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We investigate the momentum fluxes between a turbulent air boundary layer and a
growing–breaking wave field by solving the air–water two-phase Navier–Stokes equations
through direct numerical simulations. A fully developed turbulent airflow drives the
growth of a narrowbanded wave field, whose amplitude increases until reaching breaking
conditions. The breaking events result in a loss of wave energy, transferred to the water
column, followed by renewed growth under wind forcing. We revisit the momentum flux
analysis in a high-wind-speed regime, characterized by the ratio of the friction velocity to
wave speed u∗/c in the range [0.3 − 0.9], through the lens of growing–breaking cycles.
The total momentum flux across the interface is dominated by pressure, which increases
with u∗/c during growth and reduces sharply during breaking. Drag reduction during
breaking is linked to airflow separation, a sudden acceleration of the flow, an upward
shift of the mean streamwise velocity profile and a reduction in Reynolds shear stress. We
characterize the reduction of pressure stress and flow acceleration through an aerodynamic
drag coefficient by splitting the analysis between growing and breaking stages, treating
them as separate subprocesses. While drag increases with u∗/c during growth, it decreases
during breaking. Averaging over both stages leads to a saturation of the drag coefficient
at high u∗/c, comparable to what is observed at high wind speeds in laboratory and field
conditions. Our analysis suggests that this saturation is controlled by breaking dynamics.
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1. Introduction
Ocean waves modulate the exchanges of mass, momentum and energy at the ocean–
atmosphere interface. Waves continuously modify the ocean surface roughness and affect
the momentum transfer between the atmospheric and oceanic boundary layers (Sullivan
& McWilliams 2010). When waves break, sea spray droplets are produced (Veron 2015),
together with the generation of bubbles due to air entrainment (Deike & Melville 2018;
Deike 2022), enhancing heat and mass transfer (Veron 2015; Deike 2022). Wind forcing
and ocean waves mutually influence each other. On the air side, the irregular and time-
varying surface wave topography alters the wind velocity, air temperature and humidity in
space and time. On the water side, the wind drives wave formation, promotes growth and
steepening up to breaking and drives upper-ocean turbulence.

Wind-induced wave breaking plays a crucial role in the interaction between the ocean
and the atmosphere. Wave breaking limits wave steepness, influences the momentum
exchange between the atmospheric boundary layer and the upper ocean and locally alters
wind velocity profiles and those of any other tracers (Melville & Rapp 1985; Melville
1996). Wave breaking is a highly dissipative process that controls the energy transfer from
the wind to water currents and the transition to turbulence in the upper ocean (Lamarre
& Melville 1991; Melville 1996; Veron & Melville 2001) and influences the wave-induced
Langmuir turbulence (McWilliams et al. 1997; Melville et al. 1998; McWilliams 2016).

Understanding the momentum and the energy exchanges in wind-forced breaking waves
remains an active area of research, especially in the high-wind-speed regime above a wind
speed of 20 − 25 m s−1 (evaluated at 10 m height). Accurate evaluation of the momentum
fluxes (or wind stress) between the wind and the wave field is necessary to properly
represent the turbulent boundary layers in the lower atmosphere and in the upper ocean.
Without waves, the momentum flux at the ocean–atmosphere interface would be solely due
to viscous effects. Waves introduce a pressure component in the flux, whose significance
in the stress partitioning increases as wind speed and local wave steepness increase (Edson
et al. 2013), so that open ocean measurements report an increase in the momentum flux
measured at the top of the wave boundary layer (conventionally taken at a 10 m height),
compared to a flat wall (Edson et al. 2013; Ayet & Chapron 2022).

In coupled ocean–atmosphere numerical models, the momentum flux τ is related to the
wind speed at a given height using the drag coefficient, CD:

τ = ρau2∗ = ρaCDU 2
10, (1.1)

where u∗ is the friction velocity, ρa the air density and the reference velocity U10 taken at
a conventional reference height of 10 m (Edson et al. 2013). Assuming a logarithmic wind
velocity profile (Monin & Obukhov 1954; Janssen 2004) in (1.1), the calculation of the
momentum flux τ is reduced to the estimation of the drag coefficient CD .

Field observations have shown that CD is strongly dependent on the wind velocity U10
(Edson et al. 2013; Ayet & Chapron 2022). However, significant scatter in the data is often
observed at a given wind speed due to difficulty in making momentum flux measurements
in the open ocean and the role of variables other than wind speed (waves, current) in
controlling the drag (Ayet & Chapron 2022). The relationship between CD and U10 is
well constrained when the wind and the waves are at equilibrium at moderate wind speed,
i.e. U10 � 7 − 15 m s−1), but the scatter is larger at low wind speed due to misalignment
between wind and waves (Ayet & Chapron 2022; Manzella et al. 2024). For wind speeds
exceeding U10 > 20 m s−1, the CD–U10 relationship exhibits a saturation in the field and
laboratory experiments (Sroka & Emanuel 2021), with considerable scatter (Donelan et al.
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2004; Sullivan & McWilliams 2010; Sraj et al. 2013; Curcic & Haus 2020; Sroka &
Emanuel 2021). The precise saturation value and the underlying physical principle remain
uncertain (Chen et al. 2007; Takagaki et al. 2016; Komori et al. 2018) while being a critical
parameter to understanding the intensification of tropical (Sroka & Emanuel 2021) and
extra-tropical (Gentile et al. 2021, 2022) cyclones. The main hypotheses that have been
proposed to explain the saturation of CD are: sea spray generation at high wind speed
(Bye & Jenkins 2006; Veron 2015), and airflow separation and flattening wave crests, and
a marked reduction in surface roughness (Donelan et al. 2004). In this latter scenario,
the role of wave breaking in flow separation and modulating pressure stress remains to
be quantified in order to better constrain momentum flux formulation (Kudryavtsev et al.
2014).

