows 
trivially from the fact t h a t LvTa = / (identity operator) entails p — 1, 
cr = e (the identi ty homeomorphism), and so all par ts of the Lemma are 
proved. 

When X is compact the Lemma implies the following result, due to Kadison 
(6) : 

COROLLARY. If X is compact, then any linear order isomorphism of L(X) 
which conserves the identity is implemented by a homeomorphism of X. 

With this, we pass to a characterization of groups of positive operators. 
Some notat ion is needed. Given a group G and a topological space X, we 
say t h a t G acts on X if a representation of G in the group of homeomorphisms 
of X is given. A flow of G in Co(X) (X locally compact) is a representation 
a —> Te of G by a group of isometries of Co (X). Given a flow G in Co (X), one 
can find an action a —> xa of G on X such tha t (Tfff)(x) = f(xa) for all / in 
Co(X) (cf. ( l ) a n d (10)). 

T H E O R E M 2.1. Le/ a -+ Ua be a representation of a group G by bounded 
positive operators on Co (X). These operators Uff have a factorization 

(2.2) U9 = LH.,9)T. 

where, for each a, 0(- , a) is a positive continuous function on X, bounded away 
from 0 and infinity, and a —> Ta is a flow representation of G on Co(X) imple
mented by an action x —> xa of G on X. These functions 6{x, a) satisfy 

(2.3) 6(x, <TT) = 6(xa, T) 6{X, a) and d(x, e) = 1. 

If G is a topological group, and if the representation a —» Uff is strongly continuous, 
then 

(2.4) the mapping (x, a) —» xa is continuous on X X G to X, and 

(2.5) the function 6{x, a) is continuous on X X G. 
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Conversely, given an action x —> xa of G on X and a function d(x, a) subject to 
all the above conditions, then a —» Ua — Le{.,a)Ta defines a strongly continuous 
representation of G on L(X). 

Proof. The representation identity (Uff)~
l = Uv-i assures that each U9 

has a bounded positive inverse, and therefore, the existence of the factorization 
(2.2) follows from the Lemma. Now, 

i«(« , <TT)TOT == U<TT = UffUr = L$(.t C)TvLe(.t T)TT = Le(.t <T)B(><T, T)TaTr. 

By the uniqueness of factorization, therefore, Tar = TaTT and 

0 ( - , ( T T ) = 0(-<r, T)6(-,<T), 

proving the first part of (2.3). That d(',e) = 1 follows trivially from this 
identity. 

We turn to the topological properties. First, given a compact C in X and 
an open VZ> C, we argue, there exists a neighborhood N of the identity e 
in G so that CN C ^ In fact, choose an A in L(X) which is 1 on C and 0 
outside V, and then apply strong continuity to choose N so that 

|0(-,er)A(-<O " M O I < 1 , 
for all a in iV. Trivially, this entails CN C V. 

With this, we can see that (2.4) holds: given x0, <7o, and a neighborhood 
V of Xo<ro, choose a neighborhood Z7 of x0 with compact closure which satisfies 
(U~) (To C V. Now, by the preceding paragraph, choose a neighborhood iV" 
of e so that ([/-) o-0iVC V. This proves (2.4). 

For (2.5), note first that it suffices to prove joint continuity at each pair x, 
e (e the identity) ; in fact, given this, suppose lim xa = x0 and lim <rp = e. Then 

lim d(xa, croo-̂ ) = lim d(xaao, c^-lim d(xa, <TO) = 0(xo, o"o), 

so joint continuity will be established in general. To prove joint continuity 
at x, e, consider any compact set C in X. Choose D compact with C in its 
interior, choose a symmetric neighborhood N of e in G so that CN C D, 
and finally, l e t / be a function in L(X) which is 1 on D. Since f{x<r) = 1 on 
C X N, we then have, for x in C and a- in N, 

\6(x, a) - 1| = |[0(*, cr) - l]/(xcr)| < |^(x, c r ) / (^ ) ~ / ( x ) | + \f(x*)-f(x)\. 

Shrinking N if necessary, we can arrange that the first term on the right be 
arbitrarily small for all x Ç C by appealing to the strong continuity of U„; 
the second term vanishes on C by our choice of / . Thus (2.5) is established. 

The converse follows readily from the fact that, for a n y / in L(X), we can 
choose a neighborhood N of e so that \f(-<r) — / ( 0 | < «» for all a in N, to
gether with the fact that the numbers 6(x, a) will be uniformly close to 1, 
for x in the support of / and a in some neighborhood of e. It may be noted 
here that the converse will hold with Co(X) replacing L(X) if it is known 
that the functions 0(-, <r) are uniformly bounded for a in some neighborhood 
of the identity; this will be the case, for example, if G is locally compact. 
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3. The infinitesimal operator of a group representation. When G 
is the additive group of real numbers with the usual topology, then one can 
define an infinitesimal operator for a strongly continuous representation 
[JJt; — oo < t < oo] of G by bounded positive operators on Co(X) as 

(3.1) l i m ^ = - ^ / = 4 A 

where the domain of A, in symbols D(A), consists of a l l / £ Co(X) for which 
this limit exists. It can be shown (see (5, chap. IX)) that A is a closed linear 
operator with dense domain and that for / £ D(A) 

(3.2) jtUtf=AUtf, - oo < t < œ. 

Thus if A happens to be a differential operator, then u(t, x) = Utf(x) satisfies 
the differential equation 

(3.3) ~u(t}x) = [Au(t,-)](x). 
eft 

We shall now determine the precise form of the infinitesimal operator for 
the above group representation under the assumption that A is a differential 
operator. This requires a certain amount of specialization. In the first place 
the concept of a differential operator does not make sense unless X is a 
differentiate manifold. In general this is not in itself sufficient and we therefore 
make the following additional assumption, which has the effect of imposing 
a degree of local regularity on A. 

ASSUMPTION D. All functions of class C(oo) with compact supports belong to 
D(A). 

THEOREM 3.1. Let [Ut] — °° < / < °°] be a strongly continuous group of 
linear bounded positive operators on Co (X) to itself where X is an n-dimensional 
manifold of class C(oo). If the domain of the infinitesimal operator satisfies 
Assumption Df then there exists a continuous scalar p(x) and a continuous 
contravariant vector field â (x) such that 

(3.4) [Af](x) = â(x)• V / ( « ) + £(*)/(*), / € D(A) H C<», 

where V is the gradient operator. 

