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Abstract

With a case-crossover design, a case’s exposure during a risk period is compared to the case’s
exposures at referent periods. The selection of referents for this self-controlled design is deter-
mined by the referent selection strategy (RSS). Previous research mainly focused on systematic
bias associated with the RSS. We additionally focused on how RSS determines the number of
referents per risk, sensitivity to overdispersion and time-varying confounding.

We illustrated the consequences of different RSS using a simulation study informed by data
on meteorological variables and Legionnaires’ disease. By randomising the events and exposure
time series, we explored statistical power associated with time-stratified and fixed bidirectional
RSS and their susceptibility to systematic bias and confounding bias. In addition, we investigated
how a high number of events on the same date (e.g. outbreaks) affected coefficient estimation.
As illustrated by our work, referent selection alone can be insufficient to control for a time-
varying confounding bias. In contrast to systematic bias, confounding bias can be hard to detect.
We studied potential solutions: varying the model parameters and link-function, outlier-
removal and aggregating the input-data over smaller areas. Our simulation study offers a frame-
work for researchers looking to detect and to avoid bias in case-crossover studies.

Introduction

The case-crossover method is an efficient study design for investigating associations between
transient exposures during a risk period and the onset of acute events [1]. The design is self-
controlled and therefore it is free from time-invariant confounding and does not require the
inclusion of unaffected controls. It does, however, require the inclusion of one or multiple time
periods to serve as referents to the risk period. The risk period typically precedes the event by a
number of days. The selection of referents was a topic of methodological development and dis-
cussion for several years after the case-crossover study design was originally introduced by
Maclure in 1991 [2]. This is best illustrated by how recommendations for the selection of refer-
ents have evolved from, using the taxonomy developed by Janes et al. [3], fixed unidirectional
to bidirectional to time-stratified referent selection [4]. To understand this evolution, we need
to introduce the concept of exchangeability and time-varying confounding [5].

Exchangeability originated from Bayesian statistics indicates that sequences of random vari-
ables have the same joint probability distribution [6]. Consider the simple example in which
an exposure time series has a linear upward trend. A referent selection strategy (RSS) that sam-
ples referents prior to the risk period, known as a unidirectional RSS, will always detect lower
exposure values on referent dates as opposed to on risk dates. Exposure values on risk dates
will be non-exchangeable with exposure values on referent dates [5]. Navidi, therefore, pro-
posed bidirectional or ambidirectional sampling. With these strategies, referents are selected
both before and after the risk period [7]. Levy et al. established that even when exposure
after the event is irrelevant (e.g. because the event was death) bidirectional sampling is pre-
ferred to unidirectional because the bias in coefficient estimation will be smaller [8].
Referents were selected from fixed time periods close to the risk period to limit time-varying
confounding. Referents should preferably not be selected adjacent to the risk period to avoid
possible carry-over effects. Bateson and Schwartz continued the development of RSS by point-
ing to a selection bias associated with fixed bidirectional sampling [9, 10]. Eventually, the dates
at the beginning and end of the period under investigation will be selectable only as referents.
If we select the last date in the period under investigation as a risk, a referent can only be
selected prior to the risk. This results in unidirectional referent selection. Time-stratified ref-
erent selection was proposed by Janes et al. as a final solution to avoid the bias associated with
non-exchangeability [3]. They named this bias ‘overlap bias’ in accordance with the terms used
in matched case−control studies. Their solution consists of dividing the period under inves-
tigation in strata (smaller time periods). All dates within a stratum are used as referents for
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the risk date in the same stratum. While time-stratified RSS are
free from overlap bias, there are many ways to divide a time per-
iod into strata. There is no single optimal RSS for all datasets.
Researchers have to keep time-varying confounding and statistical
power in mind when deciding which time-stratified RSS to use.

Once referents are selected, exposure values on both risk and ref-
erent dates are fitted to amodel. The conditional selection of referent
dates on risk dates should be reflected in the model. To achieve this,
case-crossover studies typically use conditional logistic regression
models. Conditional Poisson models have been suggested as flexible
alternatives by Armstrong et al. [11]. They advocated the use of con-
ditional Poisson models because these models can be adjusted for
overdispersion and autocorrelation. Noteworthy is that the equiva-
lence between case-crossover conditional logistic models and time
series conditional Poisson models with stratum indicators in envir-
onmental epidemiology has been established [12].