Several studies have investigated momentum flux and the partitioning of interfacial
stress into pressure and viscous contributions at moderate wind speeds, both
experimentally (e.g. Buckley et al. 2020; Yousefi et al. 2020) and numerically for idealized
waves using three-dimensional large-eddy simulations (e.g. Sullivan et al. 2000; Yang &
Shen 2010). Iafrati et al. (2019) and Wu & Deike (2021) considered two-phase Navier–
Stokes equations in a two-dimensional configuration with idealized airflow, noting that
the two-dimensional configuration cannot capture the realistic turbulent boundary layer
(linear–logarithmic velocity profile and three-dimensional fluctuations). Yang et al. (2018)
and Lu et al. (2024) employed three-dimensional direct numerical simulations (DNS)
to study the disturbance of the air boundary layer induced by breaking waves and to
explore the associated modulation of heat transfer, while Wu et al. (2022) employed three-
dimensional DNS to investigate momentum fluxes and wave growth for non-breaking wind
waves.

So far, no fully resolved simulations have been conducted for strongly forced wind wave
breaking up to u∗/c ≈ 1, including both the wind-wave growth stage up to breaking and
the following breaking event. Such configurations, where breaking conditions are reached
through wind forcing, would be ideal for studying the role of the breaking and growing
wave stages on the turbulent airflow and momentum flux, permitting the separation of the
contribution of both phenomena, which are usually time- and ensemble-averaged in field
and laboratory conditions.

Here, we consider the case of waves forced by a turbulent wind up to u∗/c = 0.9,
including breaking events. The turbulent airflow and the water waves are fully resolved
without any model for the wave shape, which can grow and break, and without any subgrid
turbulence model. This is accomplished by using a two-phase Navier–Stokes solver, with
a geometric volume-of-fluid method to reconstruct the wave interface. For different values
of u∗/c, we estimate the momentum fluxes by analysing the growing, breaking and post-
breaking stages of the wave field separately. Using this novel approach, we clarify the
relation between the stress partition at the interface and the modulation of the velocity
profile in the airflow region during the different stages of the wave dynamics. We extract
an equivalent of the drag coefficient during the wave growth and breaking stages and
discuss how their average values reproduce trends observed in the laboratory and field
observations.

This paper is organized as follows. In § 2, we introduce the overall methodology,
including (i) the governing equations that we solve and a brief summary of the numerical
algorithm (§ 2.1), (ii) the numerical set-up (§ 2.2) and (iii) the physical dimensionless
parameters (§ 2.3). In § 3, we provide a qualitative description of the evolution of the
coupled system composed of the wind and the growing–breaking wave field. In § 4, we
discuss the momentum flux over breaking waves and how the wave growth, steepening
and eventual breaking modulate the velocity profile and the Reynolds stress. In § 5, we
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connect our analysis to formulations of the drag coefficient over growing and breaking
waves and compare them with experimental results. Conclusions are presented in § 6.

2. Methodology
In this section, we discuss the governing equations, numerical set-up and dimensionless
parameters used to characterize the wind-forced wave growth and breaking processes.

2.1. Governing equations and numerical model
We investigate wind-forced breaking waves as a two-phase problem. We solve the
incompressible, two-phase Navier–Stokes equations with surface tension, implemented
in the open-source Basilisk solver (http://basilisk.fr/) (Popinet 2009, 2015), following the
approach developed in Wu & Deike (2021) and Wu et al. (2022) to study wind-wave
growth. Briefly, to distinguish the two phases, an indicator function F is introduced and
set equal to 1 in the water phase within the volume Ωw and 0 in the air phase within the
volume Ωa . The two domains are separated by a zero-thickness interface Γ . The indicator
function F is governed by the transport equation (Tryggvason et al. 2011):

∂F
∂t

+ u · ∇F = 0, (2.1)

where u = (u, v, w) is the one-fluid velocity, assumed continuous in the whole domain
Ω = Ωw ∪ Ωa . The indicator function is employed to define the one-fluid density ρ =
ρwF + ρa(1 −F) and the one-fluid dynamic viscosity μ = μwF + μa(1 −F), where
ρw, ρa and μw, μa are the densities and the dynamic viscosities of water and air,
respectively. The transport of F is coupled with the incompressibility constraint and the
Navier–Stokes equations for a Newtonian fluid. These equations, expressed in the one-fluid
formulation (Tryggvason et al. 2011), read as follows:

∇ · u = 0, (2.2)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇ p + ∇ · (2μD) + ρ|g|ez + σκδΓ n, (2.3)

where p is the pressure, D is the strain rate tensor, i.e. D = (∇u + ∇uT )/2, |g| is the
modulus of the gravitational acceleration, ez = (0, 0, −1) is unit vector oriented like
gravity, σ is the surface tension coefficient, δΓ is a Dirac distribution function satisfying
the identity

∫
Γ

δΓ dS = 1, n is the interface normal vector pointing outward to the liquid
domain and κ = ∇ · n is the interfacial curvature.

Equations (2.1), (2.2) and (2.3) are solved using an adaptive mesh refinement (AMR)
strategy on an octree grid, as implemented in Basilisk and described in Popinet (2015)
and Van Hooft et al. (2018). The use of AMR significantly reduces the computational
cost while efficiently representing different multiscale processes (Mostert et al. 2022). We
employ a conservative and diffusion-free geometric volume-of-fluid method (Tryggvason
et al. 2011) to discretize equation (2.1). The equation for the indicator function (2.1) is then
solved together with the momentum equation (2.3) using the Bell–Colella–Glaz method
(Bell et al. 1989) for the advection part and a standard second-order finite-volume scheme
for the viscous term. The viscous term is advanced semi-implicitly in time using a Crank–
Nicolson scheme, whereas an explicit treatment is kept for the advection part.
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Figure 1. Computational domain and physical configuration illustrating the initial condition for the airflow,
wave and water field. The air and water mean heights are (L0 − hW )/λ and hW /λ. The airflow is a fully
developed turbulent boundary layer (mean profile in light-blue line, while turbulent eddies are illustrated in
black). The wave field and the water region are initialized using an irrotational third-order Stokes wave solution
(Deike et al. 2015). The initial wave profile η0 has zero spatial mean and a steepness a0k = 0.3. In the surface
contour, dark-blue regions denote wave troughs, while yellow regions indicate wave crests.