Proof. Since this is a local problem, we may suppose that X is represented 
in a neighborhood N(x0) of a given x0 G X by the euclidean coordinates 
(x1, x2, . . . , xn). It follows from Assumption D that D(A) contains a function 

fo(x) which is identically one in some neighborhood, say Ni(xo), of x0. Hence 
making use of the representation (2.2) and the property (2.4), we see that 
there exists an N2(xo) and a ôi > 0 such that 

V-'iUJo -fo](x) = V-1[e(x,V)fo(xr1) - / „ ( * ) ] = r)-l[e(x,ri) - 1] 
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for ail x Ç N2(xo) and \rj\ < ôi. Since /o 6 D(A), the incremental ratio 
^ [ ^ V o — fo] converges in norm as 77 —> 0 and therefore 

^0(x,/) |*=o = 0(x) 

exists uniformly in iV^Xo). It follows that fi(x) is continuous in x; it is obvious 
that 0(x) does not depend on the local coordinate system. 

The domain of A also contains functions /<(#) = x l — x0
f (i = 1, 2, . . . ,w) 

in some neighborhood iV3(x0). Again by (2.4) there exists an Nt(xo) and a 
52 > 0 such that 

V-Wvfi -fiKx) = iT1 PC*,*)/<(**?) ~fi(x)] 
= v'ldix, v) - l] [(**)' - xo<] + V-'KXTJY - x*] 

for all x £ NA(XO) and |-171 < <52. As before the limit exists uniformly in x as 
77 —> 0 and since the first term in the right member converges to a limit we see 
that 

j t (*0*lfr-o = oc\x) 

exists. The limit being uniform with respect to x in N±{XQ), it follows that 
af(x) is continuous in NA(XO). 

Finally suppose/ £ D(A) C\ C(1). Then writing 

T W -/](*) = n-Wx, v) - l]f(xv) + v~l[f(xv) - / (*)] 
and passing to the limit as rj —» 0, we obtain 

[4/K*) = mm + £>'(*) ̂ ?/(*) 
for all x £ iV^Xo) O 7V4(xo). We see from this expression that the al{x) are 
the components of a contravariant vector field in the above local coordinate 
system. This completes the proof. 

We note in particular that the infinitesimal operator of [Ut] cannot be a 
second order differential operator. As a consequence the solution to a diffusion 
equation can never define a strongly continuous group of linear bounded 
positive operators on C0(X). 

4. Introducing the cohomology group Hl(G, P). Consider two repre
sentations [Ua

{l)] and [Ua
(2)] of a group G on L(X) by bounded positive 

operators. Write P{X) (or simply P) for the class of all positive continuous 
functions on X which are bounded away from 0 and infinity. We call these 
representations [Ua

(i)] P-equivalent if, for some p in P, 

(4.1) LpU9WLfi = U^\ 

Suppose (4.1) holds, and let 6(i)(',a) and 7Vi} denote the corresponding 
multiplication and flow factors of the Ua

(i\ in the sense of (2.2). The unique
ness of factorization shows that these constituents are related by 
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(4.2) TV» = 7V», 
and 
(4.3) d^(-,<r)[p(-)/p (•*)} = 6™ (•,*). 

In particular, if 0(1) = 1, so in other words Uff
(1) is a pure flow, and if we write 

simply Uff for Uff
(2\ then (4.3) becomes 

(4.4) 0( - ,e r ) =p(.)/p(-a). 

In other words, a necessary and sufficient condition that a representation 
of G on L(X) by bounded positive operators be P-equivalent to a pure flow 
is that its multiplication factor 0(-, a) have the form (4.4), for some function 
p in P . (In this connection, one should remark that the notion of P-equivalence 
is not so restrictive as might first appear; see Corollary 6.1 below.) 

We see then that significant properties of positive representations of G 
on L(X) are connected with functional identities (for example (2.3) and (4.4)) 
involving their multiplication factors. On the other hand, as the informed 
reader will note, these identities are cohomology statements in the sense of 
the Eilenberg-MacLane cohomology theory (2, p. 55). While our work here 
has a very limited contact with this theory (in that we study only Hl(Gy P), 
the first cohomology group of G with coefficients in P) , it is none the less 
advantageous to adopt a few of these notions for our purposes. These we 
review in the following. 

Definition 4.1. Let G be a group, X a locally compact Hausdorff space, 
and P the multiplicative abelian group of all positive continuous functions 
on X which are bounded away from 0 and infinity. Assume that G acts on X. 
When G is a topological group, we say this action is continuous if the mapping 
(x, <r) —» x<j is jointly continuous. By a cochain (more precisely, a 1-cochain) 
we mean any function 0(-, a) on G to P(X). If G is topological and acts 
continuously, we call a cochain continuous if it is jointly continuous on X X G. 
A cocycle is a cochain satisfying the identity (2.3), viz. 

0(x , <rr) = d(X(T, T) 0(X, O). 

The multiplicative abelian group of cocycles is denoted Z1(G1P). A 
coboundary is a cochain 0(-, a) having the form 0(x, a) = p(x)/p(x<r), for some 
p in P . B1(G,P) will denote their group (clearly, a subgroup of Z1(G}P)). 
By the (first) cohomology group Hl(G, P) (of G with values in P) we mean 
the quotient group Zl(G, P)/B1(G1 P) . 

Returning to the study of positive representations of G on L(X), let us 
say that a positive representation [ U*] of G on L (X) belongs to the given flow 
[T<r] of G on L(X) if there exists a cocycle 0(-, a) in Z1(G1 P) so that Uff — 
Le(.j<T)T0. By (4.3), any representation of G on L(X) P-equivalent to [Uff] 
also belongs to the flow [Tff] and has for its multiplication factor a cocycle 
cohomologous with 0(-, a). These remarks in conjunction with Theorem 2.1 

give 
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LEMMA 4.1. There is a natural 1: 1 correspondence between P-equivalence 
classes of representations of G on L(X) by bounded positive operators belonging 
to a given flow and elements of the cohomology group Hl(G,P) taken relative 
to the same flow. Under the correspondence, representations equivalent to the flow 
correspond to the identity in Hl{G, P). 

The base space Co(X) could have been used rather than L{X) in the above 
discussion. For G topological [resp. locally compact], an obvious variant of 
the discussion applies to strongly continuous representations on L(X) [resp. 
Co(X)] and continuous cocycles. Finally we note for G merely topological, 
that the cobounding continuous cocycles are necessarily bounded and hence 
are in 1: 1 correspondence with the strongly continuous representations on 
Co(X) which are P-equivalent to the flow. 

Example 4.1. Suppose that G is compact, and that a continuous action of 
G on X is given. Then any continuous cocycle 0(-, a) in Zl{G,P) is trivial 
(viz. a coboundary). In particular, therefore, any strongly continuous repre
sentation of a compact group on L(X) by bounded positive operators is equi
valent to a flow. 