We investigated short-term associations between meteorology
and Legionnaires’ disease incidence as an illustrative example.
We used simulated data informed by Belgian data on meteoro-
logical variables and Legionnaires’ disease cases. Several research-
ers have already applied case-crossover designs in studies on
Legionnaires’ disease incidence and meteorological variables.
The RSS they have used varied from restricted unidirectional
RSS, selecting referents 1 and 2 weeks before the risk [13], to sev-
eral time-stratified RSS. These time-stratified RSS included: strata
of 21 days with referents selected at the same day of the week [14–
16], strata of 28 days with referents selected as all other days [17]
and ‘day of the year’-strata in which corresponding days from the
other years of the study period were selected as referents [18].

Research on the association between Legionnaires’ disease-
incidence and meteorological variables also presents additional
problems: unknown individual exposures and overdispersion.
The problem of unknown individual exposures is common in epi-
demiological and environmental research [19]. The problem
might be more complex in an infectious disease context. In add-
ition to a person’s exposure, exposure at the source and place of
infection are also relevant. Consequently, convenient approaches,
such as setting the exposure values for large areas equal to expo-
sures measured at local monitoring stations, appear inevitable.
This is not necessarily problematic. Whenever the average of
the actual exposures equals the value used in the analysis, the
measurement error is considered a Berkson-error and the analysis
is expected to yield an unbiased effect estimate, provided that the
true dose-response is linear [20]. While it is established that
Berkson-error reduces power, it is hard to estimate how much
power is lost if we would aggregate over a single large area as
opposed to aggregating over multiple smaller areas [21]. A second
issue with infectious disease data is overdispersion. Legionnaires’
disease is likely driven by unknown variables or variables that
cannot be included in the model. Multiple events might be linked
to unidentified outbreaks. These outbreaks will create extra
variability, overdispersion, in the events time series. An analysis
with a conditional logistic model might not be appropriate
when overdispersion is present.

While systematic bias has been the focus of previous research,
there are other important consequences to different RSS. We
investigated confounding bias, overdispersion and statistical
power associated with different RSS in a simulation study. We
extended our illustrative example by also considering the effects
of data preparation, particularly the size of the area over which
to aggregate and model fitting, particularly conditional Poisson
models vs. conditional logistic models.

Methods

Data on legionnaires’ disease and meteorological variables

The Legionnaires’ disease case data included in the simulation
study was obtained from three different surveillance sources: the
national reference centre, the laboratory sentinel surveillance net-
work and regional mandatory notification [22, 23]. Additional
information on the data sources can be found in the attachment.
Since electronic records for Legionnaires’ disease were available
from 2004 and data analysis for this paper started in 2018, the
study period was set from 2004 to 2017. Data sources were com-
bined and duplicates were identified. Duplicated were defined as
having the same sex, birthdate and postal code and dates of diagno-
sis that were within a 30 days period. The latest recorded duplicates
were removed. Case definitions can be found in the attachment. To
include as many cases as possible and as the date of onset was miss-
ing for most cases, the date of diagnosis was used as the event date.

We included daily values for three meteorological variables in
the simulation study (temperature (°C), relative humidity (%) and
wind speed (metre/second)). The data were obtained from the
Royal Meteorological Institute of Belgium for all available weather
stations that recorded data from 2004 to 2017 (N = 29). We
applied a linear transformation (standardisation) that rescaled
the three meteorological factors. For meteorological variable (x),
this was calculated as:

x −mean(x)
S.D.(x)

The data were prepared in two different ways: (1) the national ana-
lysis in which we aggregated all data by date and (2) the provincial
analysis in which we aggregated the data by province and date.

Simulation scenarios

We altered the data for analysis using three different simulation
scenarios:

(1) ‘Random events, unaltered exposures’: in the first scenario we
created 2277 events. These events were given a random date
between 1 January 2004 and 31 December 2017. We left
the exposure time series unaltered. As the event dates were
selected randomly, the probability of an event was not deter-
mined by exposure values and confounding was not possible.
Whenever coefficients were estimated at a value different
from zero, a systematic bias was present.

(2) ‘Unaltered events, random exposures’: in the second scenario,
we left the events time series unaltered and randomly allo-
cated exposure values to dates. With this scenario, we assessed
non-exchangeability within matched sets of risks and refer-
ents and the influence of overdispersion. Overdispersion
manifested when a high number of events occurred on the
same date. We defined outlier-dates as dates on which five
events or more occurred. We investigated overdispersion in
two sub-scenarios: one in which events on outlier-dates
were removed and one in which they were not.