The momentum equation is discretized in a conservative and consistent manner (Popinet
2018; Mostert et al. 2022) to ensure accurate and stable integration of (2.3) in the presence
of a large difference in the density and viscosity of the two phases. The capillary
and gravity forces are discretized using a well-balanced formulation (Popinet 2018),
maintaining an exact equilibrium among pressure gradient, capillary and gravity forces
under static conditions, and minimizing the generation of artificial parasitic currents.
These features are important for studying phenomena such as wave breaking (Deike et al.
2015, 2016; Mostert et al. 2022), wind-wave growth (Wu & Deike 2021; Wu et al. 2022)
and other classes of two-phase turbulent flows (see e.g. Riviere et al. 2021; Perrard et al.
2021; Farsoiya et al. 2023).

2.2. Configuration and initialization
The governing equations (2.1), (2.2) and (2.3) are solved in a cubic computational box,
as illustrated in figure 1, of size L0 = 4λ, i.e. [−2λ, 2λ] × [−2λ, 2λ] × [−hW , 4λ− hW ],
where λ is the wavelength and hW is the mean water depth. The streamwise, spanwise
and vertical directions correspond to the x , y and z directions, respectively. Periodic
boundary conditions are prescribed for all the variables, i.e. u, p and F , along the x − y
horizontal directions. On the top and bottom domain boundaries, which correspond to the
grey geometric planes at z = (L0 − hW )/λ and z = −hW /λ in figure 1, a homogeneous
Neumann boundary condition is prescribed for the pressure p, the indicator function F
and the two horizontal velocity components u and v, while a no-penetration boundary
condition is imposed on the vertical velocity component w.

Figure 1 illustrates the three domains of interest: the wave field occupies the region z =
η(x, y) and separates the water and air flows. The water flow occupies the region where
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z < η(x, y), with a mean depth of hW . The airflow occupies the region where z > η(x, y)

and has mean height (L0 − hW ). The wave field, water and air velocity must be properly
initialized at the beginning of the simulation.

We initialize the wave and the associated water velocity field using a nonlinear potential
flow solution Φ0 with free surface η0 (Lamb 1993), and consider a third-order expansion
of the system (third-order Stokes wave), with a given amplitude a0 and wavenumber
k = 2π/λ. Once Φ0 is known, the initial velocity in the water uw,0 can be readily evaluated
from the velocity potential as uw,0 = ∇Φ0; for the expressions of η0 and Φ0, see Lamb
(1993) and Deike et al. (2015). We note that this initialization prescribes an initial orbital
velocity field in the water characterized by a zero Eulerian mean. It is worth mentioning
that several previous works (Chen et al. 1999; Iafrati 2009; Deike et al. 2015, 2016; Yang
et al. 2018; Mostert et al. 2022) have demonstrated the relevance of the Stokes waves
solution for the simulation of breaking waves with numerical results that can be accurately
compared with laboratory experiments. However, unlike the Stokes wave solution, which
disregards surface tension effects, the current approach incorporates them. Thus, based
on the dispersion relation, the wave speed reads as c = √|g|/k + σk/ρw. We consider
the linear phase speed for gravity–capillary waves, as the typical nonlinear Stokes wave
correction remains negligible during the initial growth stage. During the breaking stage,
the wave speed undergoes a slight slowdown, which is not accounted for by this correction
(Banner et al. 2014). However, the nominal wave speed set by the initial conditions remains
an excellent approximation of the effective wave speed throughout the simulation.

We initialize the airflow region using a fully developed turbulent flow field at the
desired friction Reynolds number, as defined in § 2.3, following Wu et al. (2022). This
initialization involves a precursor simulation conducted independently in a single-phase
set-up and employing the same domain. During this precursor simulation, the wave
field with profile η0 remains at rest, and a no-slip/no-penetration boundary condition is
enforced on the wave surface for the velocity field, using the embedded boundary method
(Johansen & Colella 1998) available within the Basilisk framework (Ghigo et al. 2021).
The precursor simulation is performed long enough until the turbulent airflow achieves
a statistically steady state by adding an external body force per unit mass acting in the
streamwise direction, i.e. ∂p0/∂x(1 −F)ex with ex = (1, 0, 0), on the right-hand side of
the momentum equation (2.3). In the expression of the body force, ∂p0/∂x is a uniform
pressure gradient driving the flow and, here, reads as

∂p0

∂x
= ρau2∗

L0 − hW
. (2.4)

The imposed pressure gradient sets the nominal friction velocity u∗ and prescribes the
total stress ρau2∗ on the wave field. Once a statistically steady state is achieved for the
precursor, the resulting fully developed turbulent field is employed as an initial condition
for the airflow region in the two-phase simulations.

Once the simulation begins, the airflow and wave field dynamically evolve without any
prescribed conditions at the two-phase interface. This fully coupled system undergoes a
short self-adjustment stage due to changes in boundary conditions at the interface and
the motion of the water layer (Wu et al. 2022). As discussed by Wu et al. (2022), the
self-adjustment period is short compared with other processes of interest. In this work, we
verify that the self-adjustment stage lasts less than 2ωt in all cases, where ω = 2π/T0 is the
angular frequency and T0 = λ/c is the wave period; therefore, all analyses are conducted
for ωt > 2.
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2.3. Non-dimensional parameters
The flow field in the air and water phases depends on several dimensional parameters.
Here, the number of independent physical dimensions is three, i.e. mass, length and time.
According to Buckingham’s π theorem, the 11 physical variables (ρa, ρw, μa, μw, L0 −
hW , hW , λ, a0, σ, |g|, u∗) can be reduced to 8 dimensionless groups so that the problem
can be described by the following dimensionless groups (note that other combinations
would have been possible):(

