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Abstract. In this note, we give a new proof of the fact that an affine semiprime
algebra R of Gelfand-Kirillov dimension 1 satisfies a polynomial identity. Our proof
uses only the growth properties of the algebra and yields an explicit upper bound for
the pi degree of R.
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Let R be an affine algebra over a field k. The Small-Stafford-Warfield Theorem
[6, 7] asserts that if R has Gelfand-Kirillov (GK) dimension 1, then R satisfies a
polynomial identity. The proof of this result is in three main steps. First, the result
is proved for R prime in [7]. Then, in [6] the result is exended to R semiprime by a
(somewhat lengthy) proof that R has finitely many minimal primes. Finally, the result
is proven in the general case (again in [6]) by showing that the nilradical of R must be
nilpotent.

The purpose of this note is to give a short, self contained proof of the theorem
for semiprime algebras. This new proof is advantageous for several reasons. First, the
proof emphasizes the growth of the algebra and hopefully gives more insight into
“why” the theorem is true. Second, the argument is less technical; for example, we need
only change fields once, instead of three times. Finally, the proof gives an explicit upper
bound for the pi degree of R, which is an improvement over the upper bound obtained
in [4].

We have not defined the GK dimension and in fact do not need its definition in
the sequel. Instead we shall use the following notion which at first glance is weaker
than having GK dimension 1. Since R is affine, we can fix a finite set S which generates
R as a ring. Then R is said to have linear growth if R is not finite-dimensional over k
and dimk kSi − dimk kSi−1 ≤ c, for some c > 0 and all i, where kSi is the span of all
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words in S of length at most i. Note that this condition implies that dimk kSi ≤ ci + 1,
for all i; however, there may be a smaller constant d such that dimk kSi ≤ di + 1. The
property of having linear growth is independent of the choice of generating space; see
[2, Lemma 1.1]. G. Bergman proved that an affine k-algebra R has GK dimension 1 if
and only if R has linear growth [1], [2, Theorem 2.5].

Note that the constant c above depends on the choice of generating set S. We shall
call the smallest c such that dimk kSi − dimk kSi−1 ≤ c, for all i, the Bergman bound
for S. In order to work with an invariant of the ring R, we define c(R) by

c(R) = min{c : c is the Bergman bound for some generating set S}.
The following result is contained in the original proof of the theorem in the prime

case [7, p. 387]. We shall use it below, but feel it is pointless to give a proof because we
would essentially be copying the proof given in [7]. We remark that the proof of this
result uses only the fact that R has linear growth.

LEMMA 1. If R is a prime affine k-algebra of GK dimension 1, then R satisfies the
ascending chain condition on right ideals of the form ann r.

LEMMA 2. Let k be a field, and let S be a finite generating set for Mn(k) such that

dimk kSi − dimk kSi−1 ≤ �, (1)

for some fixed positive integer � and for all i. Then, any word in S of length �(n + 1) can
be written as a linear combination of words of strictly smaller length.

Proof. Enumerate the elements of S as {s1, . . . , st}, and order S by s1 < s2 < . . . <

st. We shall denote by �(q) the set of all sequences (a1, . . . , aq), with ai ∈ S. We give
�(q) the lexicographic ordering induced by the ordering of S.

Let us set m = �(n + 1) to ease notation, and let W be the set of all words in S of
length m that are not in kSm−1. Assume that W is nonempty, and let w̃ = (a1, . . . , am)
be the smallest element of �(m) such that w = a1 . . . am ∈ W . Now, w̃ has exactly � + 1
subsequences of consecutive terms of length �n; label these as ṽ1, . . . , ṽ�+1, where ṽj =
(aj, . . . , a�n+j−1). Denote the corresponding subwords of w by v1, . . . , v�+1, respectively
(so that vj = aj . . . a�n+j−1).

Suppose first that each of the vj are distinct elements of Mn(k). Then, by hypothesis,
there is a nontrivial dependence relation

∑
j αjvj + u = 0, with each αj ∈ k and u ∈

kS�n−1. Let ṽp be the largest sequence in �(�n) such that αp �= 0. Then we can solve for
vp as a linear combination of the other terms: vp = ∑

j �=p α−1
p αjvj + α−1

p u. Making this
substitution into the word w, we have expressed w as a linear combination of words of
length at most m. The key observation is that, by construction, each word of length m
in this expression for w has a corresponding sequence in �(m) that is smaller than w̃.
Thus, by hypothesis, these terms are not in W , and so neither is w.