In fact, given the continuous cocycle 0(-, a), define 

pipe) = J(?0(x, a) da y 

where da is an element of Haar measure of G. Trivially, p lies in P(X). 
Further, 

p{xr) = fG6(xT, a) da = [d(x, r )]"1 J06(x, TO) da = [6(x, r ) ]" 1 p{x). 

This proves that 0 is a coboundary, and the other assertions follow automati
cally. 

5. On bounded representations. By a bounded positive representation 
of G on L(X) (or C0(X)) we mean a representation by uniformly bounded 
positive operators. If [Ua] is such a representation, and if 0(-, a) is its cocycle, 
then the relation || £7,11 = ||0(-,o-)|| (from Lemma 2.1) shows that 0(-, a) < My 

for all a and some constant M. This and the identity 0(-, cr)-1 = 0(-o-, o--1) 
show in turn that 
(5.1) M-1 < 0(-, a) < M, for all a. 

We shall call a cocycle 0(-,o\) bounded if it satisfies a relation (5.1). Our 
argument shows therefore that a positive representation of G on L(X) is 
bounded if and only if its cocycle is bounded. 

We shall deal in this section with the problem of determining when bounded 
positive representations are equivalent to pure flow representations. This 
comes in other words to determining conditions (on X, or on the flow) under 
which bounded cocycles are coboundaries. The following lemma (with M = the 
class of all positive functions on X bounded from 0 and infinity) shows that 
bounded cocycles do indeed cobound when X is discrete. 
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LEMMA 5.1. Let 0(-, a) be a bounded cocycle in Zl(G, P). Let M be a class of 
positive functions on X, bounded away from 0 and infinity, which contains the 
functions 6(-,Œ) and contains, along with f, the function 0(-, a)f(-ar). Then, 
tf h(') ~ GLB,, 0(-, <r) exists relative to M, we have 0(-, cr) = h(-)/h(-o). 

Proof. We are assuming here that h lies in M, that h(x) < B(x, a), for all 
x and a, and that any other f in M with this property must satisfy / < h. 

Fix on r in G. Then for all x and a, 

h(xr) < 6(XT, a) = 6{x, T<T)/0(X, T), 

or 6(x, T) h(x T) < B(x, rd). Our assumptions about M and h imply now that 
6{x, r) h{xr) < h(x). Substituting xr for x and r_ 1 for r, and making use of the 
relation 6(XT, r - 1) = [6(x, r )]_ 1 , gives the opposite inequality. Therefore, 
B{x, T) h(xr) = h(x), as asserted. 

When X is a Stone space —that is, a locally compact Hausdorff space for 
which C(X) is a conditionally complete lattice—(see (11)), then we apply 
the Lemma with M = P(X) to obtain 

COROLLARY 5.1. If X is a Stone space, then each strongly continuous bounded 
positive representation of a topological group G on L(X) (or CQ(X)) is P-equiva
lent to a flow representation of G on L(X) (resp. Co(X)). 

We call a given action (x, a) —» xa of a group G on X ergodic if each orbit 
xG = [xa\<T 6 G] is dense in X. As we now show under general conditions, 
this restriction on the flow suffices to eliminate non-trivial bounded cocycles. 

THEOREM 5.1. Let G be a group which acts ergodically on the Hausdorff 
space X. Then each bounded cocycle in Z1(G, P) is a coboundary. 

Proof. Fix on a bounded cocycle 0i(-, a) in Zl(G, P). In order to simplify 
notation in the proof, we shall deal with 0(x, cr) = log0i(x, a) rather than 
with 0i, so our conditions on 0 are 

(5.2) —M < 6(x, a) < M and B(x, <TT) = 6(xa, r) + 0(x, a), 

for all x, a, T. Our task is to exhibit a bounded continuous function h(-) on X 
satisfying 
(5.3) 6{x, a) — h(xo) — h(x), 

for then p(x) = exp( — h(x)) will give p(x)/p{xo) = di(x, o) and p Ç P. 
To begin with we assume that X is a single orbit, X = xoG, and establish 

the Theorem in this special case. 
By Lemma 5.1, there exists a bounded (but not a priori continuous) function 

h(-) on X so that (5.3) holds. Since (5.3) will also hold when h(-) is replaced 
by h(-) + c (c constant), we can assume that h(x0) = 0. Therefore, 

(5.4) if x = x0<r, then h(x) = 0(xo, cr). 

(Note from this that X0<T = x0r will entail 0(xo, cr) = 6(x0, r).) We shall prove 
that this function h is necessarily continuous. 
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Grant that we have proved continuity of h at x0, namely, 

(5.5) lim xa = Xo entails lim h(xa) = 0. 

We show that h is then everywhere continuous. For suppose lim xa = y = Xocr. 
By (5.5), lim h(xa a'1) = 0, so we have from (5.3) that 

lim h(xa) = lim,.h(xa o--1) — lim 0(x«, a"1) 
= - 0(y, o-1) = - d(x0(T, o-1) = 6(xo, a) = h(y). 

We now prove (5.5). As the basis of an indirect proof, we can assume 
(replacing h, 0 by —h, — 0 if necessary) that 

lim sup h(y) > e > 0. 

Each neighborhood of Xo will then contain a point y = x0o- for which 0(xo, 0") 
> e. Choose any a = <n for which 0(xo, o"i) > e. Assume elements o-i, . . . , an 

of G have been chosen so that 

(5.6) 0(xo, crn • . . en) > (» - l)e - I | + . . . + -^zrj 

Choose a neighborhood iV of x0 so that y in N gives 

0(3;, an . . . o-i) > 0(xo, cr„ . . . cri) — g5 , 

and then choose an+i so that #oo"n+i lies in N and 0(xo, oVfi) > €. We then have 

0(xo, <rn+i . . . 0-1) = 0(xO0Vfi, <*n • • • ̂ 1) + 0(*o, <rn+i) > we — - + . . . + ^ J , 

so <rn is defined for all n and (5.6) can be realized. This inequality shows that 

(5.7) 0(x0, (Tn • • • 0-1) > in — 2)e, for all n. 

But this contradicts the boundedness of 0. Therefore the Theorem is proved 
in the single orbit case. 

We turn next to the general case. Choose any orbit II = x0G and any 
point x in X. By what we have proved, there is a bounded function h, defined 
and continuous on II, and satisfying 

(5.8) 0(y, a) = h(ya) - h(y) (y in II, a in G). 

