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L-functions for Quadratic Characters and
Annihilation of Motivic Cohomology
Groups

Jonathan W. Sands

Abstract. Let n be a positive even integer, and let F be a totally real number ûeld and L be an abelian
Galois extension which is totally real or CM. Fix a ûnite set S of primes of F containing the inûnite
primes and all those which ramify in L, and let SL denote the primes of L lying above those in S.
_en OS

L denotes the ring of SL-integers of L. Suppose that ψ is a quadratic character of the Galois
group of L over F. Under the assumption of themotivic Lichtenbaum conjecture, we obtain a non-
trivial annihilator of the motivic cohomology group H2

M
(OS

L ,Z(n)) from the lead term of the
Taylor series for the S-modiûed Artin L-function LS

L/F(s,ψ) at s = 1 − n.

1 Motivic Cohomology Groups

Fix a totally real algebraic number ûeld F, and an abelian Galois extension L which
is either totally real or CM. Let G = Gal(L/F), of order ∣G∣, and let τ ∈ G denote
complex conjugation, so τ is the identity if L is totally real. Let OL denote the ring of
algebraic integers of L.
Fix a ûnite set of primes S of F which contains all of the inûnite primes of F and

all of the primes which ramify in L, and let OS
L denote the ring of S-integers of L. It

consists of the elements of L whose valuation is non-negative at each prime above a
prime in S, and is a Z[G]-module.
For an integer n ≥ 2, the motivic cohomology group H2

M(OL ,Z(n)) injects
into H2

M(OS
L ,Z(n)) , which in turn injects into H2

M(L,Z(n)) , as seen in [2]. _e
ûrst two of these abelian groups are ûnite, and we denote their orders by hn(L) and
hS
n(L) respectively. _ese play the role of a class number and an S-class number that

one would have in the analogous situation for n = 1. _e groups H1
M(OL ,Z(n)) ,

H1
M(OS

L ,Z(n)) and H1
M(L,Z(n)) are all isomorphic, and ûnitely generated [2].

_ey are the higher analog of the group of units of OS
L . If σ ∈ G, then σ is an auto-

morphismof L that restricts to automorphisms ofOS
L andOL . _ereforewe obtain an

automorphism σ∗ of each of the motivic cohomology groups in this paragraph, and
thus they become Z[G]-modules.

Now ûx an even integer n ≥ 2. _e point of this note (_eorem 4.3) is to use the
ûrst non-vanishing derivative of an Artin L-function at 1 − n to obtain a non-trivial
annihilator in Z[G] for H2

M(OS
L ,Z(n)) , analogous to what was done for ideal class
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L-functions and Annihilation ofMotivic Cohomology Groups 621

groups in [9]. In general, onewould seek an annihilator arising from such values for a
conjugacy class of characters, as in Conjecture 2.6.1 of [1] for the case of class groups.
Our characters will be rational, so for us, each conjugacy class will contain just one
element.

Playing the role of the relevant group of roots of unity in this situation is the ûnite
cyclicGalois cohomology group H0(L,Q/Z(n)) , whose order we denote by wn(L).
It is isomorphic to the torsion subgroup of H1

M(OS
L ,Z(n)) (see [3]). _e group

H0(L,Q/Z(n)) also has a natural action of G, and based on the deûnition, one can

identify the G-ûxed subgroup H0(L,Q/Z(n))G
with H0(F ,Q/Z(n)) .

Let YL denote the free abelian group on the embeddings of L in C. _en G acts
on YL via its action on L, and we set XL equal to the submodule of elements of YL on
which τ acts as −1. Note that XL is trivialwhen L is totally real. Indeed, the rank of XL
is r2(L), the number of pairs of complex conjugate embeddings of L.
For anyZ-moduleA, denoteR⊗ZA (respectivelyC⊗ZA) byRA (respectivelyCA).