We may therefore suppose that there are two indices p < q such that vp = vq. We
first show that this implies the stronger statement that ṽp = ṽq. To see this, we can write

w = a1 . . . ap−1(vp)ap+�n . . . am = a1 . . . ap−1(vq)ap+�n . . . am. (2)

By hypothesis w̃ is the smallest element of �(m) representing w; consequently, we see
that

(a1, . . . , ap−1, aq, . . . , aq+�n−1, ap+�n, . . . , am) ≥ w̃. (3)
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This shows that aq ≥ ap. A similar argument, using

w = a1 . . . aq−1(vq)aq+�n . . . am = a1 . . . aq−1(vp)aq+�n . . . am, (4)

shows that ap ≥ aq, and an induction argument then shows that the two sequences ṽp

and ṽq are identical.
Hence, the initial sequences of length q − p of ṽp and ṽq are identical. Set ũ =

(ap, . . . , aq−1) = (aq, . . . , a2q−p−1), so that

ṽp = (ap, . . . , aq−1, aq, . . . , a2q−p−1, a2q−p, . . . , ap+�n−1)

= (ũ, ũ, a2q−p, . . . , ap+�n−1). (5)

(Note that q ≤ � + 1 ≤ �n + 1, so that aq does appear in ṽp as claimed.) Now, an
easy induction argument shows that

ṽp = (ũ, . . . , ũ, anq−(n−1)p, . . . , ap+�n−1), (6)

where ũ is repeated n times. In the extreme case that q = � + 1 and p = 1, then in fact
ṽp = (ũ, . . . , ũ) (repeated n times) and there are no additional entries in ṽp.

If we set u = ap . . . aq−1, then w = a1 . . . ap−1unanq−(n−1)p . . . am. (Again, in the
extreme case q = � + 1, p = 1, we have w = a1 . . . ap−1un.) Since w contains a subword
that is an n-th power, we can use the Cayley-Hamilton Theorem to write w as a linear
combination of words of length less than m. This shows that W is empty, which is
precisely the assertion of the lemma. �

Let k̄ denote the algebraic closure of k. We shall call a representation ρ : R →
Mn(k) irreducible if the image of ρ under the inclusion Mn(k) ⊆ Mn(k̄) generates Mn(k̄)
as an algebra; that is, k̄ρ(R) = Mn(k̄). Our next result bounds the dimensions of the
irreducible representations of R by a function of c(R) when R has linear growth.

PROPOSITION 3. Let R be an affine algebra of GK dimension 1. If ρ : R → Mn(k) is
an irreducible representation, then n is bounded by a function of c(R).

Proof. Fix a generating set T for R with Bergman bound c(R), and let S = ρ(T).
Then, S generates Mn(k̄) by definition and, since dimk kTi − dimk kTi−1 ≤ c(R) for
all i, it follows that dimk̄ k̄Si − dimk̄ k̄Si−1 ≤ c(R) as well. By Lemma 2, it follows
that every word in S of length c(R)(n + 1) is reducible, so that the words of length
c(R)(n + 1) − 1 span Mn(k̄). Hence n2 = dimk̄ k̄Sc(R)(n+1)−1 ≤ c(R)2(n + 1) − c(R) + 1.
Solving for n as a function of c(R), we obtain the formula

n ≤ 1
2

{
c(R)2 +

√
c(R)4 + 4c(R)2 − 4c(R) + 4

}
. (7)

Hence, the dimensions of the irreducible representations of R are bounded by a constant
which depends only on the growth of R, as claimed. �

The next step in the proof is to establish that certain primitive k-algebras of GK
dimension at most 1 are in fact finite-dimensional over k.

PROPOSITION 4. Let k be an uncountable field and let R be an affine, primitive
k-algebra with GK dim R ≤ 1. Then R is finite-dimensional over k.
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Proof. Fix a generating set S for R with Bergman bound c, and let M be a faithful
simple R-module. We shall show that M is finite-dimensional over k. It will then follow
from standard structure theory that R is also finite-dimensional over k.

Assume to the contrary that M is infinite-dimensional over k, and let x1, . . . , xt be
D-linearly independent elements of M, where D = End R(M). Note that since k ⊆ D,
x1, . . . , xt are k-linearly independent as well. By the Density Theorem, there exist
elements r1, . . . , rt such that xjri = 0, for j < i, and xiri = x1. Let Ai = ann {x1, . . . , xi}.
Then, there is an R-module surjection Ai + riR/Ai → M given by Ai + rir �→ xirir =
x1r. (Note that x1 generates M as M is simple.)

