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Abstract

This work is a collection of radar equations for low-frequency radar sounding and radar in
general that emphasize the form of the radar equation for different target and source geometries.
This is meant as a handbook for scientists and engineers that work with or analyze radar sounder
systems and interpret radar sounding echoes. Lookup tables summarize the results and deriva-
tions are provided for each equation.

1. Introduction

Low-frequency radar sounders (e.g, HF, VHF) have been used for decades to probe ice-sheets
and subsurfaces for both terrestrial and planetary science investigations. They are nadir point-
ing radar systems that have wide along-track and cross-track beam patterns. Terrestrial air-
borne sounders include High-Capability Radar Sounder (HiCARS), Multichannel Coherent
Radar Depth Sounder (MCoRDS), Polarimetric Airborne Survey Instrument (PASIN) and
Polarimetric Airborne Radar Ice Sounder (POLARIS) (Peters and others, 2005, 2007;
Hélière and other, 2007; Shi and others, 2010; Karlsson and other, 2009; Dall and others,
2010; Rodriguez-Morales and others, 2013). Planetary sounders include Mars Advanced
Radar for Subsurface and Ionospheric Sounding (MARSIS), Shallow Radar (SHARAD) and
Lunar Radar Sounder (LRS) (Picardi and others, 2004; Seu and others, 2007; Ono and Oya,
2000), as well as Radar for Europa Assessment and Sounding: Ocean to Near-surface
(REASON) and Radar for Icy Moon Exploration (RIME), (Blankenship and other, 2009;
Moussessian, 2015; Bruzzone and others, 2013), which are currently being developed.

The choice of radar equation for radar sounding analysis, and radar in general, has import-
ant implications for system link budgets and scientific interpretation of radar echoes. While
there is one fundamental radar equation, it will take different forms depending on the prop-
erties of the target and source geometry. These forms elucidate different aspects of the problem
and highlight sensitivity to certain parameters, such as the exponent of the geometric power
fall-off or the origin of certain multiplying constants. For example, there is a 10 dB swing
between the radar equation derived for a flat surface Fresnel zone with plane wave incidence
and the radar equation derived using the image method (Haynes and others, 2018). Another
example is geometric spreading losses that must be corrected when estimating absolute surface
or basal reflectivity, and in the case of high-altitude planetary sounders, the use of flat or
spherical surface assumptions can change this correction by several dB. It is up to the practi-
tioner to choose the radar equation that is most appropriate for their problem. The wide var-
iety of possible target and source geometries that need to be considered when doing system
analysis or interpreting echoes is the central motivation for compiling the tables that follow.

This work is a collection of radar equations for the analysis of low-frequency radar sound-
ing systems, and radar systems in general. The purpose is to serve as a handbook for scientists
and engineers to quickly look up these equations, assumptions and derivations. Emphasis is
placed on the form of the radar equation under different sensor and target geometries, rather
than the details of radar system hardware, signal processing or scattering phenomenology.
Many of these equations appear in textbooks and throughout the literature (Gudmandsen,
1971; Ulaby and others, 1982; Chyba and others, 1998; Biccari and other, 2001; Picardi and
others, 2004; Peters and others, 2005; Ulaby and others, 2014; Haynes and others, 2018),
but a central collection does not exist and several new variants are included here. This is
meant as a starting point for comparison, system analysis and scientific interpretation of
radar echoes and builds on the results in Haynes and others (2018).

The geometries for which radar equations are derived and tabulated here are combinations
of, but not limited to:

1. active/passive radar sounding
2. Fresnel-zone/pulse-limited target area
3. surface/subsurface interfaces
4. flat/spherical surfaces
5. spherical-wave/plane-wave incidence
6. monostatic/bistatic source and receiver configurations

Most geometries are for normal incidence over a homogeneous medium, with special atten-
tion to Fresnel-zone sized targets. Several off-nadir geometries are included, as well as a section
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on bistatic geometries and bistatic Fresnel zones, which is
included for general reference and to show how the bistatic
expressions reduce to the simpler cases in the right limits.
Finally, geometries for passive radar sounding, which uses astro-
nomical or natural radio sources in place of a transmitter
(Cecconi and others, 2012; Romero-Wolf and others, 2015;
Schroeder and others, 2016; Peters and others, 2018), are included
as well. In passive sounding, the incidence field is truly planar,
which has interesting consequences for its radar equations.