For any Z-module homomorphism g∶A→ B, let gR and gC denote the natural maps
RA→ RB andCA→ CB. _emotivic Beilinson regulator map λL ∶H1

M(L,Z(n)) →
RXL is a G-module map. Its R-linear extension λL ,R∶RH1

M(L,Z(n)) → RXL , is
known to be an R[G]-module isomorphism. So the free rank of H1

M(L,Z(n))
also equals r2(L). _e Beilinson regulator in this setting is the covolume of
λL(H1

M(L,Z(n))) in RXL , denoted RBn(L) = covol( λL(H1
M(L,Z(n)))) . See [7]

and the references there for details.

Remark 1.1 Voevodsky’s proof of the Bloch–Kato conjecture [14], and consequently
the Quillen–Lichtenbaum conjecture, establishes the existence of natural maps from
K2n−i(L) to H i

M(L,Z(n)) for all n ≥ 2 and i = 1 or 2. _e kernels and cokernels
of these maps are ûnite and annihilated by 2. Applying the localization sequence of
Geisser [2] establishes natural maps from K2n−i(OS

L) to H i
M(OS

L ,Z(n)) , again with
ûnite kernels and cokernels annihilated by 2. _us themotivic formulation of results
only diòers from the K-theoretic formulation at the prime 2. For arithmetic pur-
poses, there is evidence that the motivic formulation of results allows for consistent
treatment of all primes, including 2. See [5] for further explanation.

Now suppose that E is an intermediate ûeld between F and L. Let H = Gal(L/E)
and NH = ∑σ∈H σ , which we view as an endomorphism of H1

M(L,Z(n)) . _en we
have G-module maps rL/E ∶YL → YE and γL/E ∶YE → YL . Here rL/E maps an embed-
ding of L to its restriction to E, and γL/E maps an embedding ν of E to the sum of
all embeddings of L that restrict to ν. So γL/E ○ rL/E acts as NH on YL . Note that by
restriction wemay also consider rL/E ∶XL → XE and γL/E ∶XE → XL .

Here are some basic properties for future reference.

Proposition 1.2 Let ι∶ E → L denote the inclusion map. _e inducedmaps

ι∗∶H1
M(E ,Z(n)) → H1

M(L,Z(n)) and ι∗∶H1
M(L,Z(n)) → H1

M(E ,Z(n))
have the following properties:
(i) ι∗ ○ ι∗ = [L ∶ E],
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622 J. W. Sands

(ii) ι∗ ○ ι∗ = NH ,
(iii) λL ○ ι∗ = γL/E ○ λE ,
(iv) λE ○ ι∗ = rL/E ○ λL .

Proof See [7] and the references there, taking into account Remark 1.1.

2 Regulators

We now deûne an equivariant generalization of the Beilinson regulator. _is will be
an element of the real group ringR[G] that is in general expected to produce a ratio-
nal group ring elementwhen multiplied by the equivariant L-function. In our special
case, this will be seen in Corollary 2.5. Beyond that, the goal is to interpret the arith-
metic signiûcance of the rational values obtained this way. Such an interpretation is
themain result of this note,_eorem 4.3.
Begin with an even positive integer n and a Z[G]-module homomorphism

f ∶H1
M(L,Z(n)) → XL whose kernel is ûnite. Such a homomorphism exists be-

cause the representations ofG on H1
M(L,Z(n)) and XL become isomorphic via λL ,R

over R and must hence be isomorphic over Q. _en fR ○ λ−1
L ,R is an automor-

phism of the ûnitely generated R[G]-module RXL , which is necessarily projective,
because R[G] is semisimple Artinian. As in Snaith [11], we deûne the group-ring
regulator RG( f ) = detR[G]( fR ○ λ−1

L ,R), using the identity automorphism on a com-
plementary module Z for which (RXL)⊕ Z is free over R[G]. _us RG( f ) ∈ R[G].
Forψ an irreducible character of the abelian groupG, let eψ = ∑σ∈G ψ(σ)σ−1 be the

usual associated idempotent in C[G]. _e following proposition summarizes some
basic properties of RG( f ).

Proposition 2.1
(i) _e following are equivalent:

(a) ker( f ) is ûnite,
(b) ker( f ) = tor(H1

M(L,Z(n))) ,
(c) coker( f ) is ûnite,
(d) fR is an isomorphism,
(e) RG( f ) ∈ R[G]∗.