Re∗,λ, ReW , Bo,
ρw

ρa
,

L0 − hW

λ
,

hW

λ
, a0k,

u∗
c

)
. (2.5)

In (2.5), Re∗,λ = ρau∗λ/μa and ReW = ρwcλ/μw represent the friction and wave
Reynolds numbers, respectively, reflecting the balance between inertia and viscous effects
in the regions adjacent to the wave field, for the air and water phases. A third dependent
friction Reynolds number is that based on the size of air boundary layer L0 − hW , i.e.
Re∗ = Re∗,λ(L0 − hW )/λ= ρau∗(L0 − hW )/μa , which reflects the importance of inertia
over viscous forces in the region well above the wave field. In Appendix E, we show that
Re∗,λ is the physically relevant group in order to compare cases at different Reynolds
numbers and, therefore, Re∗,λ is used in conjunction with ReW . The Bond number
Bo = (ρw − ρa)|g|/(σk2) provides the ratio between gravitational and restoring capillary
forces and ρw/ρa represents the density ratio, which is set to that of water and air. Next,
we have a set of ratios of length scale, or geometric parameters: (L0 − hW )/λ represents
the ratio between the mean airflow height and the wavelength; hW /λ is the ratio between
the mean height of the water depth and the wavelength λ. Sensitivity to these parameters
is shown in Appendix E, and we verify that the physical conclusions do not depend on
their specific values. Finally, a0k represents the wave’s initial steepness and u∗/c defines
the ratio between the friction velocity and wave phase speed.

Here, we focus on the interaction between turbulent wind and breaking waves at high
wind speed and systematically vary the ratio u∗/c from 0.3 to 0.9 while also performing
sensitivity tests in terms of Re∗,λ and geometrical parameters, as discussed in § 4. The
range of u∗/c from 0.3 to 0.9, is relevant to discuss small-scale physics of wind-wave
fields during tropical cyclone conditions (Sroka & Emanuel 2021).

We consider four water waves and prescribe the airflow’s mean height (L0 − hW )/λ=
3.36. This value ensures that the air boundary layer is more than three times larger
than one single wavelength, avoiding any confinement effect due to the top boundary,
as discussed in Wu et al. (2022). We set the mean water depth hW /λ= 0.64, which
is considered adequate to satisfy the deep-water assumption (Deike et al. 2015, 2016;
Yang et al. 2018). We consider ReW = 2.55 × 104 and Bo = 200, so that the waves are
within the gravity regime. We consider the air–water density ratio, ρw/ρa = 816, while the
dynamic viscosity ratio (fixed through the choices of the Reynolds numbers) remains well
above unity, as reported in table 1. The initial wave steepness is a0k = 0.3, below breaking
threshold, typically [0.32 − 0.33] (Deike et al. 2015) for the present configuration. This
choice ensures that the wind drives the wave field to break.

In the present configuration, and unlike in laboratory experiments or open-ocean
conditions, u∗/c is independent of a0k, which allows us to isolate the effect of u∗/c on the
flow at the same Re∗,λ (by varying the wave speed c while keeping u∗ fixed from the same
precursor). Furthermore, we work at constant ReW so that the growth rate of the wave
field is controlled by the wind forcing u∗/c, while the viscous dissipation is the same (Wu
et al. 2022), but note that the Reynolds number (air and water side) and Bond number we
consider are significantly smaller than those for ocean waves with wavelength 1 m or larger
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u∗/c Re∗,λ ReW μw/μa (L0 − hW )/λ Bo Le

0.30 214 2.55 × 104 22.84 3.36 200 10
0.40 214 2.55 × 104 17.13 3.36 200 10
0.50 214 2.55 × 104 13.71 3.36 200 10
0.70 214 2.55 × 104 9.79 3.36 200 10
0.90 214 2.55 × 104 7.61 3.36 200 10

0.90 53.5 2.55 × 104 1.90 3.36 200 10
0.90 107 2.55 × 104 3.81 3.36 200 10

0.90 214 2.55 × 104 7.61 3.36 200 11
0.90 107 2.55 × 104 3.81 6.72 200 11

Table 1. Summary of the simulated cases for different values of u∗/c. In the table, Re∗,λ = ρau∗λ/μa ,
ReW = ρwcλ/μw , μw/μa , (L0 − hW )/λ and Bo = (ρw − ρa)|g|/(σk2) are as defined in (2.5). The case with
(L0 − hW )/λ= 3.36 corresponds to four waves per box size, whereas the case with (L0 − hW )/λ= 6.72 to

eight waves per box size. For the different cases, the initial steepness is set equal to a0k = 0.3, and the density
ratio is taken as ρw/ρa = 816.

due to computational limitations. The underlying assumption to compare our results with
laboratory or field conditions is that we perform simulations in quasi-asymptotic regimes
of high values of these parameters (Deike et al. 2016; Mostert et al. 2022; Wu et al. 2022).
The simulations are summarized in table 1.

The numerical grid in our simulations is adaptive, featuring a minimum grid size
� = L0/(2Le), where Le represents the maximum level of refinement. The AMR technique
significantly reduces computational costs by maintaining a highly refined grid near the
interface and in the boundary layers while allowing coarser grids in the bulk airflow,
provided that refinement criteria are met (Popinet 2015; Van Hooft et al. 2018). The
AMR technique has been shown to be accurate for homogeneous and isotropic turbulent
flow (Riviere et al. 2021; Farsoiya et al. 2023), and wall-bounded turbulent flows and the
present configuration in Wu et al. (2022), where the grid is dynamically adapted with
respect to the norm of the second derivative of the velocity (in the air and water phases)
and of the volume fraction. Following Wu et al. (2022), the refinement criteria for the
air and water velocity components and the volume fraction are set equal to εua = 0.3u∗,
εuw = 10−3c and εF = 10−4, respectively.