Section 2 contains lookup tables that summarize the results. Each
table row includes a short description of the geometry, a graphical
representation of the geometry, the equation and citation, as well
as the section and equation numbers in the Supplementary
Material where derivations can be found. New variants, or those
for which citations were not readily found, are noted with ***.
Derivations rely largely on image methods, large-argument approx-
imations, small-angle approximations and scalar surface phase inte-
grals under the assumption of Kirchhoff scattering. Observations,
recommendations and commentary are included throughout the
derivations to help draw attention to notable connections between
results.

While the primary application is low-frequency radar sound-
ing, the equations are general enough that the user can augment
these for their particular problem and radar system. The list is
not exhaustive, and more advanced variants and combinations
exist and can be derived, for instance expressions that contain

integrals over angle-dependent antenna beam patterns or scatter-
ing functions.

The organization of the paper is as follows: Section 1.1 has a
list of assumptions and conventions used throughout the work
and which help to use the tables. Section 2 contains the lookup
tables, including one for Fresnel zone radius. Derivations can be
found in the Supplementary Material: Section S1 contains the
derivations for surface geometries. Section S2 covers subsurface
geometries. Section S3 covers pulse limited surface and subsurface
geometries. Section S4 covers passive radar sounding for surface
targets. Finally, Section S5 contains derivations for bistatic geom-
etries and bistatic Fresnel zones.

1.1. Using the tables

The following assumptions and conventions apply to the radar
equations, geometries and derivations that are summarized in
the tables in Section 2:

1. Radar equations give single-pulse raw received power.
Processing gains, synthetic aperture radar (SAR) resolution
target area and system losses are not included.

2. Distances between sensors and targets are assumed large
compared to the wavelength. Most derivations rely on large-
argument/small-angle approximations.

3. All expressions for Fresnel zone radius, rf, in the table are
approximations.

4. The medium above the surface interface is assumed to be
free-space.

5. Angular dependence and polarization of backscatter, antenna
gain, reflectivity or transmissivity are suppressed for clarity.

6. Subsurface media are assumed lossless. Propagation losses
can be included as needed.

7. Interfaces to which reflectivity, Γ, and transmissivity, T, apply
should be understood in context.

8. Surface phase integrals implicitly start from the assumption
of Kirchhoff scattering.

9. Any occurrence of reflectivity, Γ, and transmissivity, T, can be
augmented with higher-fidelity scattering models that are
proportional to reflectivity or transmissivity. For example,
the exponential form of coherence loss derived under the
Kirchhoff approximation for small-roughness can be
included at any interface.

10. Transmitter and receiver gain, Gt and Gr, are notated separ-
ately, rather than G2, to accommodate bistatic geometries or
systems that transmit and receive from different, but possibly
co-located, antennas.

Table 1. Table of symbols

Symbol Description

R, r1, r2 Sensor range
h, h1, h2 Sensor nadir altitude
r Spherical body radius
d Subsurface interface depth
λ, λϵr Wavelength in free-space or dielectric medium
k Wavenumber
Γ Reflectivity at an interface
T Transmissivity at an interface
Pt Radar transmit power
S Plane wave power density
Gt, Gr Transmitter/Receiver antenna gain
Ar Effective aperture of receive antenna
n Index of refraction
ϵr Relative permittivity
σ, σϵr Radar cross-section in free-space or dielectric medium
σo, σo,ϵr Normalized radar cross-section in free-space or dielectric medium
gr, gr′ Refraction gain for nadir or off-nadir geometry
Δρ Radar slant-range resolution
rf, rp Fresnel zone radius or pulse limited radius
a, b Fresnel zone ellipse parameters
θi, θt Incidence and transmission angles
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2. Tables of radar equations and fresnel zone radius

In all tables, subsurface is indicated with grey shading in the
column Geometry, and new variants of equations, or those for

which citations were not readily found, are noted with *** in the
column Citation.