(3) ‘Event probability modelled by exposure values’: in the third
scenario, the occurrence of events was determined by the expos-
ure values 6 days earlier, a seasonal trend and a long-term trend.
The exposure time series was unaltered. With this scenario we
explored if confounding between the seasonal and long-term
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trends and the effect of the exposure values remained present
after referent selection. Time-varying confounding was present
if the coefficients estimated by the case-crossover model differed
from the coefficients used during the creation of events. The
model for estimating the event probabilities was:

event probability = exp (exposure effect+ seasonal trend

+ long-term trend)

with

exposure effect = 0.1× temperature+ 0.02

× relative humidity

seasonal trend =−0.1207× sin 2× p

365
× ‘day of the year’

( )

− 0.09609× cos 2× p

365
× ‘day of the year’

( )
+ 1

long-term trend

= ‘Number of days since 1 January 2004’×0.0001

A graphical representation of the three simulation scenarios is
given in Figure 1. In all scenarios, we worked with 2277 event
dates over a time period from 2004 to the end of 2017. Each simu-
lation scenario was repeated 5000 times. We presented the
obtained coefficients in boxplots and we presented line plots in
which the number of significant coefficients is plotted over the
nominal (advertised) type I error or the risk period.

Referent selection

We explored four different RSS; two fixed bidirectional RSS; adjacent
days (AD), adjacent years (AY) and two time-stratified RSS; strata
month-weekday (SM) and strata day-of-the-year (SY). With the
fixed bidirectional RSS, referents were selected at a fixed period
before and after the risk. These fixed periods were 14 days (AD)
and 1 year (AY). With the time-stratified RSS, the study period

Fig. 1. Graphical representation of the events and exposures time series in the different simulation scenarios (green = temperature, blue = number of cases
(Ncases), dotted line = random, full line = unaltered).
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was divided into strata. These strata could differ in length and did
not have to be consecutive. With the SM RSS, strata consisted of
all the days during a certain month and a certain year that were
the same day of the week (e.g. all Mondays from January 2012).
With the SY RSS, strata consisted of all the days that occurred on
the same day of the year (e.g. all the first days of the year) (Fig. 2).

Data analysis

We fitted exposure values at the risk day and exposure values at the
referent days with a conditional regression model. For the ‘random

events, unaltered exposures’-scenario we fitted a conditional logistic
model to each of the datasets. This resulted in 40 000 models (5000
simulations × 4 different RSS × 2 Province/National analysis). In
the ‘unaltered events, random exposures’-scenario, we again fitted
conditional logistic models to each of the datasets (40 000 models).
In addition, two conditional quasi-Poisson models were fitted to
the SM- and SY-data (20 000 models = 5000 simulations × 2 RSS
(SM/SY) × 2 Province/National analysis). We named these SM.cp
and SY.cp. We refitted all the models from the second scenario
after the removal of the outlier-dates and referents from the input-
data (60 000 models). In the ‘event probability modelled by expos-
ure values’-scenario, we fitted the data from the AY and AD RSS
with conditional logistic models, the SM and SY RSS were fitted
with conditional quasi-Poisson models (SM.cp/SY.cp). We fitted
two additional models to which additional time-varying variables
were added (SM.m.cp/SY.m.cp) (60 000 models per risk day).
The additional time-varying variable for SM.m.cp was a sinusoid
(sin(2×p×(day of year/365))+ cos(2×p× (day of year/365)))
and the additional time-varying variable for SY.m.cp was the num-
ber of years since the start of the study period (Table 1).

Software and code

All analyses were performed in R. The gnm-package was used for
conditional Poisson analysis [24]. All code was made available on
https://zenodo.org/badge/latestdoi/245381376.

Results

Simulation results

Random events, unaltered exposures
Coefficient estimation. The time-stratified designs (SM, SY) resulted
in visually unbiased coefficients. The systematic bias associated
with AD was small for relative humidity and temperature and

Fig. 2. Overview of the different referent selection strategies.