In most simulations, Le = 10, with the maximum number of grid points reaching up to
70 × 106, which corresponds to 7 % of an equivalent 10243 uniform grid. Additionally, we
present in Appendix C a grid refinement study up to Le = 11 for u∗/c = 0.9. In this case,
the maximum number of grid points is around 500 × 106, which corresponds to about 6
% of an equivalent 20483 uniform grid. The significant reduction in the number of grid
cells with AMR at Le = 10 − 11, compared with a uniform Cartesian grid, makes AMR
an attractive approach for investigating wind-forced breaking waves.

The computational costs of these simulations include generating a precursor simulation
and running the two-phase simulations. Four precursors are used for varying air-side
Reynolds number (Re∗,λ = 53.5 − 107 − 214) and the ratio (L0 − hW )/λ= 3.36 − 6.72,
amounting to ≈1.5 × 105 CPU hours each. Each two-phase simulation at Le = 10 requires
≈4.2 × 105 CPU hours, while the two simulations at Le = 11 require ≈1.20 × 106 CPU
hours each. We employ 384 processors for the precursor simulations and for the two-phase
cases 480 at Le = 10, and 980 processors at Le = 11. The total cost of the simulation
campaign is about 6 × 106 CPU hours.
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Figure 2. Wind-forced breaking waves for the case u∗/c = 0.9 at ωt = 20 − 40 − 70 − 150 (a) just before
breaking, (b) during breaking, (c) during second growing stage and (d) final stage with a more three-
dimensional field and microbreaking, respectively. The turbulent airflow, i.e. the wind, and the waves move
parallel along the positive streamwise direction, x . In all the panels, the plane on the left contains the contour
of the local spanwise vorticity Ωy = (∂w/∂x − ∂u/∂z) normalized by the wave angular velocity ω = 2π/T0
and the plane on the right contains the contour of the local streamwise velocity u normalized by the friction
velocity u∗.

3. Evolution of wind-forced breaking waves
This section discusses the evolution of the fully coupled system composed of the turbulent
wind, the wave field and the water column.

3.1. Wave interface evolution
Figure 2 shows the wind-wave system for the case u∗/c = 0.9 at four characteristic
times. At ωt = 20 (figure 2a), the wave field has grown due to the wind input and is
close to breaking conditions (incipient breaking). While the initial wave field is nearly
monochromatic, the waves become sharp-crested as they grow under wind forcing and
approach breaking. Once the breaking stage is concluded, around ωt = 41 (figure 2b), the
wave field grows again, starting with a smaller steepness (figure 2c) taken at ωt = 70 and
finally breaks again at ωt = 150 (figure 2d). In this last condition, the wave field becomes
clearly three-dimensional, with energy redistribution to higher wavenumber following the
breaking and growing cycles, and intermittent microbreaking events visible. Despite this,
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Figure 3. Wind-wave growth and breaking life cycle. (a) Evolution of the normalized potential wave energy
EW /EW,0 with EW,0 = EW (t = 0) for increasing u∗/c from 0.3 to 0.9 as a function of the dimensionless
time ωt where ω = 2π/T0 is the angular frequency and T0 is the wave period. The associated instantaneous
steepness ak values are shown on the second y axis. (b) Sketch of the characteristics of dynamical regimes
observed in the simulations, illustrated for u∗/c = 0.9. Here G1,2 represent the first and the second growing
stages; B1,2 represent the first and the second breaking stages; F is the final stage; and G2,a and G2,b are the
fractions of the second growing stages with equal time windows of stages G1 and F . These windows are used
to compute averages for the momentum flux and drag coefficient during growth and breaking.

the ratio between the effective main wavelength and the initial wavelength remains nearly
unchanged, with wave elevation analysis showing variations of less than 6 % throughout
the simulations (not shown). Moreover, most of the wave energy remains concentrated
around the peak wavelength set by the initial conditions, as constrained by the boundary
conditions. The peak downshift is effectively limited by these constraints, with energy
redistribution to higher wavenumbers primarily occurring following breaking events.

3.2. Time evolution of the potential wave energy
We consider the potential energy of the wave, EW (t), to characterize the evolution of
a wave field and distinguish between the growing (i.e. EW increases) and the breaking
stages (i.e. EW decreases):

EW (t) = ρw|g|
∫

Ωw

z dV − E p,0, (3.1)

where the integration volume in the water Ωw is done up to the wave surface η in the z
direction. Parameter E p,0 is the potential energy when the wave field is undisturbed and
can be evaluated as E p,0 = ρw|g|L2

0
∫ hW

0 z dz = ρw|g|(hW L0)
2/2. A contribution due to

surface tension exists in EW (t) but is negligible here due to the large Bo. Note that we
calculate EW (t) by integration in the water volume over the vertical coordinate z (Lamb
1993) since it is also valid for nonlinear and breaking waves contrary to the formula based
on linear approximation EW (t) = ρw|g| ∫

Γ

√
2(η − η)2dS (Lamb 1993) which is not well

defined during the breaking stage.
Figure 3(a) depicts the time evolution of the potential wave energy normalized by

its initial value, EW /EW,0 (left axis), highlighting the growth and breaking stages of
the wave field under strong wind forcing. For reference, figure 3(a) also presents the
instantaneous wave steepness ak (right axis), calculated from the wave amplitude as

a(t) =
√

(2/Γ )
∫
Γ

(η − η)2dS. Alternatively, the wave steepness can be determined using
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the surface elevation derivatives as S = max(
√

(∂η/∂x)2 + (∂η/∂y)2). Note that under
the assumption of linear wave theory, S reduces to S = a(t)k. In this study, both methods
were evaluated, and despite the assumptions of linear theory being unmet during breaking,
they produced very similar results.

The time evolution of wave energy EW /EW,0 and the wave steepness ak is controlled
by the competing effects of the wind forcing u∗/c and the dissipation. In each curve,
the potential wave energy displays small oscillations of period T0/2, already observed in
Iafrati (2009) and Deike et al. (2015) in similar configurations without wind.