Table 2. Active sounding – surface

Description Geometry Equation Eq. No. Citation

Basic radar
equation
Sec. S1.1

Pr = PtGtGrl
2s

(4p)3R4
(S.1)

(Ulaby and others, 1982, 2014)

Image method
Spherical waves
Flat surface

Sec.S1.2

Pr = PtGtGrl
2G

(4p)2(2h)2 (S.9)
(Ulaby and others, 2014; Nguyen and Park,
2016; Moore and Williams, 1957; Edison and
others, 1960; Fung and Eom, 1983)

Fresnel zone
Spherical waves
Flat surface

Sec. S1.4

Pr = PtGtGrl
2G

(4p)2h2
(S.28) (Haynes and others, 2018)

Fresnel zone
Spherical waves
Spherical surface

Sec. S1.5

Pr = PtGtGrl
2G

(4p)2h2
r2

(h+ r)2 (S.56) (Haynes and others, 2018)

Fresnel zone
Plane waves

`Antenna′ approach
Flat surface
Sec. S1.6

Pr = PtGtGrl
2G

43h2
(S.60) (Haynes and others, 2018)

Table 3. Active sounding – subsurface

Description Geometry Equation Eq. No. Citation

Subsurface
Image method
Spherical waves
Flat surface

Flat subsurface

Sec. S2.1

Pr = PtGtGrl
2T2G

(4p)2(2(h+ d))2
g2r S.73

(Gudmandsen, 1971; Chyba and
others, 1998; Peters and others, 2005;
Kofman and others, 2010)

Subsurface
1-way refraction gain

Flat surface

Sec. S2.2

gr = h+ d
h+ d/n S.75 (Gudmandsen, 1971)

(Continued )
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Table 3. (Continued.)

Description Geometry Equation Eq. No. Citation

Subsurface nadir
General radar equation

Spherical waves
Flat surface

Sec. S2.3

Pr = PtGtGrl
2T2ser

(4p)3(h+ d)4
g4r
n2

S.98 (Peters and others, 2005)

Subsurface off-nadir
General radar equation

Spherical waves
Flat surface

Sec. S2.4

Pr = PtGtGrl
2T2ser

(4p)3(r1 + r2)
4

g′4r
n2

S.124 ***

Subsurface
Fresnel zone

Spherical waves
Flat surface

Flat subsurface

Sec. S2.5

Pr = PtGtGrl
2T2G

(4p)2(h+ d)2
g2r S.159 ***

Subsurface
Fresnel zone
Plane waves
Flat surface

Flat subsurface

Sec. S2.6

Pr = PtGtGrl
2T2G

43(h+ d)2
g2r S.166 ***

Subsurface
Fresnel zone

Spherical waves
Flat surface

Spherical subsurface

Sec. S2.7

Pr = PtGtGrl
2T2G

(4p)2(h+ d)2
g2r ·

(r − d)2

((r − d)+ (h+ d))2 S.210 ***

Subsurface
Fresnel zone

Spherical waves
Spherical surface

Spherical subsurface

Sec. S2.7

Pr = PtGtGrl
2T2G

(4p)2(h+ d)2
g2r

· (r − d)2

((r − d)+ (h+ d))2

· r(r + h)n(h+ d/n)

hn(r − d)(r + h)+ d(hn+ r)2

( )2

S.209 ***

Table 4. Pulse limited

Description Geometry Equation Eq. No. Citation

Pulse limited
Spherical waves
Flat surface

Sec. S3.1

Pr = PtGtGrl
2soDr

25p2h3
S.213

(Moore and Williams, 1957; Ulaby and
others, 2014; Haynes and others, 2018)

Pulse limited
Spherical waves
Spherical surface

Sec. S3.2

Pr = PtGtGrl
2soDr

25p2h3
r

h+ r
S.215 ***

(Continued )
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Table 4. (Continued.)

Description Geometry Equation Eq. No. Citation

Pulse limited
Spherical waves
Flat surface

Flat subsurface

Sec. S3.3

Pr = PtGtGrl
2T2

25p2(h+ d)3
g3r

so,erDr

n2
S.220 ***

Pulse limited
Spherical waves
Flat surface

Spherical subsurface

Sec. S3.4

Pr = PtGtGrl
2T2

25p2(h+ d)3
g3r

so,erDr

n2

· (r − d)
(h+ d)+ (r − d)