Let N be a positive integer such that each of r1, . . . , rt are in kSN . The filtration
At ≤ At−1 ≤ · · · ≤ A2 ≤ A1 gives rise to a vector space decomposition

A1
∼= A1/A2 ⊕ A2/A3 ⊕ · · · ⊕ At−1/At ⊕ At.

This gives rise to the vector space decomposition

A1 ∩ kSn+N ∼=
t−1⊕
i=1

Ai ∩ kSn+N

Ai+1 ∩ kSn+N
⊕ At ∩ kSn+N, (8)

for all n > 0. Now, since ri ∈ kSN , we have that

Ai ∩ kSn+N + rikSn ⊆ Ai−1 ∩ kSn+N,

for all i. There is a vector space surjection

Ai ∩ kSn+N + rikSn

Ai ∩ kSn+N
→ x1kSn (9)

induced by the R-module surjection Ai + riR/Ai → M defined above. If we set g(n) =
dimk x1kSn, then we see that the total dimension of the right hand side of equation (8)
is at least (t − 1)g(n) (one for each of the first t − 1 terms). On the other hand, since
A1 ∩ kSn+N ⊆ kSn+N , the total dimension of the left hand side is at most c(n + N) + 1,
which gives the inequality

c(n + N) + 1 ≥ (t − 1)g(n), (10)

which holds for all n ≥ 0.
Since M is infinite-dimensional over k, we must have g(n) ≥ n: the jump in

dimension from x1kSn to x1kSn+1 must be at least 1 unless it stablizes, but it stabilizes
if and only if M is finite-dimensional over k. Hence, we deduce from (10) that
c(n + N) + 1 ≥ (t − 1)n, or (c(n + N) + 1)/n ≥ t − 1. Since this inequality holds for
arbitrary n, we can let n → ∞ to obtain c ≥ t − 1. We have therefore shown that any
set of D-linearly independent elements of M has cardinality at most c + 1. This shows
that M is finite-dimensional over D, and that R ∼= Mt(D) for some t ≤ c + 1. Now D
is a countable-dimensional k-algebra, and k is uncountable, so that D is algebraic over
k. Thus k̄ is a splitting field for D, and so some finite extension K/k splits D. But then
[D : K ] is finite, so that [D : k] is as well. Hence R is finite-dimensional over k. �

We now have all of the ingredients in place to prove the theorem. Since we have
not yet stated it formally, we do so now.
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THEOREM 5. Let R be a semiprime affine algebra of GK dimension 1. Then R satisfies
a polynomial identity.

Proof. Our first step is to reduce to the case in which k is uncountable. Note that if
K/k is a field extension, then the canonical map R → RK := R ⊗k K is injective. If we
let K = k(xi : i ∈ I) where I is an uncountable index set and the xi are indeterminates
over k, then RK is still semiprime, affine over K , and of GK dimension 1. If we can
show that RK is pi, it will then follow that R is pi. Thus we replace R with RK and k
with K and (changing notation) we may assume that the base field k is uncountable.

Since R is semiprime, we can write R as a subdirect product R ≤ ∏
R/I , where

each R/I is prime (necessarily of GK dimension ≤ 1). By Lemma 1, each R/I has the
ascending chain condition on right annihilators. Thus, by [5, Proposition 2.6.24], R/I
does not have any nil ideals. Since k is uncountable, [5, Theorem 2.5.22] shows that
J(R/I) is nil, and so J(R/I) = 0. We have shown that each R/I is semiprimitive, and
since R is a subdirect product of the R/I , R is semiprimitive as well.

Thus R embeds in
∏

P∈P R/P, where P is the set of primitive ideals of R. Since
each R/P is primitive of GK dimension at most 1, it is finite-dimensional over k, by
Proposition 4. Moreover, identifying R/P as a subalgebra of Mn(k̄), for some n, we
see that the surjection R → R/P gives an irreducible representation of R. Thus, n is
bounded by the growth of R. In particular, each of the terms in the product

∏
R/P

has pi degree at most

N := 1
2

{
c(R)2 +

√
c(R)4 + 4c(R)2 − 4c(R) + 4

}
. (11)

It follows that R has pi degree at most N, as well. �
REMARK 6. (a) The bound of N for the pi degree of R is roughly half the bound

obtained in [4].
(b) An easy to remember upper bound for the pi degree of R is c(R)2 + 1.
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