(ii) Let ψ range over the group Ĝ of irreducible characters of the abelian group G.
We have the following equalities, the last one requiring that one of the equivalent
conditions in (a) holds. (Note that C[G]eψ = Ceψ ≅ C.)

RG( f ) = det
R[G]

( fR ○ λ−1
L ,R) = det

C[G]
( fC ○ λ−1

L ,C)

= ∑
ψ∈Ĝ

det
C[G]eψ

( fC ○ λ−1
L ,C∣eψCXS

L
) = ∑

ψ∈Ĝ
det

C[G]eψ
(λL ,C ○ f −1

C ∣eψCXS
L
)−1

.

(iii) When ψ has exponent 2, we have

RG( f )eψ = det
R[G]eψ

( fR ○ λ−1
L ,R∣eψRXL) = det

R[G]eψ
(λL ,R ○ f −1

R ∣eψRXL)
−1

.
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Proof _e proofs follow exactly as in [9, Proposition 3.2].

_e next result shows that the regulator of f for the ûeld L is related in a useful
natural way to the regulator of rL/E ○ f ○ ι∗ for the subûeld E.

Lemma 2.2 Suppose that f ∶H1
M(L,Z(n)) → XL is a G-module homomorphism

with ûnite kernel. Let πG/H ∶R[G]→ R[G/H] be the natural projection map, where H
is a subgroup of G. If χ is a ûrst degree character of G = G/H and ψ ∈ Ĝ is its in�ation,
we let r(ψ) denote the dimension of eψCXL as a complex vector space. Again let E be
the ûxed ûeld of H, and let ι∶ E → L denote the inclusion map. _en

RG/H(rL/E ○ f ○ ι∗)eχ = ∣H∣r(ψ)πG/H(R( f )eψ) .

Proof We extend f , γL/E , rL/E , ι∗, λE and λL toC-linearmaps fC, γL/E ,C, etc., but to
simplify notation in this proof, we will omit the subscript C. Note that λE and λL are
then isomorphisms. _en the result follows from the basic facts we have established:

R(rL/E ○ f ○ ι∗)eχ
= det

Ce χ
(rL/E ○ f ○ ι∗ ○ λ−1

E ∣e χCXE )eχ by Prop. 2.1,

= det
Ce χ

(rL/E ○ f ○ λ−1
L ○ γL/E ∣e χCXE )eχ by Prop. 1.2,

= det
C

(rL/E ○ f ○ λ−1
L ○ γL/E ∣e χCXE )eχ upon identifying Ceχ = C,

= det
C

(γL/E ○ rL/E ○ f ○ λ−1
L ∣eψCXL)eχ as γL/E ∶ eχCXE ≅ eψCXL ,

= det
C

(NH ○ f ○ λ−1
L ∣eψCXL)eχ by the comment preceeding Prop. 1.2,

= det
C

(∣H∣ ○ f ○ λ−1
L ∣eψCXL)eχ since NHeψ = ∣H∣eψ ,

= ∣H∣r(ψ) det
C

( f ○ λ−1
L ∣eψCXL)eχ as r(ψ) = dimC(eψCXL),

= ∣H∣r(ψ)πG/H(det
Ceψ

( f ○ λ−1
L ∣eψCXL)eψ) as eψCXL ≅ C and πG/H(eψ) = eχ ,

= ∣H∣r(ψ)πG/H(R( f )eψ) by Prop. 2.1.

Now we derive a formula for the component of the equivariant regulator corre-
sponding to the non-trivial character of aGalois group of order two. By in�ation, this
will allow us to do the same for characters of order two on larger groups.