Table 1. Overview of the different models. The name refers to the referent
selection and the model used for fitting the data after referent selection

Name Formula Conditioning on

Conditional logistic regression model

AD, AY, SM, SY
logit(Probability of event)∼
temperature + rel. humidity +
wind-speed

Unique event
identifier

Conditional quasi-Poisson regression model

SM.cp, SY.cp log(Number of events)∼
temperature + rel. humidity +
wind-speed

Strata

SM.m.cp log(Number of events)∼
temperature + rel. humidity +
wind-speed + sinusoid

SY.m.cp log(Number of events)∼
temperature + rel. humidity +
wind-speed + year

AD, adjacent days; AY, adjacent years; SM, strata month-weekday; SY, strata day-of-the-year;
m, additional time-varying variable; cp, conditional Poisson.
The ‘sinusoid’ is defined as: sin(2 × π × (doy/365)) + cos(2 × π × (doy/365)) and the ‘year’ is the
number of years since the start of the study period (2004).
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visually absent for wind speed. The systematic bias associated with
AY was present for all variables. The biases associated with AY and
AD remained present in the provincial analysis (Fig. 3).

Proportion of significant coefficients. The time-stratified RSS
(SM, SY) resulted in a proportion of significant coefficients
close to the nominal significance level. The other RSS either
resulted in a higher (AY) or lower (AD) proportion of significant
coefficients. When the data were aggregated on a provincial level
instead of on a national level, this slightly decreased the propor-
tion of significant coefficients for AY (Fig. 4).

Unaltered events, random exposures
Coefficient estimation. Coefficient estimation was unbiased for all
RSS. The coefficients associated with the time-stratified SM and
SY fitted with a conditional logistic model (SY and SM) were
equal to those fitted with a conditional quasi-Poisson model
(SY.cp and SM.cp) (Fig. 5).

Proportion of significant coefficients. We obtained a proportion
of significant coefficients that was higher than the nominal level
with all RSS in all four analyses (no-outlier/outlier-dates and prov-
ince/national analysis). This indicated that trends remained present
in the matched sets of risks and referents. These trends were partly
eliminated by removing the strata with outlier-dates and during
provincial analysis. The Removal of strata with outlier-dates
resulted in the largest reduction of the proportion of significant
coefficients. The four outlier-dates accounted for a total of 76

events. As for differences between RSS: AY and AD resulted in a
comparable number of significant coefficients. For the time-
stratified RSS: SY resulted in more significant coefficients compared
to SM for the national-level analysis, the difference was smaller
when data were aggregated by province. The quasi-Poisson models
(SM.cp and SY.cp) brought the proportion of significant coeffi-
cients closer to the nominal level in all analyses (Fig. 6).

Event probability modelled by exposure values
Coefficient estimation. AY provided biased estimates for all three
variables. Due to confounding, the time-stratified RSS (SM and
SY) provided estimates with a larger bias than AD. The time
trends remaining within the matched sets confounded with the
exposure effects. For example, there was positive confounding
between the temperature effect and seasonality with SM and nega-
tive confounding between the wind speed-effect and SY. The con-
founding bias was slightly smaller in the provincial analysis.

The RSS with additional within strata modelling (SM.m.cp and
SY.m.cp) provided unbiased estimates.

Proportion of significant coefficients. The SY allowed for more
statistical power as compared to the SM. This was especially true
for the estimation of the temperature effect. The inclusion of extra
variables to model time trends and eliminate time-varying con-
founding within SY.m.cp and SM.m.cp lowered power. With
these models, we found that relative humidity was the only

Fig. 3. Scenario ‘random events, unaltered exposures’. Boxplots of the coefficient estimates per exposure (relative humidity (A), temperature (B), wind speed (C))
and per RSS (AD = adjacent days, AY = adjacent years, SM = strata month-weekday, SY = strata day-of-the-year). Aggregation on (1) national (2) provincial level.
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variable for which the national analysis was less powerful than the
provincial analysis. The Berkson-error was small.

While the exposure effect concerned the 6th day prior to the
event, autocorrelation within the exposure series resulted in sig-
nificant coefficients for the exposures on risk days around the
6th day. All RSS were affected (Fig. 7).

Discussion

Whitaker et al. discouraged the use of case-crossover-methods:
‘these methods are either biased, or are special cases of more ver-
satile methods’ such as time series regression methods [4]. The
case-crossover design, however, remains a popular design. Its popu-
larity is likely caused by its familiarity and apparent simplicity; it
does not require explicitly modelling seasonality or other time-
varying trends. In addition, it typically allows for fast model fitting
as it is a conditional analysis and does not require coefficients of
time-varying trends to be estimated. Knowing both the popularity
of the design as well as the challenges with referent selection, we
tried to set up a case-crossover study that allowed for unbiased
coefficient estimation and was versatile enough to model our data.