Accordingly, for any subset S of X, 

(5.9) V a r snn H ° < V a r5nn H 'a) + Va r5d{ "'a)' 

By the continuity of h on II, given e > 0, there exists a neighborhood U of x0 

so that 

V aVnn*< •><*«• 
Since xG is dense, by assumption, we can choose a in G so that xa Ç £/, and 
in turn, we can choose a neighborhood V of x so that I V C £/. Shrinking V 
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if necessary, we can assume that Vary #(*, <r) < I*, because 0(-, a) is con
tinuous on X. With S = F, (5.9) then yields 

(5.io) VarFnn A( ° < €-

Therefore, if x« is a sequence in II with lim xa = x, then lim &(xa) will exist 
and depend only on x. This shows that h(-) extends to a function h(-) on the 
closure X of II which in particular satisfies 

(5.11) Vaiyft(-) < € . 

Since x is arbitrary, it follows that h is continuous on all X. In particular, 
continuity shows that (5.8) holds for this h and all y in X. This proves Theorem 
5.1. 

A fortiori, if G is a topological group acting continuously and ergodically 
on X, then any bounded cocycle is automatically continuous. We summarize 
the implications of this Theorem as they apply to bounded positive repre
sentations. 

COROLLARY 5.2. Let a —» Uv be a strongly continuous bounded positive 
representation of the topological group G on C0(X). Assume that no non-trivial 
closed ideals of Co(X) are invariant under this representation. Then [£/,] is 
P-equivalent to a strongly continuous flow representation a —> Ta of G on Co (X). 

Proof. Let [TV] be the flow associated with [Uff] (as in Theorem 2.1). 
We know that a —* Ta is strongly continuous. That the action of G on X 
implemented by Ta is ergodic follows from the well-known characterization of 
closed ideals in C0(X) (viz. as the class of all functions in Co(X) vanishing on 
an arbitrary closed set). The bounded cocycle associated with [Ua] is therefore 
a coboundary, by the Theorem, and the conclusion follows from the remark 
following Lemma 4.1. 

Example 5.1. We conclude this discussion by showing that bounded co-
cycles do not in general cobound. 

For X take the two-point compactification [— oo, + œ] of the reals, and 
for G the additive group of real numbers with the usual topology. Define the 
action (continuous) of G on X by setting xt = x + / for x finite and xt — x 
for x infinite. Next, define 

(2 for x = — œ , 

2 + sin |x|^ for x finite, 
2 for x = + co , 

and set d(x,t) = p{x)/p{xt). A straightforward computation shows that 
0(x, t) is a bounded (continuous) cocycle in Z1(G, P). However, p(-) does not 
belong to P{X) since it is not continuous on the closed interval [— oo, oo]. 
Now, it is easy to see that any positive function q defined on (— oo, oo) 
with the property 6(x, t) = q(x)/q(xt) must be a positive constant multiple 
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of p; no such multiple can have a continuous extension on [— oo, oo]. I t 
follows that O('jt) cannot be a coboundary. 

6. Automorphisms of groups of positive operators. Let F be a group of 
homeomorphisms of the locally compact Hausdorff space X. In abuse of 
notation, we shall also write F for the group of isometries [TV] of L{X) imple
mented by the a in F. Denote by M the group of all multiplication operators 
[Lp;p Ç P] on L(X). Finally, denote by © the group of all regular positive 
operators with positive inverses on L{X) whose canonical factorization 
LpTa has Tff Ç F. We may describe ® as the group of all positive operators 
on L(X) belonging to the given flow F. Group-theoretically, @ is the semi-
direct product FM of the subgroup F and the (normal abelian) subgroup M. 
This section concerns a study of automorphisms of the group @, and our results 
here will serve to clarify the significance of some of the algebraic formalisms 
we have adopted. 

LEMMA 6.1. M is a normal maximal abelian subgroup of ®, and any other 
normal abelian subgroup of @ already lies in M. 

Proof. If we write p* for the function p*(x) = piped), then the relation 

shows that M is normal. Suppose that U = LPT„ is any element of ® com
muting with all elements of M. We have 

or qp = q*p, or q = qv, for all q in P. This clearly entails a = e (the identity), 
and it follows that U = Lv lies in ikf, proving that M is maximal abelian. 

Suppose that U = LqTa is an element of some normal abelian subgroup 
N of @. For each p in P , N will then contain 

Lip\LiQl a)Lip-\ = L,(pq/p<r)l „, 

and this element of N will in turn commute with U. The commutation relation 

(L(VQijP)Tv)iLQT<r) = iLqTa)iL{pq,p<T)Ta) 

gives 

PQ<f/P" = Qtfp'/P* y and hence pp* = ip°) 

for all p. Again, it is easy to conclude that a = e, so that U lies in M. This 
proves the Lemma. 

We call an automorphism <p of ® bounded if, for some constant K and all 
17 i n®, 

K~i\\U\\ <\W{U)\\ <K\\U\\. 

The inverse of a bounded automorphism is automatically bounded, and we 
may speak therefore of the group Aut6d(®) of bounded automorphisms of ®. 
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LEMMA 6.2 Assume X compact. Then each bounded automorphism <p of @ 
carries M onto itself, and on M has the form 

(6.1) <p(Lp) = Lpry 

where T is a homeomorphism of X. 

Proof. The characterization of Lemma 6.1 shows that any automorphism 
of @ will carry M onto itself. We shall deduce (6.1) from the corollary to 
Lemma 2.1 which asserts that any linear order isomorphism ^ of L(X) which 
conserves the identity (X compact) is implemented by a homeomorphism of 
X. For this, define 
(6.2) * ( f ) = l o g * ( e x p / ) , f€UX). 

Then ^ _ 1 ( / ) = log ^ - 1 (exp/ ) , and it is clear that SF is an additive isomorphism 
of L{X) on itself. We next show that ^ preserves order. For any x in X> q 
in P(X), and n > 1, we have 

[<p{q){x)T = <p{<f){x) < K\\q"\\ = 2C||ff||", 

and therefore 
(6.3) <p(q)(x)<\\q\\. 

In particular, if / > 0, then q = exp — / < 1 and <p(q) < 1. Thus 

<p(expf) = ^Gr1) = Mq)]-1 > 1 

and hence >£(/) = log <p(q~l) > 0. By the same token, Sir-1 must preserve order, 
and it follows that ^ is an order isomorphism and therefore linear. Substitution 
of a positive scalar c for q in (6.3) and the corresponding statement for c~l 

shows that <p(c) = c. From this it follows that ^(1) = 1 so that Ŝ  conserves 
the identity. This yields (6.1). 

LEMMA 6.3. Let <p be any automorphism of @ with the property that its restric
tion to M has the form 

(p(Lp) = LPT, 

for some homeomorphism r of X. Then r lies in the normalizer N(F) of the flow 
F y and for all LpTa in ®, 

(6.4) <p(LpT.) = TT(Le(., o)LvT,)T~\ 

for some cocycle 0(-, o) in Z1(Ff P). 