Lemma 2.3 Suppose that E is CM, F = E+, the maximal totally real subûeld of E,
and τ is the non-trivial automorphism of E over F. Let ι be the inclusion of F in E and
let χ be the non-trivial character of G = Gal(E/F) = ⟨τ⟩. If f (H1

M(E ,Z(n))) → XE
is a Z[G]-module homomorphism with ûnite kernel, then

RG( f )eχ =
(XE ∶ f (H1

M(E ,Z(n))))
RBn(E)

eχ .
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Proof Since XE is free as a Z-module and has the same free rank as H1
M(E ,Z(n)) ,

we can choose an injective Z-module homomorphism g∶XE → H1
M(E ,Z(n)) that

becomes an isomorphism when reducedmodulo torsion.
Note that by Proposition 1.2, (2eχ0)H1

M(E ,Z(n)) = (1 + τ)H1
M(E ,Z(n)) =

(ι∗ ○ ι∗)H1
M(E ,Z(n)) ⊂ ι∗H1

M(F ,Z(n)) , and this is ûnite since H1
M(F ,Z(n)) is

ûnite because the ûeld F = E+ is totally real.
TensoringwithR shows that eχ0(H1

M(E ,Z(n))⊗R) = 0. _en, letting λR = λE ,R,
we have

RG( f )eχ = detRe χ
(λ−1

R ○ f R∣e χ(H1
M

(E ,Z(n))⊗R))eχ

by Proposition 2.1,

= det
R

(λ−1
R ○ f R∣e χ(H1

M
(E ,Z(n))⊗R))eχ

by identifying Reχ = R,

= det
R

(λ−1
R ○ f R)eχ

by what we have just noted,

= det
R

(λR ○ f
−1
R )−1eχ

= det
R

(λR ○ gR ○ g−1
R ○ f −1

R )−1eχ

= detR( f R ○ gR)
detR(λR ○ gR)

eχ

by properties of determinants,

= detZ( f ○ g)
detR(λR ○ gR)

eχ

=
(XE ∶ f ( g(XE)))

covol( λ( g(XE)))
eχ

=
(XE ∶ f (H1

M(E ,Z(n))))

covol( λ(H1
M

(E ,Z(n))))
eχ

as g(XE)tor(H1
M(E ,Z(n))) = H1

M(E ,Z(n)) , while f and λ kill torsion,

=
(XE ∶ f (H1

M(E ,Z(n))))

RBn(E)
eχ .

Combining the last two lemmas, we get an expression for the component of the
regulator corresponding to a character of order two on an abelian Galois group.
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Proposition 2.4 Suppose that ψ is a character of order 2 of the abelian group G =
Gal(L/F), with L a CM ûeld and F totally real. Let f ∶H1

M(L,Z(n)) → XL be a
Z[G]-module homomorphism with ûnite kernel. Let E = Eψ , the ûxed ûeld of ker(ψ).
_en

(RG( f )eψ) =
(XE ∶ (rL/E ○ f ○ ι∗)(H1

M(E ,Z(n))))
∣ker(ψ)∣r(ψ)RBn(E)

eψ .

Proof Let H = ker(ψ). _en (G ∶ H) = 2 and the ûxed ûeld E = Eψ of H is a
quadratic extension of F. Note that E is either totally real or CM, as either E ⊂ L+

or E ⋅ L+ = L. If E is totally real, then XE = 0. Hence eψXL ≅ eχXE = 0, and
R( f )eψ = 1eψ by Proposition 2.1, as it is the determinant of a linear transformation
on this 0-dimensional space. Also r(ψ) = 0 and RBE = 1, so the other side of the
equation reduces to 1eψ as well.

We now assume that E is CM, so that E+ = F. _en

∣H∣r(ψ)πG/H(R( f )eψ) = RG(rL/E ○ f ○ ι∗)eχ by Lemma 2.2,

=
(XE ∶ (rL/E ○ f ○ ι∗)(H1

M(E ,Z(n))))
RBn(E)

eχ by Lemma 2.3.

Since πG/H ∶Reψ → Reχ is an isomorphism with πG/H(eψ) = eχ , we obtain the
desired conclusion.

We pause to record an observation on rationality which one expects to holdmore
generally, in line with Stark’s principal conjecture [13].

Corollary 2.5 With the assumptions as in Proposition 2.4, RG( f )RBn(E)eψ ∈ Q[G].