Bias

Systematic and confounding bias
The underlying mechanism of confounding bias and systematic
bias in case-crossover studies is the same: within a matched set

of risk- and referent-dates some dates are more likely risk than ref-
erent and these unequal probabilities coincide with trends in the
exposure series. All our three simulation scenarios explored this
mechanism. In the ‘unaltered events, random exposures’-scenario
there were no trends in the exposure series and therefore there was
no bias. In the absence of trends in the exposure series, the
assumption of global exchangeability is always valid. Global
exchangeability is defined as the independence of outcome prob-
abilities conditional on the causal effect of exposure across all
dates within a matched set [25, 26]. Whenever there were trends
in the exposure time series (non-exchangeability), the fixed bidir-
ectional RSS inherently resulted in bias. Even if trends in the
events time series were absent as in the ‘random events, unaltered
exposures’-scenario, a bias was present and this, therefore, is con-
sidered a systematic bias. Once trends were present in the events
time series, as in the ‘event probability modelled by exposure
values’-scenario, confounding bias occurred with all RSS. For
fixed bidirectional RSS, a confounding bias cannot be separated
from a systematic bias. The confounding bias associated with the
time-stratified RSS is not systematic as it is a function of the refer-
ent selection, the event time series and the exposure time series.

The size of the bias
The type of bias did not determine its size. The systematic bias asso-
ciated with fixed bidirectional RSS is determined by the proportion
of affected matched sets and the trends in the exposure time series.
It will be minimal if the exposure time series is relatively stationary

Fig. 4. Scenario ‘random events, unaltered exposures’. The proportion of significant coefficients over the nominal individual significance level by RSS (AD = adjacent
days, AY = adjacent years, SM = strata month-weekday, SY = strata day-of-the-year). Aggregation on (1) national (2) provincial level.
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and whenever the ‘true’ relative risk is close to one [27]. The pro-
portion of affected matched sets was small for AD (the last and
first 14 days of a 13-year study period) and large for AY (the first
and last year of the study period). This resulted in higher biases
for AY. Researchers have suggested to avoid overlap bias by not
including events from either end of the study period [28]. This
can increase bias however as the problem persists (for example
for AY: if events from 2004 are removed, the events from 2005
are now part of matched sets in which referents selected before
the event cannot be risks) and the proportion of affected matched
sets has risen. In contrast to a systematic bias, a confounding bias
is harder to detect and its size is harder to predict. Vulnerability
to confounding is determined by several factors. For example,
except for the matched sets at both ends of the study period,
fixed bidirectional RSS are not vulnerable to confounding with lin-
ear long-term trends, while time-stratified RSS are. This is caused by
the asymmetry within matched sets of time-stratified RSS: there is
one date in each stratum for which all referents are later dates. As
presented in the ‘events probabilities modelled by exposure
values’-scenario, the (systematic) bias of AD was smaller than the
bias associated with time-stratified RSS. While this finding is spe-
cific to our study, it is interesting to note that a fixed bidirectional
RSS provided the least biased estimates, in spite of two time-
stratified RSS also included in the study.

While the systematic bias associated with unidirectional and
fixed bidirectional RSS is insoluble, there are three solutions to
confounding bias. All three solutions have limitations. First, we
can further modify our time-stratified referent selection. The
seasonality confounding found in SM could be limited by mak-
ing the strata shorter (e.g. 3-week strata instead of 1-month
strata, a strategy taken by [14–16] and explored in the
Supplementary files). Shorter strata will, however, lead to
fewer referents per risk and the autocorrelation between refer-
ents will further limit the efficiency of such an RSS.
Modelling within strata is a second possible solution. This how-
ever also has several limitations; e.g. a year-effect necessarily is
equal over SY-strata and the inclusion of extra variables limits
power. Third, we had less confounding while aggregating the
data on a provincial instead of a national level. This is specific
to our dataset, e.g. in some of the Belgian provinces, there was
no long-term trend in the event series. In general, it is however
likely that different seasonality and long-term trends can be
found within more and smaller areas.