Proof. Define <p'(U) = TT~1<p(U)TT. <p' maps & isomorphically on another 
group of positive operators on L(X), and <p'(Lp) = LPJ for all p in P. Therefore 

LP<p'(Tff) = <pf(LPTff) = v'iT.KTr^T.), 

showing that the positive operator <pf' {Ta)T<rl commutes with all Lp. Lemma 
6.1 applied to the group of all positive operators on L(X) then shows that 
<p'(T(r)T<r1 lies in M, for each a G F. We write 

<p'(Ta) — Le(., ff)7V. 
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A simple calculation shows that 0 lies in Z1(F1 P). Moreover, 

<p(Ta) = Le(., <r)TT<rT-i' 

This operator lies in ®, and therefore TFT~1 C F. The same argument for 
0-1, r - 1 in place of <p, r gives inclusion in the other direction, and we find that 
F = TFT~1, or by definition, r lies in N(F). This proves the lemma. 

We can now obtain some significant information about the structure of the 
automorphism group of ®. One may note the formal similarity of the theorem 
to follow to a theorem of I. Singer on the automorphism group of a finite 
factor (9, Th. 3.3). 

THEOREM 6.1. Suppose X compact. Then the group Autôd(®) is isomorphic 
to a semi-direct product N(F) ZM of groups isomorphic respectively to the nor-
malizer of the flow F in the group of all homeomorphisms of X and the group of 
all bounded cocycles in Z1(F1 P). Here r Ç N(F) implements the automorphism 
6T of ZM given by 9T(0(-,o-)) = 0(-r, t-l<rr). 

Proof. We associate with each r in N(F) the automorphism aT of ® defined 
by 

ar(TaLp) = TT(TaLp)TT-i. 

It is trivial that aT y£ e when r F^ e, and that 

It follows that r —» aT maps N(F) isomorphically into Aut6d(@). Next, associate 
with the bounded cocycle 0 in Z1(F1 P) the bounded automorphism ae of ®, 

ad(TffLp) — L$(., a)TaLp. 

Again, it follows readily that 0 —» ae is an isomorphism of Zhd into Aut6d(@). 
Moreover, 

aTaeaT-i{TaLp) = Le^.T,T-^ar)TaLp1 

so that the image of Z6rf is normal in Aut &<*(©). Lemmas 6.2 and 6.3 show that 
each bounded automorphism <p of & has a factorization (p = aTa0, and it is 
readily seen that this factorization is unique. This proves the Theorem. 

Following a similar pattern, we now give an interpretation of the cohomology 
group Hl(F, P). For this, we call an automorphism <p of © flow related if <p coin
cides on M with some automorphism aa (a in F), in the sense that <p(Lp) = Lp*. 

THEOREM 6.2. There exists a natural isomorphism between Hl(F,P) and 
the group Aut / r(@)/Inaut(@) of flow related automorphisms of © modulo inner 
automorphisms. 

Proof. It follows from Lemma 6.3 that each flow related automorphism 
<p has a unique factorization <p = aTae, (r Ç F, 0 Ç Z1 = Z ^ F , P)) , so in the 
notation of Theorem 6.1, we have 

(6.5) Aut / r(®) = FZ\ 

https://doi.org/10.4153/CJM-1956-055-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-055-1


GROUPS OF POSITIVE OPERATORS 477 

Suppose 0 is an element of B1 = Bl(F,P), 0(-,o\) = p(')/p('o). Then 

ajaeiTaLq) = T\LP(T\L ^)LflT\~1, 

so that ^ is inner. The argument here clearly reverses, and we see that 

(6.6) Inaut (©) = F BK 

Suppose T £ F, 6 £ Z1. Then 

(6.7) aT-iaeaTae-i = ap, for some ft (z B . 

In fact, 
(aT-iaeaTae-i)(TaLQ) = Z,0(.T-i, T<TT-I)/0(., <r)TffLqj 

and 
j8(-, <r) » 0(.r~1, TŒT-^/Oi-, a) = 0(-, err"1) ^ - i - 1 , r)/0(-, <r) 

= 0(-, crr"1)/^-, r-1) 0(-, <r) = 0(.cr, r - 1 ) / ^ - , r-1) . 

I f w e s e t ^ ( - ) = [0(-, r" 1 ) ] - 1 , then it is clear t ha t0 ( - , a) = p(-)/p(-<r) £ B\ 
proving (6.7). 

As a characteristic subgroup, Inaut(®) is normal in Aut / r(®). Observe 
now that the automorphisms 

aTlaeu aT2ae2 

lie in the same coset mod Inaut(®) if and only if 0i is cohomologous with 02. 
In fact, using (6.7), we have 

ae2-iaT2-iariael = aT2-iaT1afiae2-iae1 (0 Ç JB1), 

and this automorphism is inner if and only if 

or equivalently, if and only if 0i is in the same coset of Z1 mod B1 as 02. It 
follows that the mapping which carries the coset of the automorphism aTae 
on the coset of 0 is an isomorphism onto. 

We conclude our study of automorphisms of ® by a brief consideration of 
automorphisms implemented by bounded operators on L(X). Since any such 
operator can be extended to be regular on CQ(X) we may, without loss of 
generality, choose the latter as our base space. 

LEMMA 6.4. Let W be a bounded regular operator on Co(X) with the property 
that U —> WUW~l defines an automorphism of ®. Then there exists a bounded 
positive operator V on Co(X) with a bounded positive inverse such that 
WUW-1 = VUV-ifor all U in ®. 

Proof. Let P(X) be the Stone-Cech compactification of X and denote by 
©' the unique extension of ® to a group of positive operators on C(/3(X)). 
In the obvious way, W- W~l defines a bounded automorphism of @'. By 
Lemma 6.2, therefore, there exists a homeomorphism r of P(X) such that 
WLpW~l = Lvr, for all p in P(fi(X)). For h mL(X) and x in 0(X), we will have 

W(ph)(x) = piper) W{h)(x). 
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Linearity shows that this must hold for all p in C(/3(X)). We now show that 
T(X) C X. Suppose on the contrary that r maps some x in X into r(x) Ç P(X) 
-X. Choose h in L(X) so that (Wh)(x) je 0, and then choose p in C(P(X)) 
so that p(x) = 1 on the support of h (which lies in X since it is a compact 
subset of X) and so that p{xr) = 0. This gives W(h)(x) = W(ph) (x) = 0, 
which is impossible. This argument applies as well to W~l, r_1, and we see 
therefore that T{X) = X. Hence if we set W = TT-iW, then W is a regular 
bounded operator on Co(X) which satisfies the relation 

(6.8) W'Lf = L,W, for all bounded / in C(X). 