3 Artin L-functions

Again let E be an intermediate ûeld between F and L, with L/F abelian and G =
Gal(L/F) as always. Let H = Gal(L/E) and let Ĥ denote the group of characters ofH.
_en SE will denote the set of primes of E above those of F in S. _e SE-imprimitive
Artin L-function for a character ψ ∈ Ĥ is deûned for complex s with real part greater
than 1 by a product over primes of E as

LS
L/E(s,ψ) = ∏

prime p∉SE

( 1 − 1
Nps ψ(σp))

−1
,

and this function extends meromorphically to the whole complex plane.
As usual, r1(E) and r2(E) will denote the number of real embeddings of E and

the number of pairs of complex conjugate embeddings of E, respectively. For the
trivial character ψ0, we have LS

L/E(s,ψ0) = ζSE
E , the Dedekind zeta function of E with

Euler factors for ûnite primes in SE removed. It has a zero of order equal to r2(E) at
s = 1 − n when n ≥ 2 is even, and r1(E) + r2(E) when n ≥ 2 is odd. We will make use
of the following description of its ûrst non-zero Taylor coeõcient at s = 1−n, denoted
ζS ,∗
E (1 − n).
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Conjecture 3.1 (Motivic Lichtenbaum) For each integer n ≥ 2, we have

ζS ,∗
E (1 − n) = ± hS

n(E)
wn(E)

RBn(E).

Remark 3.2 (i) _is conjecture is known to be true, up to powers of 2, for E abelian
over Q, by [6].

(ii) _e standard form of this conjecture occurswhen S consists of just the inûnite
primes. However, augmenting the set SE by a ûnite prime p multiplies each side by
±(1 −Npn−1). On the le�, (1 −Npn−1) is the value of the Euler factor corresponding
to p when s = 1− n. On the right,wn(E) and RBn(E) depend only on H0(E , q/Z(n))
and H2

M(E ,Z(n)) , so are independent of S. For hS
n(E) = ∣H2

M(OSE
E ,Z(n)) ∣ , there

is a short exact sequence

0→ H2
M(OSE

E ,Z(n)) → H2
M(OSE∪{p}

E ,Z(n)) → H1
M(OE/p,Z(n − 1)) → 0,

derived from the localization sequences ofGeisser [2] forOS
E andO

S∪p
E . _e long exact

sequence in cohomology gives H0
M(OE/p,Q/Z(n − 1)) ≅ H1

M(OE/p,Z(n − 1)) ,
while H0

M(OE/p,Q/Z(n − 1)) ≅ H0(OE/p,Q/Z(n − 1)) of order easily computed
to be Npn−1 − 1.

(iii) When E is totally real and n ≥ 2 is even, RBn(E) = 1 because RXE = 0, and the
conjecture holds up to powers of two as a consequence ofWiles’ proof in [15] of the
main conjecture for totally real ûelds (see [4] and [3]). For E totally real and absolutely
abelian, it is known to hold exactly, based on the full proof of themain conjecture in
this case [15]. _e case of E totally real and n = 2 is the Birch–Tate conjecture, which
was made earlier (see Section 4 of [12]).

Proposition 3.3 For the principal character ψ0 ofGal(L/F), the ûrst non-zero Taylor
coeõcient of LS

L/F(s,ψ0) at s = 1 − n is

LS ,∗
L/F(1 − n,ψ0) = ±2c

∣H2
M(OS

F ,Z(n)) ∣
∣H0(F ,Q/Z(n)) ∣

= ±2chS
n(F)/wn(F),

with c ∈ Z and c = 0 if F is abelian overQ, ormore generally if themotivic Lichtenbaum
conjecture holds for F.

Proof Since ψ0 is the in�ation of the trivial character on Gal(F/F), the functorial
properties of Artin L-functions give

LS ,∗
L/F(1 − n,ψ0) = ζS ,∗

F (1 − n).

_e result then follows from the preceeding remarks, since F is totally real.