During the growing stage, the dissipation is viscous and controlled by the water-wave
Reynolds number ReW . For the smaller forcing u∗/c = 0.3, the wind energy input and
the viscous dissipation are in balance. Note that in ocean water waves, the wave Reynolds
number is significantly higher and, therefore, the wave field would grow for u∗/c = 0.3.
Performing simulation at higher wave Reynolds number would also lead to wave energy
growing in time for such value of u∗/c = 0.3 (see Wu & Deike 2021; Wu et al. 2022;
Zhang et al. 2023). The wave growth rate increases with u∗/c and for all stronger forcing,
EW (t) grows until it reaches a critical point (breaking conditions), when part of the wave
energy is dissipated. Once the breaking stage concludes, EW (t) grows again, and a second
breaking event can occur at later times. When u∗/c increases, the wave field reaches a
critical amplitude for breaking (ak)c earlier. The observed critical breaking steepness
(ak)c varies slightly from (ak)c ∈ [0.28 − 0.34] between the different wind forcing and
first and second cycles, close to the values reported without wind for similar initial
conditions (Deike et al. 2015, 2016) and experiments on focusing wave packets (Drazen
et al. 2008). The magnitude of the breaking event can be quantified by the maximum
energy loss, (max(EW ) − min(EW )), which increases with the amplitude of breaking.

In all cases, after one of two breaking events, the wave field reaches a final stage with
limited variation in the wave energy. This condition can be attributed to the balance
between the wind forcing and the wave field characterized by a broader wave spectrum
and intermittent microbreaking events occurring at some of the wave crests (see figure 2d).
Such conditions reduce the effectiveness of wind input in promoting wave growth and lead
to a quasi-steady condition with wind input approximately balanced by energy dissipation.
Note that the loss of energy of these microbreaking events is smaller since the steepness
at breaking is smaller (see e.g. Drazen et al. 2008; Deike et al. 2015).

For the purposes of the present analysis, we define different time windows that
characterize the physics at play made of the growing and breaking stages, which are
illustrated in figure 3(b). We consider the first and second growing stages, G1 and G2
(when EW increases). Each growing stage is followed by a corresponding breaking stage,
B1 and B2 (when EW decreases). Note that for the highest u∗/c = 0.7 − 0.9, we run the
simulations long enough to observe a breaking stage, followed by a quasi-stationary final
state, F , where EW exhibits a limited variation. In the second growing stage, we define
two further time windows G2,a and G2,b. These time windows, together with G1,2, B1,2
and F , are useful to define the mean velocity profiles, perform momentum flux and drag
coefficient analysis during the growing and breaking stages and determine the respective
role of each regime in the averaged quantities. Note that G1-G2,a and G2,b-F are chosen
to have the same duration in time, so that the averaged quantities defined therein are
computed over comparable temporal windows.

3.3. Airflow above growing and breaking waves
The flow structure near the interface is heavily modified by the presence of the waves.
Figure 4(a–c) shows the instantaneous velocity contours of the streamwise air velocity in
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Figure 4. Illustration of airflow separation in strongly forced steep waves, just before breaking (a,d,g), during
breaking (b,e,h) and during the second growing stage (c,f ,i). (a–c) Contours of the streamwise instantaneous
velocity in the airflow sampled at the middle plane y/λ= 0. The streamwise velocity is plotted in a reference
frame moving with the wave and is normalized by the friction velocity, i.e. (u − c)/u∗. (d–f ) Contours of
the instantaneous spanwise vorticity in the airflow sampled at the middle plane y/λ= 0 and normalized by
the angular velocity, i.e. Ωy/ω. (g–i) Contours of the spanwise vorticity in the airflow, averaged along the
spanwise direction and normalized by the angular velocity, i.e. Ωy/ω. All the panels are plotted in the region
−0.2λ� z � 0.4λ for ωt = [20, 35, 70] for u∗/c = 0.9.

a reference frame moving at the wave speed, i.e. u − c, in the region close to the wave
surface (−0.2 � z � 0.4λ) and sampled at the spanwise mid-plane (y/λ= 0), at several
characteristic times (during growth and breaking) for u∗/c = 0.9.

As the wave field grows and approaches breaking, i.e. ωt = 20 in figure 4(a), large
negative values appear and localize not only near the wave troughs but also close to the
wave crests. In these regions, the flow reverses and recirculates, with negative velocity
up to 1.5u∗. Note that flow reversal starts to occur before the breaking stage, as the wave
becomes steep and short-crested. During the post-breaking stage for ωt > 35, when the
wave amplitude is greatly reduced, the regions with negative u − c reduce compared to
the growing stage (see figue 4b,c).

As noted in (Veron et al. 2007), although flow reversal suggests airflow separation from
the wave field, a more rigorous approach involves examining the spanwise vorticity Ωy ,
which is a Galilean-invariant quantity. The spanwise vorticity normalized by the angular
velocity, i.e. Ωy/ω, is reported in figure 4(d–f ). For the different panels, a thin layer of
vorticity is observed to form on the windward side of the wave, i.e. before the wave crest,
where the turbulent airflow shears this layer, causing it to detach from the surface and
mix with the flow. Lacking support from the wave field, the detached vorticity ‘packet’
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destabilizes, breaking down before gradually reforming at the next wave crest. Although
figure 4(d–f ) refers to a specific region of the domain, i.e. y/λ= 0, flow separation occurs
all over the wave crests, as shown in figure 4(g–i), where the spanwise-averaged vorticity
is displayed. This observation suggests that, in the present configuration with steep waves
under breaking conditions, flow separation occurs over all the wave crests, as also observed
in Buckley et al. (2020).

Flow separation is an important feature of wind-forced breaking waves and has been
argued to enhance the momentum flux in breaking waves (Banner & Melville 1976; Reul
et al. 1999; Buckley et al. 2020), and is analysed in the next section.

4. Momentum fluxes over strongly forced breaking waves
We now analyse the momentum fluxes between the turbulent airflow and the growing
and breaking waves. In § 4.1, we examine the partition of the total momentum flux into
pressure and viscous forces and their temporal variation during a breaking cycle. In § 4.2,
we investigate how the velocity profile and the Reynolds stress of the airflow are modulated
by waves during the growing and breaking stages.