We shall complete the proof by showing that any bounded regular operator 
W satisfying (6.8) has the form Lg, for some g Ç C(X) with |g| in P(X). 
The operator V = TTL\g\ will then be positive and will implement the same 
automorphism of © as W-W~l. We now let [0«] denote the collection of all 
open sets of X with compact closures, and for each a we choose a function 
ha in L(X) which is 1 on 0«. Set ga = W'ha. If h in L(X) vanishes off 0«, then 
(6.8) gives 

(6.9) W'(h) = W'Qiah) = hW'(ha) = Ag«. 

Therefore, if x Ç 0« P\ 0/3, fe(x) = 1, and if h vanishes off 0a O 0/3, then 

ga(*0 = *(»;) ga(x) = (W'A)(x) = A(x) gpix) = g^(x). 

So «̂ = gp on 0a Pi 0/3. Define a function g on X by setting g(x) = ga(x) 
if x G 0«. This function g is then well defined and continuous, and (6.9) shows 
that W'h = gh, for any h in L(X). I t follows from this that ||g|| = \\W'\\ < ™ 
and that g does not vanish. If we apply this argument to W'~l, to obtain a 
bounded k such that W'~lh = kh for all h in L(X), then 

A = Wf(W,~1(h)) = A*g, 

so feg= 1, and ||g_1 | | is finite. Therefore |g| lies in P , and the Lemma is proved. 

This lemma has application to the representation theory. Our work in 
§§4 and 5 was based on the notion of P-equivalence of representations. On the 
other hand, in the conventional sense, two representations [U„] and [Va] 
of a group G on Co(X) are equivalent if there exists a bounded regular operator 
W on CQ(X) so that WU^W"1 = Va for all a Ç G. If we require in addition 
that this operator W determine an automorphism of the group of all positive 
operators on Co(X), in the sense of the preceding lemma, then we can just as 
well assume to begin with that IF is a positive operator. Knowing the form of 
positive operators with positive inverses, however, we infer from this 

COROLLARY 6.1. Let a —> Uabe a bounded positive representation of the group 
G on Co(X), and suppose there exists a bounded regular operator W on Co(X) 
such that a —» WUaW~l is a flow representation of G, and such that U —» WUW~l 

defines an automorphism of the group of all positive operators on Co(X). Then 
[ Ua] is already P-equivalent to a flow representation. 
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7. The adjoint representation. Suppose that a —> Ua is a strongly 
continuous representation of a topological group G on Co(X). Denote by 
Co(X)* the adjoint space of Co(X)y that is, the space of bounded linear func
t ional X on Co(X) with the norm ||X|| = supn/n=i |X(/)|. It is well known 
that elements of Co(X)* can be represented as integrals on Co(X) relative to 
signed Borel measures on X of finite total variation (4, chap. X) . Associated 
with the representation [Ua] is an anti-representation a —» U*a of G on Co(X)* 
defined by (U*<r\)(f) = \(Ufff). This anti-representation is in itself not a 
natural object to study, since it will in general fail to be strongly continuous. 
However, study of the forward diffusion equation in semi-group theory has 
suggested a natural refinement of these notions (see (3 and 7)). 

Definition 7.1. By the adjoint representation [ U°ff1 D ( U°<r) ] to a given strongly 
continuous representation cr —> Uff of G on Co(X), we mean the pair consisting 
of the representation a —> £7°, of G on C0(X)* defined by 

(tfVOtf) = x(t/,-y), 
together with a subspace D(U0

a) of C0(^0*, called the domain of the adjoint 
representation, and consisting of all X in Co(X)* for which the mapping 
a —> Z70„X is strongly continuous. 

Two adjoint representations [U\, D(U\)] and [V\,D{V\)\ of G will be 
called equivalent if D(U°ff) = D(V°<r), and if there exists a bounded regular 
operator W on C0(X)* such that W~lU\W = 7°, for all cr G G. In the case 
W[D(U\)} = D(U\). 

To bring this notion of domain into clearer focus, we note that each operator 
U\ maps D(U\) into itself so that the restriction of U\ to D(U\) defines a 
strongly continuous representation of G. As to the extent of D(U°<r)j we now 
discuss the situation for G locally compact in the following 

REMARK 7.1. Suppose that G is a locally compact group and that a —> Ua 

is a strongly continuous bounded representation of G on Co(X). Given X 
in Co(X)* and h in L(G), define 

(7.1) X* ( / ) = / * (a) X ( Ur'f) da, f in Co (X), 

where the integral is taken relative to left invariant haar measure on G. Then 
(1) \h lies in D(U°a) so that a —» t/^X* is strongly continuous, 
(2) the set of all such X7* (h and X varying) is strongly dense in D ( 270*), and 
(3) D(U\), the strong closure of the set in (2), is PF*-dense in CQ(X)*. 

Proof of (1): 

|X*(C7 r-i/-y)| </|A(r-1cr) -*(cr) |- |X(Z7,-i /) |Ar<2S: | | / | | - | |A(r-1-)-A(-)l l i , 

for some constant K. Since r —> h{r~1-) is continuous on G to Li(G), it follows 
thatXMiesinD(J7°a). 

Proof of (2): Suppose X G Z}(£/°<r). Then given e > 0, there exists a neigh
borhood TV of the identity e in G such that 
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|xttW-/)l< «Il/Il, 
for ail / G Co PO, a Ç N. Choose a non-negative h in L(G) vanishing off N 
and so that J h (a) da = 1. Then 

(7.2) |X(f) - J A M \(U.-if)d«\ <jh(a) - | X ( / - £/,-./) |Ar < 6||/ | | 

and therefore ||X — X*|| < e. 

Proof of (3): Suppose next that X is an arbitrary element of CQ(X)*. Then 
given e > 0 there exists a neighborhood iV" of e in G, depending on / , such 
that \\(Uff-if — f)\ < e for all & £ N. Choosing h as above, the first inequality 
in (7.2) shows that |X(/) - Xh(f)\ < e and therefore that [X»; A G L(G)] is 
W*-dense in Co (-20*. Finally we note that D(U°0) is strongly closed since the 
U°ff are uniformly bounded. 

The above argument can readily be extended to the case where [U<r] is 
merely strongly continuous, if one makes greater use of the local compactness 
of G. 

Consider now a strongly continuous bounded positive representation 
[£/, = Le^^Ta] of the topological group G on Co(X). We recall (Theorem 
2.1) that the flow representation [Tff] is also strongly continuous. We wish 
to determine conditions under which the adjoint representations [U°ay Z>(£/V)] 
and [T0,, DiT^^)] (the "adjoint flow representation") are equivalent. For 
this purpose, we shall say that the cocycle 0(-, a) of [Uc] has a measurable 
factorization if 
(7.3) 0 ( . , e r ) = p(-)/p(-<r), 

for p a positive function on X, bounded away from 0 and infinity, and measur
able, in the sense that its contraction to each Borel set is measurable. (Here, 
the Borel sets consist of the o--ring generated by compact sets.) If p is such a 
function and if X 6 C0(X)* is represented by the signed Borel measure X(£), 
then we see that the functional 

M*(/) =Jp(x)f(x) X(dx) 

again lies in C0(X)* and 
fMp(E) = $BP(X) \(dx) 

for all Borel sets E. Heuristically one can write nP(f) = X (pf). We can therefore 
define a bounded linear operator W on C0(X)* by 

(7.4) (W\)(f) = M , ( / ) . 