Proposition 3.4 Suppose thatψ is a quadratic character ofG = Gal(L/F). Let Eψ de-
note the quadratic extension of F that is the ûxed ûeld of H = ker(ψ), and let σψ denote
the generator of Gal(Eψ/F) ≅ G/H. Assume that the motivic Lichtenbaum conjecture
holds for Eψ and F. _en the ûrst non-zero Taylor coeõcient of LS

L/F(s,ψ) at s = 1 − n
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is

LS ,∗
L/F(1 − n,ψ) = ±2t

∣H2
M(OS

Eψ ,Z(n)) 1−σψ ∣

∣H0(Eψ ,Q/Z(n)) 1−σψ ∣
RBn(Eψ)

for some integer t.

Proof First, ψ is in�ated from the non-trivial character χ of Gal(Eψ/F), and this
character is the diòerence between the regular representation of Gal(Eψ/F) and the
trivial character. _e functorial properties of Artin L-functions combined with the
motivic Lichtenbaum conjecture for Eψ and the known motivic Lichtenbaum conjec-
ture for the totally real ûeld F give

LS ,∗
L/F(1 − n,ψ) =

ζS ,∗
Eψ (1 − n)
ζS ,∗
F (1 − n)

= ±
∣H2

M(OS
Eψ ,Z(n)) ∣

∣H2
M

(OS
F ,Z(n)) ∣

∣H0(F ,Q/Z(n)) ∣
∣H0(Eψ ,Q/Z(n)) ∣

RBn(Eψ).

_e very deûnition of H0(F ,Q/Z(n)) gives us an exact sequence

1→ H0(F ,Q/Z(n)) → H0(Eψ ,Q/Z(n))
1−σψÐÐ→ H0(Eψ ,Q/Z(n)) 1−σψ → 1.

Consequently the second ratio appearing in the last expression for LS ,∗
L/F(ψ) is

∣H0(F ,Q/Z(n)) ∣
∣H0(Eψ ,Q/Z(n)) ∣

= 1

∣H0(Eψ ,Q/Z(n)) 1−σψ ∣
.

Now for ι denoting the inclusion F → Eψ , there is a homomorphism induced by ι∗:

H2
M(OS

Eψ ,Z(n))/H2
M(OS

Eψ ,Z(n)) 1−σψ → H2
M(OS

F ,Z(n))

for which the kernel on the le� and the cokernel on the right are ûnite and an-
nihilated by 2. _us the ûrst ratio in the expression for LS ,∗

L/F(ψ) above becomes
2t ∣H2

M(OS
Eψ ,Z(n)) 1−σψ ∣ , and this completes the proof.

Corollary 3.5 Suppose thatψ is a quadratic character ofG = Gal(L/F), E = Eψ is the
ûxed ûeld ofH = ker(ψ), and σψ is the generator ofGal(Eψ/F) ≅ G/H. Assume that the
motivic Lichtenbaum conjecture holds for Eψ . Given a Z[G]-module homomorphism
f ∶H1

M(L,Z(n)) → XL with ûnite kernel, we have

RG( f )LS ,∗
L/F(1 − n,ψ)eψ = ±2dm

∣H2
M(OS

Eψ ,Z(n)) 1−σψ ∣

∣H0(Eψ ,Q/Z(n)) 1−σψ ∣
eψ ,

where m = (XE ∶ rL/E ○ f ○ ι∗(H2
M(E ,Z(n))))/ ∣H∣r2(E) is an integer, as is d.

For the principal character ψ0, we have

RG( f )LS ,∗
L/F(1 − n,ψ0)eψ0 = ±2c

∣H2
M(OS

F ,Z(n)) ∣
wn(F)

eψ0

with c = 0 if the full motivic Lichtenbaum conjecture holds for F.
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Proof For the principal character ψ0, the result follows from Proposition 3.3 and
the fact that (∣G∣eψ0)H1

M(L,Z(n)) = NGH1
M(L,Z(n)) = (ι∗ ○ ι∗)H1

M(L,Z(n)) ⊂
ι∗H1

M(F ,Z(n)) . _is is ûnite since H1
M(F ,Z(n)) is ûnite, because the ûeld F = E+

is totally real. _us eψ0CH1
M(L,Z(n)) = 0, so RG( f )eψ0 = 1eψ0 by Proposition 2.1.