4.1. Momentum budget
The momentum flux, τ t = (τt,x , τt,y, τt,z), is defined as the total force exerted from the
wind to the waves per unit of air mass density and can be decomposed into a pressure
and a viscous contribution (Belcher & Hunt 1998; Sullivan et al. 2000). For water waves
moving parallel to the wind in the streamwise x direction, the first force component, i.e.
τt,x , is typically dominant and reads

τt,x = τp,x + τν,x = −
∫

Γ

pn · ex dS + 2μa

∫
Γ

(Dn) · ex dS, (4.1)

where both the pressure p and the strain rate tensor D are evaluated in the air phase. The
two contributions to the right-hand side of (4.1) are termed pressure (or form) drag and
viscous drag.

We start by qualitatively inspecting both contributions during the growing and breaking
stages. Figure 5 reports the instantaneous distribution of panx and 2μa(Dn) · ex for
the case u∗/c = 0.9 at three physical times ωt = [20, 35, 70], corresponding to the
growing pre-breaking stage, to the breaking stage and to the second growth post-breaking.
Hereinafter, we define τsx = 2μa(Dn) · ex for brevity and, therefore, τν,x = ∫

Γ
τsx d S in

(4.1). The distributions panx and τsx are both projected on a wave-following surface, very
close to the surface (vertically shifted by 0.1/k from the wave surface; see Wu et al. (2022)
and Appendix B for details).

Figure 5 shows that both panx and τsx display clear wave-induced coherent patterns,
together with the development of three-dimensional structures induced by turbulence.
When the wave field grows, i.e. figures 5(a,b) and 5(e,f ), the pressure assumes negative
values in the wave troughs and positive values near the wave crest. Similarly, the viscous
stress also assumes positive value near the wave crest, whereas it approaches zero near
the wave troughs and intermittently becomes negative at ωt = 20 − 70, consistent with the
measurements in Veron et al. (2007). Furthermore, the peaks in pressure appear on the
windward face (on the left of the dotted black lines at the wave crest), whereas the peak
in the viscous stress is localized near the wave crest, mainly due to turbulence-induced
straining of the shear layer. Note that the peaks of pnx are one order of magnitude larger
than the peak in τsx . This result is consistent with the large initial slope of the waves for
which the pressure force is the leading term in (4.1), as also shown in experimental works
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Figure 5. Surface distribution of the pressure stress panx (a,c,e) and viscous stress τsx = 2μa(Dn) · ex (b,d,f )
for u∗/c = 0.9. Note that both quantities are normalized by the total imposed stress ρau2∗ at the interface. The
dot-dashed lines in all the panels represent the position of the wave crest.

(Buckley et al. 2020). When the wave breaks, i.e. figures 5(c,d), the distribution of pnx
changes dramatically with a loss of the wave-coherent pattern composed of high-pressure
and low-pressure regions in the windward and leeward sides, respectively. Conversely, the
viscous stress distribution is much less affected by breaking.
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We can quantify how the abrupt change in the form drag distribution reflects in the total
momentum budget. We integrate the streamwise component of the momentum equation
(2.3) over the air volume Ωa :

ρa
∂

∂t

∫
Ωa

u dV︸ ︷︷ ︸
ρa∂U/∂t

+ ρa

∫
Γ

u(ur · n) dS︸ ︷︷ ︸
ρaφc,x

= τp,x + τν,x + ρau2∗ AΓ︸ ︷︷ ︸
Π f

, (4.2)

where dV is the elementary volume in the airflow region and Π f is the volume-integrated
imposed pressure gradient (defined in (2.4)), i.e. Π f = ∫

Ωa
∂p0/∂x(1 −F)dV = ρau2∗ AΓ

with AΓ = Ωa/(L0 − hW ). In (4.2), the left-hand side is the total rate of change in the air
velocity, accounting for the temporal variation ρa∂U/∂t and the convective contribution
ρaφc,x . The former term, ρa∂U/∂t , accounts for the response of the instantaneous flow
field to the variation in the momentum total flux τt,x = τp,x + τν,x , and the latter, ρaφc,x ,
accounts for the momentum flux originated from a non-zero relative velocity ur between
the airflow and the wave field. Since the magnitude of ur is enhanced in the presence of
airflow separation events, the term ρaφc,x can be employed to quantify such events over
growing and breaking waves. The right-hand side includes the uniform forcing term Π f
and the two forces per unit of mass τp,x and τν,x , as in (4.1). Note that in a statistically
steady condition with negligible relative velocity between the airflow and the wave field,
the two terms on the left-hand side of (4.2) vanish, i.e. 〈ρa∂U/∂t〉t = 〈ρaφc,x 〉t = 0 (with
〈〉t a time-averaged operator). Accordingly, equation (4.2) reduces to the simplified form
where the total imposed stress at the interface ρau2∗ AΓ balances the sum of pressure and
viscous drag (Janssen 2004; Buckley et al. 2020; Funke et al. 2021). More details on the
evaluation of the momentum fluxes are provided in Appendix B.

We analyse the temporal variation of the different terms in the momentum flux (4.2)
for two representative cases (u∗/c = 0.5 − 0.9) in figure 6. The top panels display the
normalized wave energy variation EW (t) to remind the reader of the overall time evolution.
In both cases, the wave field experiences a first growth up to the breaking event (ωt ∈ [0 −
65] for u∗/c = 0.5 and [0 − 20] for u∗/c = 0.9, the shorter growing cycle for u∗/c = 0.9
being due to the higher wind forcing).

When the wave breaks, the momentum flux due to pressure τp,x/(ρau2∗ AΓ ) drops with
a corresponding acceleration of the flow, i.e. ρa∂U/∂t/(ρau2∗ AΓ ) increases, the drop
being larger for the strongest wind forcing. Once the breaking stage ends, around ωt = 75
for u∗/c = 0.5 and around ωt = 35 for u∗/c = 0.9, the wave field experiences a second
growing cycle. During the interval, the pressure force remains the dominant contributor to
the momentum budget and keeps increasing with a progressive deceleration of the airflow.
For the case u∗/c = 0.9, the wind forcing drives the wave field to a second breaking event,
which occurs around ωt = 120. Similarly to the first breaking event, the pressure force
decreases while the airflow accelerates, with the magnitude of the momentum loss being
smaller (since the breaking is weaker).