With this definition, we then have 

(7.5) (W~lT\W) X = U\\, 

for all X in Co(X)*. In order to prove this we note that 

(T\\)(f) = X(r,-i/) =jf(xa~1) \(dx) = / / ( * ) \(dxa), 

so that (T°ff\)(E) = X(£o-). Hence 
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[ ( W ^ n W O M K / ) = [{W~lT\){$.p(x) \{dx))]{f) = [W-\j.,p(x) \(dx))}(f) 

= l/wil,Wj)]1U(^W]i 
= J/(«) iPiz)]-1 p(za) \{dza) 

= SKxtT1) *(*, a-1) \(dx) = \(U.-if) = (U°.\)(f), 

as asserted. 
To establish the equivalence of [U0„D(U°o)] and [T\yD{T\)\ under the 

assumption (7.3), it remains to show that D(UQ<r) — D(TQ
C). This will follow 

from 

LEMMA 7.1. Assume X lies in D(TQ
a). Let p be a bounded non-negative June-

Hon on X, measurable relative to each Borel set. Then the linear functional 
thif) = MftQ also lies in D(T\). 

Proof. As is well known, X can be expressed as the difference of two bounded 
positive functionals, X = Xi — X2. The bounded positive functional (Xi + X2) 
induces a regular Borel measure m on X with 

m(X) =LUB[m{C)\ C compact] < » . 

Take any ô > 0. Choose a compact set Ki so that m(X) — m(Ki) < 5. 
By Lusin's theorem, we can find a compact K C Ki so that m (Ki) — m (K) < ô 
and the restriction p\K of p to K is continuous. Next, we can extend p\K 
to a non-negative element p of L(X) with preservation of the bound M of p. 
This gives 

\thif) - MP(/)| < (XI + X,) (|/(/>: - p ) | ) < 2bM\\f\\. 

It follows therefore that \xv is a uniform limit of functionals jiip, p in L(X). 
Because 2)(TV) is strongly closed, it will therefore suffice to prove the lemma 
under the initial assumption that p Ç L(X). In this case pf 6 L(X) and 
MP(/) — M#f) is strictly correct. For any r in G a n d / i n CQ(X), 

(7.6) k(rT - i / - / ) | * |x [r r - . (M-#] | + (XxH-x2)[|(rr-1/)^- r<-i(fp)\V 
Since X Ç DiT0^), there exists a neighborhood iVi of e in G so that the first 
term is < | e , for a l l / of norm < 1 . Choose a symmetric neighborhood N of e, 
NCNi, so " that i)^(-f) - > ( - ) ] | < 5 , r € N. The second term in (7.6) 
becomes 

J\f(xr-l)(p(x)- P(XT*)\ m(dx)< ôjlfixr-^midx) < ô\\f\\ (IMI + HMD, 

for all r in iV. We can assume ô chosen to make this bound < Je, again for all 
/ o f norm < L Therefore, for r in N and | | / | | < 1, (7.6) has the bound €, and 
the Lemma is proved. 

It follows from this that the operator W of (7.4) will carry D(T0
ff) into 

itself. Since the same must be true of W~l, we have 

(7.7) * W[D(T\)] = D(T\). 
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According to the relation (7.5), U°ff\ and T°ffW\ will be strongly continuous 
together so that D(T\) = W[D(U\)]. Consequently D{U\) = D(T\), 
and we have established 

THEOREM 7.1. Let <r —> £/<, = Le(.t<T)Ta be a strongly continuous bounded 
positive representation of the topological group G on Co(X), [Ta] being the 
associated flow representation. If the cocycle 0(-, a) has a measurable factorization, 
then the corresponding adjoint representations [U0^, D(U°a)] and jT0

a, D(T°a)] 
are equivalent. 

As an indication of the existence of measurable factorizations, we prove the 
following two lemmas. Here, as elsewhere, a real-valued function on the 
locally compact Hausdorff space X is called measurable if its contraction to 
each Borel set is measurable in the customary sense. 

LEMMA 7.2. If G is a separable topological group acting continuously on X, 
then each bounded cocycle in Z1(G, P) has a measurable factorization. 

Proof. Let {an} be a countable dense subset of G and set h(x) = GLBn 

6(x, an) (pointwise). Denoting by M the class of all measurable functions on 
X which are bounded away from 0 and infinity, we see that the function h 
lies in M. On the other hand, if for fixed x we apply Theorem 5.1 to the single 
orbit II = xG, we perceive that 6{x, cr) is continuous in a and hence h(x) — 
GLB<r6(x, cr). Employing Lemma 5.1, with M defined as above, we obtain 
6(Xy a) = h(x)/h(xa). 

LEMMA 7.3. If G is a a-compact locally compact topological group acting 
continuously on X, then each continuous cocycle in Z1(Gf P) has a measurable 
factorization. 

This result is an immediate consequence of Lemma 5.1 (with M defined 
as in the proof of Lemma 7.2) and the following 

LEMMA 7.4. Suppose that G and X are topological spaces, G a-compact 
locally compact and X merely locally compact. Let f(x, a) be any real-valued 
continuous function on X X G with f(x, a) > 0. Then the {pointwise) GLB9 

^(#, a) is a measurable function on X. 

Proof. Fix a compact subset C in G. We shall prove that b(x) = GLBatC 

f(x, a) is measurable. This will, in effect, establish the Lemma; for G is a 
union of an increasing sequence {C„} of compact sets, and if bn denotes the b 
corresponding to Cn, then GLBn bn(x) is measurable and equal to GLB0f(x, a). 

To prove that b is measurable, let F be any compact subset in X. For 
each x in F, choose a neighborhood N(x) of x so that j/(x, <r) — f(y, a)\ < l /2n 
for all y in N(x) and a in C. Further, given x, choose <rz in C so that 
f(Xy <rx) < / ( # , a) for all a in C. Now a finite number N(xi), . . . , N(xr) of 
the iV(jc)'s cover F. Finally set 

hn(x) = inf[/(x, <rxi); i » 1, . . . , r]. 
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For all x in X, we clearly have b(x) < hn(x). Take a pair (#, a) in F X C, 
say x lies in N(Xi). Then 

*n(x) < f(x, <rxi) < / ( * , , <rw) + — < f(xt, a) + — < / ( * , cr) 4- - . 