Variance and power

In addition to the bias associated with coefficient estimation, we
also presented the proportion of significant coefficients for our

Fig. 5. Scenario ‘unaltered events, random exposures’. (1) Boxplots of the coefficient estimates per exposure (relative humidity (A), temperature (B), wind speed (C))
and per RSS (AD = adjacent days, AY = adjacent years, SM = strata month-weekday, SY = strata day-of-the-year, SM.cp = strata month-weekday quasi-Poisson, SY.cp =
strata day-of-the-year quasi-Poisson). Aggregation on (1) national, (2) national no-outliers, (3) provincial, (4) provincial no-outliers level.
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different simulation scenarios. When the assumption of
exchangeability is violated, the assumption of independent events
essential for maximum likelihood estimation of the conditional
logistic regression model is also violated. A direct consequence
is that the Poisson variance associated with the number of events
per day is insufficient [29]. We explored this with two quasi-
Poisson models in the ‘unaltered events, random exposures’-
scenario. The overdispersion in these models measured the
unmodelled unequal probabilities (within matched sets for a
date to be selected as a risk-date). This was larger for SY than
for SM. Confounding can lead to erroneously estimated coeffi-
cients and misguided confidence, represented by a large propor-
tion of significant coefficients [30]. While the unmodelled
unequal probabilities might have disappeared whenever the
‘true’ exposure series were used (and not random permutations
as in the ‘unaltered events, random exposures’-scenario), allowing

for overdispersion will provide a more robust variance estimator
and more valid inference.

The Berkson error associated with aggregating only by date
(national analysis) was small in terms of reduced statistical
power, but the national analysis came with a higher vulnerability
to confounding and overdispersion. So even when it is possible to
obtain a large area average exposure that perfectly represents the
average of the individual exposures (which will be nearly impos-
sible in real-world examples) aggregating over multiple smaller
areas has advantages.

Fung et al., investigated the precision of estimates obtained
with a case-crossover design and those obtained with a time ser-
ies design and concluded that, with their models, the latter
offered higher precision [31]. This, however, is not a general
conclusion; the precision of estimates is determined by several
factors. In the ‘events modelled by exposure values’-scenario we

Fig. 6. Scenario ‘unaltered events, random exposures’. The proportion of significant coefficients over the nominal individual significance level by RSS (AD = adjacent
days, AY = adjacent years, SM = strata month-weekday, SY = strata day-of-the-year, SM.cp = strata month-weekday quasi-Poisson, SY.cp = strata day-of-the-year
quasi-Poisson). (1A) National, (1B) national no-outliers, (1C) provincial (1D) provincial no-outliers.
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obtained a higher proportion of significant coefficients with SY
then with SM RSS. This was the result of the higher number of
referents per risk, the variance of an estimator with m controls
is proportional to m/(m + 1) [8] and the lower correlation of
the referents’ exposure values.

With respect to the number of referents, we already made two
observations: more referents allowed for more power (given that
the autocorrelation between referents was limited), but as more
referents implied larger strata, exchangeability in matched sets
was less likely. In addition, it is important to note that the assump-
tion necessary for unbiased estimation with one to many matchings
is different from one to one matching. With one to one matching,
pairwise exchangeability becomes a sufficient condition for
unbiased estimation. Pairwise exchangeability is a less strong
assumption than global exchangeability as exchangeability is only

necessary between each risk and each referent separately [25].
Finally, the selection of referents should be without replacement.
Levy et al. reported an increase in bias as the number of referents
increased when sampling with replacement [8].

As previously discussed, conditional Poisson regression
allowed for modelling overdispersion through quasi-Poisson
regression. One additional advantage of conditional Poisson
regression concerns ‘ties’. In a case-crossover study with shared
exposures, the exposure values while being continuous in nature,
are discretised and can be equal among several of the matched
risk-referents sets. When conditioning on event dates instead
of unique event identifiers, ties can occur. If ties are present,
the likelihood function should take these into account [1].
When the number of ties is large the likelihood quickly becomes
incomputable [32].

Fig. 7. Scenario ‘event probability modelled by exposure values’. (A&B) Boxplots of the coefficient estimates by RSS. (C & D) The proportion of significant coeffi-
cients over the nominal individual significance level by RSS. (A & C) National. (B&D) Provincial. (AD = adjacent days, AY = adjacent years, SM = strata month-weekday,
SY = strata day-of-the-year, SM.m.cp = strata month-weekday quasi-Poisson model with an additional variable for seasonality, SY.m.cp = strata day-of-the-year
quasi-Poisson model with additional time-varying variable).
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Limitations

We only looked into a very limited number of RSS. Full-stratum,
semi-symmetric, unidirectional RSS are not investigated in this
study. We also did not compare the case-crossover design to alter-
native designs such as Poisson time series or longitudinal/mixed
models.