For the case of a quadratic character ψ, Proposition 2.4 and Proposition 3.4 to-
gether give

RG( f )LS ,∗
L/F(1 − n,ψ)eψ

= ±2d
(XE ∶ (rL/E ○ f ○ ι∗)(H1

M(E ,Z(n))))
∣ker(ψ)∣r(ψ)

∣H2
M(OS

Eψ ,Z(n)) 1−σψ ∣

∣H0(Eψ ,Q/Z(n)) 1−σψ ∣
eψ .

If E is totally real, then r(ψ) = 0, so the result is clear.
We may now assume that E is CM. _en ι∗(H1

M(E ,Z(n))) is ûxed by H, and
therefore f ( ι∗(H1

M(E ,Z(n)))) is contained in the H-ûxed sub-module XH
L of XL .

Since E isCM, every inûnite prime of E splits completely in L. _us it is easy to see that
XH

L = γL/E(XE). So (rL/E○ f ○ι∗)(H1
M(E ,Z(n))) is contained in rL/E(XH

L ) = (rL/E○
γL/E)(XE) = ∣H∣XE . Consequently, the index (XE ∶ (rL/E ○ f ○ ι∗)(H1

M(E ,Z(n))))
above is an integermultiple of (XE ∶ ∣H∣XE) = ∣H∣r2(E). Restricting γL/F gives eψXL ≅
eχXE , so r(ψ) = r2(E) and the result follows.

4 The Annihilation Theorem

Fix an even positive integer n.

Lemma 4.1 Suppose that α ∈ AnnZ[G](H0(L,Q/Z(n))) .
(i) For the principal character ψ0, αeψ0 = cwn(F)eψ0 for some integer c.
(ii) For any character ψ of order 2, αeψ = c∣H0(Eψ ,Q/Z(n))1−σψ ∣eψ for some inte-

ger c.

Proof (i) (See [9, Lemma 4.2].) Write α = ∑σ∈G nσσ . _en, restricting to

H0(F ,Q/Z(n)) ⊂ H0(E ,Q/Z(n)) ,

we ûnd that

A = ∑
σ∈G

nσ ∈ AnnZ(H0(F ,Q/Z(n))) = wn(F)Z,

since H0(F ,Q/Z(n)) is a cyclic group of order wn(F). So A = cw2(F), with c ∈ Z.
_en α−A = ∑σ∈G nσ(σ−1). Since (σ−1)eψ0 = 0 for each σ ∈ G,we have (α−A)eψ0 =
0 so αeψ0 = Aeψ0 = cwn(F)eψ0 .

(ii) Restricting instead to H0(Eψ ,Q/Z(n)) 1−σψ shows that

B = ∑
σ∈G

nσψ(σ) ∈ AnnZ(H0(Eψ ,Q/Z(n)) 1−σψ) = ∣H0(Eψ ,Q/Z(n)) 1−σψ ∣Z,

https://doi.org/10.4153/CMB-2014-072-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-072-3


L-functions and Annihilation ofMotivic Cohomology Groups 629

sinceH0(Eψ ,Q/Z(n)) is a cyclic group. So B = c∣H0(Eψ ,Q/Z(n)) 1−σψ ∣,with c ∈ Z,
and α − B = ∑σ∈G nσ(σ − ψσ). Since (σ − ψ(σ)) eψ = 0 for each σ ∈ G, we have

(α − B)eψ = 0 so αeψ = Beψ = c∣H0(Eψ ,Q/Z(n)) 1−σψ ∣eψ .

Proposition 4.2 Suppose that L is an abelian totally real or CM extension of a totally
real ûeld F, with abelian Galois group G = Gal(L/F). Let n ≥ 2 be an even integer, let

α ∈ AnnZ[G](H0(L,Q/Z(n)))

and let
f ∶H1

M(L,Z(n)) → XL

be a G-module homomorphism with ûnite kernel.
(i) For the principal character ψ0 of G, we have

2kαRG( f )LS ,∗
L/F(1 − n,ψ0)eψ0 = m∣H2

M(OS
F ,Z(n)) ∣ eψ0

for some integers k and m.
(ii) If ψ is a quadratic character of G and the motivic Lichtenbaum conjecture holds

for the ûxed ûeld Eψ of the kernel of ψ, then we have

2kαRG( f )LS ,∗
L/F(1 − n,ψ)eψ = m∣H2

M(OS
Eψ ,Z(n)) 1−σψ ∣ eψ

for some integers k and m.