Thus x in F entails hn(x) < b(x) + 1/w. We now define &F(#) = GLBn hn(x). 
This function AF is clearly measurable, satisfies b(x) < A^(x) for all x, and 
&(x) = hF(x) for all x in F. Finally we note that any Borel set can be covered 
by the union of an increasing sequence of compact sets, say {Fn}. But 
GLBn hFn(x) is measurable and equal to b(x) on this union, that is, on the given 
Borel set. It follows that b is measurable in the generalized sense. This con
cludes the proof. 

We see from the foregoing material that the equivalence of the adjoints of 
two strongly continuous positive representations is easier to establish than 
the equivalence of the original representations. On the other hand if the 
adjoints of two linear bounded operators, say U and F, are equivalent (in 
the sense that there exists a linear bounded regular operator W on Co(X)* 
such that V* = WU^W"1), then the spectra of U and V coincide (see, for 
instance, (7, Theorem 1.5)). In particular, if [Uff] is a strongly continuous 
bounded positive representation of a separable G or of a o--compact locally 
compact G, then it follows from this fact together with Theorem 7.1 and 
Lemmas 7.2 and 7.3 that the spectrum of Ua coincides with that of the associ
ated flow operator Tff for each a Ç G. 

Actually, spectral problems are best dealt with in the setting of a complex 
linear space rather than a real linear space. For a complex linear Co(X), the 
notion of positivity remains the same as before and, in fact, everything we 
have established applies with obvious modifications. 

8. Appendix. We close this paper with an application which is of interest 
in the theory of semi-groups of operators. We shall exhibit two one-parameter 
strongly continuous groups of operators on the complex linear space Co(X) 
having infinitesimal operators Ai and A2, respectively, with D = D(Ai) r\ 
D(A2) dense in Co(X)f such that no extension of Ai + A2 (defined on D) 
generates a strongly continuous semi-group of operators. 

Set X = (— 00, 00), let G be the additive group of real numbers with the 
usual topology, and define xt = x + / and 

(8.1) 6(x, t) = exp[ J ] % ( r ) drj . 

If p(x) is continuous in x and if 

n r+t 1 "i 
sup I P(T) J r ; — < » < ^ < o o < œ 

for each /, then it is easy to see that 6{x, t) is a continuous cocycle in Z1(G9 P). 
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Moreover such a 6(x> t) will cobound if and only if it is bounded, that is, if 
and only if 

(8.2) sup J I P(T)<IT\ < oo ; 
I Jo 1 

a suitable P-factor being 

(8.3) p(x) = e x p [ - j'oP(r)dr\. 

We note that p(x) is continuously differentiate and bounded away from 0 
and infinity. 

Let [Tt] denote the flow representation: Ttf(x) = f(x + t). A straight
forward computation shows that the infinitesimal operator of [Tt] is given 
by 
(8.4) Aof(x) = / ' (*) 

with 

(8.5) D(Ao) = [/;/(*) continuously differentiate, / and / ' 6 Co(X)]. 

Suppose next that (3(x) satisfies the condition (8.2). Then the corresponding 
representation: Ut

a)f(x) = 6(x, t) f(x + t), is equivalent with the flow 
[Tt]\ in fact, 

(8.6) Ut™ = LvTtLv~\ t £ G, 

where Lpf(x) = p(x)f(x). It follows from this that the infinitesimal operator 
of [Ut

(1)] is given by 

(8.7) Atf(x) = [LPA0Lp-if](x) = / ' (*) + 0 (*)/(*) 

and 

(8.8) D(Al) =LP[D(A0)]. 

We now choose 

{ nj[nz(x — n)] for n < x < n + w-3, 

0 for x < 2 and n + w~3 < * < n + 1, » = 2, 3, . . . , 

where j(x) = exp{ — [x(l — x)]-1} for 0 < x < 1. Then fi(x) is continuously 
differentiable (but not bounded) and 

0 < - l o g £ ( x ) < r^(r)dr = \ f j(T)dr\j2n-2 < .OP, 
•/ 2 L */ 0 J n=2 

so that £ lies in P and the above remarks are applicable. 
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Finally we choose [Ut
(2)] to be the backward flow representation, that is 

f/r(2) = T_t. The infinitesimal operator for [Z7|(2)], namely A2, is now given 
by 

(8.9) At = -Ao and D(A2) = D(A0). 

It is clear from (8.5) and (8.8) that D = D {A i) C\ D (A 2) contains the class 
Do of all continuously differentiate functions with compact carrier. Thus D 
is dense in CQ{X), F o r / Ç D we have 

(8.10) [(A1 + A2)f](x) =/3(x)/(x) . 

Suppose now that 4̂ 3 with domain D {A 3) is an extension of A i + A 2 (with 
domain Z)). We wish to show that A% cannot generate a strongly continuous 
semi-group of linear bounded operators possessing even the mildest of regu
larity conditions at / = 0.1 If the contrary were true, then there would be a 
constant co such that the resolvent R(\;Az) would exist and be bounded in 
norm for 9Î(X) > co. In this case the semi-group [£/*(3); t > 0] generated 
by A3 could be computed from the inversion formula (cf. 5, p. 239) 

(8.11) Ut
wf=lim^-.r TeuR(\;At)fd\, / > 0, 

for 7 > co and each/ Ç D[(A 3)
2] ; the integral can be taken either as an abstract 

Cauchy integral or the usual Cauchy integral for each x. F o r / 6 D0 we see by 
(8.10) that Azf = (Ai + A2)f € D0 so that such an / lies in D[(AZ)2]. Let 
C(f) denote the support for / 6 D0 and define y(f) = sup[£(#); x £ C(/)]. 
Then if / £ £>0 and $R(X) > 7 > 7(f), it is clear that 

g(x) s [X - ^ (x ) ] " 1 / ^ ) 6 £>o 

and hence that 

R(\;At)f = tf(X; ilaKXJ - il8) g = g. 

Applying (8.11) we obtain 

Ut
mf(x) = l imri- . P + > [ X - 0 ( * ) r 7 ( * ) <*A = ^ ( z ) / ( * ) 

for all t > 0. Finally since D0 is dense in Co(X) and [/t
(3) is assumed to be a 

bounded operator, we must have Ut
{z)f(x) = exp[/ P(x)]f(x) for a l l / 6 Co (30 

and each / > 0. However this is impossible since an obvious consequence of 
this relation would be log || £//3)|| = t s\ipx fi(x) = 00 for each t > 0. 

^ o r e precisely, we shall prove that Az does not generate a semi-group of class (A) (8). 
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