We used the date of diagnosis as the event date. Preferably
we would have used the date of disease onset as the period
between infection and diagnosis was likely variable. While
this would be problematic if we were to actually analyse the
dataset, we did not consider it problematic in this simulation
study. The purpose of the events time series was to provide
us with a seasonal trend and a long-term trend as they would
appear in a real example. In addition, we wanted to investigate
overdispersion. This was also possible with our event time
series.

While we presented unidentified outbreaks as a possible
source of overdispersion and recommended the removal of
outlier-dates from the analysis, other aspects of outbreaks
are not discussed. In addition, several aspects of infectious
diseases such as person-to-person transmission were not
investigated.

Conclusion on case-crossover design

Fixed bidirectional RSS are systematically biased, while time-
stratified RSS are not. This bias can, however, beminimised by keep-
ing the proportion of affectedmatched sets small. All RSS are vulner-
able to confounding bias. Researchers looking to detect time-varying
confounding could take an approach similar to this simulation study:
(1) creating an event time series with the time-varying trends that
should be eliminated (both a long-term trend and seasonality in

Fig. 7. Continued.
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this study), (2) adding causal effects from the exposure time series
under investigation and (3) analysing the simulated events and
unaltered exposure time series with the desired case-crossover
design. The estimated coefficients can then be checked for a con-
founding bias (if time-stratified RSS were used) or a confounding
bias plus a systematic bias (if fixed bidirectional RSS were used).
While the latter is a combination of biases, it is not necessarily larger
than the former. In addition, the statistical power associated with dif-
ferent RSS can be explored. To illustrate our approach as a tool to
compare different RSS, we have investigated an additional time-
stratified RSS with 3-week strata and summarised the results in a
Supplementary file.

We suggested and demonstrated possible solutions to con-
founding bias in time-stratified RSS: within matched set model-
ling and aggregating over smaller areas. Finally, an unexpected
high number of events on the same date can inflate type I error
and should preferably be removed from the dataset before
model fitting.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268820000916.
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Attachment

Case definitions

Both confirmed and probable cases of Legionella spp. were included in the
analysis. The laboratory criteria for case confirmation were; (1) the isolation
of Legionella spp. from respiratory secretions or any normally sterile site
[33], (2) detection of Legionella pneumophila antigen in urine, (3) a significant
rise in specific antibody level to Legionella pneumophila serogroup 1 in paired
serum samples. The laboratory criteria for a probable case were; (1) detection
of Legionella pneumophila antigen in respiratory secretions or lung tissue e.g.
by DFA staining using monoclonal-antibody derived reagents, (2) detection of
Legionella spp. nucleic acid in respiratory secretions, lung tissue or any nor-
mally sterile site [34, 35], (3) significant rise in specific antibody level to
Legionella pneumophila other than serogroup 1 or other Legionella spp. in
paired serum samples, single high level of specific antibody to Legionella pneu-
mophila serogroup 1 in serum.

Description of the data sources

National reference centres (NRC)
The NRC analysed isolates they collected themselves and isolates they received
from Belgian laboratories. Isolates were sent to the NRC on a voluntary but
recommended basis. The goals of an NRC were: confirmation and additional
strain characterisation (sero- and genotyping) and determining antibiotic
resistance [30]. The NRC for Legionella were: ‘Universitair Ziekenhuis
Brussel, Vrije Universiteit Brussel’ and ‘Laboratoire Hospitalier Universitaire
de Bruxelles (LHUB-ULB), Hôpital Erasme Brussels’.

Laboratory sentinel surveillance network
The surveillance started in 1983 and consisted of both hospital laboratories
and private laboratories. The network was coordinated by the Institute of
Public Health. Participation in the network is voluntary. The coverage of the
laboratory sentinel surveillance has been estimated to be around 50% for
other pathogens under surveillance, but a specific estimate is unknown for
Legionnaires’ disease.

Mandatory notification
Notification of confirmed Legionnaires’ disease cases was mandatory in all
three Belgian regions. The notification was coordinated by the regional public
health agencies. Physicians and laboratories were obliged to notify cases, but
the notification was suspected to be incomplete.
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