Proof _is results directly from combining Lemma 3.5 and Corollary 4.1.

_eorem 4.3 Suppose that L is an abelian totally real orCM extension of a totally real
ûeld F, with abelian Galois group G = Gal(L/F). Let α ∈ AnnZ[G](H0(L,Q/Z(n)))
and let f ∶H1

M(L,Z(n)) → XL be a G-module homomorphism with ûnite kernel. If ψ
is a character of G such that ψ2 = 1 and the motivic Lichtenbaum conjecture holds for
the ûxed ûeld of ker(ψ), then for some k ∈ Z, 2k ∣G∣αRG( f )LS ,∗

L/F(1 − n,ψ)eψ lies in
Z[G] and annihilates H2

M(OS
L ,Z(n)) .

Proof For the principal character,

2k ∣G∣αRG( f )LS ,∗
L/F(1 − n,ψ0)eψ0 = m∣H2

M(OS
F ,Z(n)) ∣NG ∈ Z[G]

by Proposition 4.2. So we consider

(m∣H2
M(OS

F ,Z(n)) ∣NG) ⋅H2
M(OS

L ,Z(n))

= m∣H2
M(OS

F ,Z(n)) ∣ ⋅ (NG ⋅H2
M(OS

L ,Z(n))) .

_en by Proposition 1.2 with E = F,

NG ⋅H2
M(OS

L ,Z(n)) = ι∗ι∗(H2
M(OS

L ,Z(n))) ⊂ ι∗(H2
M(OS

F ,Z(n))) ,

and this is clearly annihilated by m∣H2
M(OS

F ,Z(n)) ∣ . Hence we reach the desired
conclusion in this case.

https://doi.org/10.4153/CMB-2014-072-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-072-3


630 J. W. Sands

For a character ψ of order 2, we put E = Eψ , and H = Gal(L/E). Also let σ̃ψ ∈ G
restrict to the generator σψ of Gal(E/F), so that ∣G∣eψ = (1 − σ̃ψ)NH . _en

2k ∣G∣αRG( f )LS ,∗
L/F(1 − n,ψ)eψ = m∣H2

M(OS
Eψ ,Z(n)) 1−σψ ∣ (1 − σψ)NH

by Proposition 4.2. So we consider

m∣H2
M(OS

E ,Z(n)) 1−σψ ∣ (1 − σ̃ψ)NH ⋅H2
M(OS

L ,Z(n))

= m∣H2
M(OS

Eψ ,Z(n)) 1−σψ ∣ ⋅ ((1 − σ̃E) ⋅ (NH ⋅H2
M(OS

L ,Z(n)))) .

_en by Proposition 1.2 with ι∶ E → L and the fact that ι ○ σψ = σ̃ψ ○ ι,

(1 − σ̃ψ) ⋅ (NH ⋅H2
M(OS

L ,Z(n))) = (1 − σ̃ψ) ⋅ ( ι∗ι∗(H2
M(OS

L ,Z(n))))

⊂ (1 − σ̃ψ) ⋅ ι∗(H2
M(OS

E ,Z(n))) = ι∗((1 − σψ) ⋅H2
M(OS

E ,Z(n))) ,

and this is clearly annihilated by m∣ (1 − σψ) ⋅ H2
M(OS

E ,Z(n)) ∣ . _is completes the
proof.

Remark 4.4 (i)When L is a totally real multiquadratic extension of F, [10] obtains
a stronger result in the case of n = 2, eliminating the factor of 2k .

(ii) An approach to this result via the Equivariant Tamagawa Number Conjecture
is provided by [8].

Acknowledgements We are deeply indebted to Manfred Kolster for many sugges-
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kernels to themore general setting ofmotivic cohomology groups.
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