S.221 ***

Table 5. Passive sounding

Description Geometry Equation Eq. No. Citation

Passive radar equations

Sec. S4.1

Pd = SGdl
2

4p

Pr = SGrl
2s

(4p)2R2

S.222

S.223
***

Passive
Fresnel zone

Normal plane wave incidence
Spherical scattering

Flat surface

Sec. S4.2

Pr = SGrl
2G

p
S.235 ***

Passive
Fresnel zone

Normal plane wave incidence
Plane wave scattering

Flat surface

Sec. S4.3

Pr = SGrl
2Gp

4
S.239 ***

Passive
Fresnel zone

Normal plane wave incidence
Spherical scattering
Spherical surface

Sec. S4.4

Pr = SGrl
2G

p

r2

(2h+ r)2 S.265 ***

Passive
Fresnel zone

Off-nadir plane wave incidence
Spherical scattering

Flat surface

Sec. S4.5

Pr = SGrl
2G

p
S.271

***
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Table 6. Bistatic

Description Geometry Equation Eq. No. Citation

Bistatic radar equation

Sec. S5.1
Pr = PtGtGrl

2s

(4p)3r21 r
2
2

S.272
(Ulaby and others, 2014; Hajj and
Zuffada, 2003)

Bistatic
Image method
Spherical waves
Flat surface

Sec. S5.2

Pr = PtGtGrl
2G

(4p)2(r1 + r2)
2 S.278

(Ulaby and others, 2014;
Carreno-Luengo and others, 2018)

Bistatic
Fresnel zone

Spherical waves
Flat surface

Sec. S5.6

Pr = PtGtGrl
2G

4p2(r1 + r2)
2

S.355 ***

Bistatic
Fresnel zone
Plane waves
Flat surface

Sec. S5.7

Pr = PtGtGrl
2G

42(r1 + r2)
2 S.358

***

Bistatic
Fresnel zone

Spherical waves
Spherical surface

Sec. S5.8

Pr = PtGtGrG

4p2r21 r
2
2
a2b2 cos2 ui

S.377 ***

Bistatic
Subsurface receiver

Flat surface

Sec. S5.9

Pr = PtGtGrl
2T

(4p)2(r1 + r2)
2

g′2r
n2

cos ui
cos ut S.381 ***

Table 7. Fresnel zone radius

Description Geometry Equation Eq. No. Citation

Flat surface rf =
���
lh
2

√
S.21

(Seu and others, 2007; Bruzzone and others,
2011; Schroeder and others, 2016; Haynes
and others, 2018)

Spherical surface rf =
���������
lhr

2(h+ r)

√
S.46 (Haynes and others, 2018)

(Continued )
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Table 7. (Continued.)

Description Geometry Equation Eq. No. Citation

Flat surface
Flat subsurface

rf =
�����������
l

2
(h+ d

n
)

√
S.153 (Peters and others, 2005)

Spherical surface
Spherical subsurface

rf =
�����������
l

2
(h+ d

n
)

√

·
��������������������������������

nr(r − d)(h+ d/n)
hn(r − d)(r + h)+ d(hn+ r)2

√ S.187 ***

Bistatic
Normal incidence

Flat surface
rf =

���������
lh1h2
h1 + h2

√
S.302 (Schroeder and others, 2016)

Bistatic
Normal incidence
Spherical surface

rf =
���������������������

lrh1h2
r(h1 + h2)+ 2h1h2

√
S.326 ***

Bistatic specular
Fresnel zone ellipse

Flat surface

a2 = b2

cos2 ui

b2 = lr1r2
r1 + r2

S.296

S.297

(Hajj and Zuffada, 2003)

Bistatic specular
Fresnel zone ellipse
Spherical surface

a2 = r1 + r2
lr1r2

cos2 ui + 2
lr

cos ui

[ ]−1

b2 = r1 + r2
lr1r2

+ 2
lr

cos ui

[ ]−1
S.319

S.320
***

Passive
Normal plane wave incidence

Flat surface
rf =

�������
l

2
(2h)

√
S.231 (Schroeder and others, 2016)

Passive
Normal plane wave incidence

Spherical surface
rf =

�����������
l

2
(2h)r

(2h)+ r

√
S.259 (Romero-Wolf and others, 2015)

Passive
Fresnel zone ellipse
Off − nadir incidence

Flat surface

a2 = b2

cos2 ui

b2 = lR

S.266

S.267

***
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Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/aog.2020.16.
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