In all cases, the momentum flux originating from the non-zero velocity between the
airflow and the waves, ρaφc,x , represents a negligible part of the momentum budget. This
is consistent with Yang et al. (2018), who found a negligible role of the convective term
in the budget. Next, the viscous contribution τν,x represents a small but not negligible
contribution in the forces τν,x . This is consistent with the high initial wave steepness,
i.e. a0k = 0.3. Notably, upon wave breaking, the viscous contribution experiences a slight
increase to partially compensate for the loss of the pressure force.
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Figure 6. Contributions of the momentum budget in the streamwise direction, as in (4.2), for (a) u∗/c = 0.5 and
(b) u∗/c = 0.9. On the y-axis label T represents the variation in the instantaneous flow ρa∂U/∂t , the viscous
stress τν,x , the pressure stress τp,x , the convective term ρaφc,x or the driving force Π f (defined in (2.4)). Each
budget component is normalized by the total stress ρau2∗ AΓ . For both cases, the normalized variation in the
wave energy EW /EW,0 is reported in the top panel.

The sensitivity of the pressure force to the breaking event can be qualitatively understood
by considering the variations of the instantaneous slope. When the wave breaks, the
instantaneous wave slope, ∂η/∂x , suddenly reduces and directly influences the dominant
pressure stress τp,x (which is directly visible in a simplified version of (4.1); see Funke
et al. (2021)).

4.2. Velocity profiles
In § 4.1, we showed that when the wave breaks, the momentum flux associated with
pressure is reduced in favour of a flow acceleration in the air. We now characterize the
associated streamwise vertical velocity profiles 〈ua〉 during the growing–breaking cycle.

Following Sullivan et al. (2000) and Wu et al. (2022), the mean velocity profile is
computed in wave-following coordinates by using an implicit transformation, which maps
the Cartesian coordinates (x, y, z) to wave-following coordinates (ξ, η, ζ ). This step
allows us to perform the space average of the velocity field along the periodic directions by
including the region below the wave crests. More details about the procedure to transform
a generic field defined in a Cartesian coordinate system into a wave-following one are
given in Appendix A.

Figure 7 shows the streamwise velocity profile spatially averaged along the horizontal
directions as a function of the vertical wave-following coordinate ζ for u∗/c = 0.5 − 0.9.
In both cases, the velocity profiles are time-averaged over three time windows. The two
windows correspond to the two growing cycles, G1 and G2,a , introduced in figure 3(b).
Furthermore, note that the velocity profiles in the airflow are not subtracted by the
streamwise component of the surface water velocity, as its maximum value in the water
throughout the simulation is of the order of 0.33u∗, which is negligible compared with the
maximum streamwise velocity in the airflow (see figure 7).
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Figure 7. Streamwise velocity profile normalized by the nominal friction, 〈ua〉/u∗, as a function of vertical
wave-following coordinate ζ/λ in the airflow for (a) u∗/c = 0.5 and (b) u∗/c = 0.9. For large enough values,
ζ = z. The instantaneous velocity profiles are averaged in time over the cycle G1 (dark-blue lines) and a
fraction of the second growing cycle, G2,a , as defined in § 3.2 (see figure 3b). The dot-dashed curves represent
the instantaneous values during the breaking stage, i.e. ωt ∈ [58 − 98] for u∗/c = 0.5 and ωt ∈ [22 − 42] for
u∗/c = 0.9.

By comparing the mean velocity profile 〈ua〉 during the stages G1 and G2,a , we clearly
see that the breaking event leads to a flow acceleration mainly confined in the region
ζ/λ< 1 and a shift of the velocity profiles to larger values, as also clearly shown from
the instantaneous profiles during the breaking stage. The flow acceleration becomes more
pronounced as we compare the case u∗/c = 0.5 with the case u∗/c = 0.9. The profile is
non-zero at the water surface due to the presence of a developing underwater current.

Note that even during the growing stage, the simulation remains transient in nature.
However, the turbulent flow adjusts to the moving wave field on a time scale tt = νa/u2∗
that is 40 to 200 times smaller than the wave period T0 = λ/c for the different analysed
cases, i.e. T0/tt = (u∗/c)Re∗,λ > 40 − 200. Therefore, except during the breaking stage,
the configuration can be approximated as quasi-stationary, allowing us to analyse the
modulation of the velocity profile by the growing waves and the breaking event.

This analysis demonstrates the specific contribution of breaking events to the average
velocity profiles, which, in laboratory or open-ocean conditions, are typically averaged
over long time periods without distinguishing between breaking and growing stages.

4.3. Reynolds shear stress
The growing and breaking cycle also affects the Reynolds shear stress 〈u′w′〉 (or turbulent
intensity) in the near-wave-field region. Figure 8 displays the Reynolds stress spatially
averaged over the two periodic directions and normalized by u2∗, i.e. −〈u′w′〉/u2∗, for
u∗/c = 0.5 − 0.9 (using the wave-following coordinate as detailed in Appendix A). Each
instantaneous profile is also time-averaged during the first and a fraction of the second
growing cycle, i.e. G1 and G2,a . Note that we also report the different instantaneous values
during the breaking stage of each case.

For both cases, −〈u′w′〉/u2∗ shows an increasing trend in the near-wave region, reaching
a peak at ζ/λ≈ 0.26 (i.e. z/λ≈ 0.38). Beyond this point, it decreases and approaches
the dashed green curve in figure 8, which represents the Reynolds stress for a flat and
stationary wall at Re∗ = 720 (Pope 2000). However, it does not reach this solution exactly
due to the non-stationarity of the flow field induced by the moving waves, i.e. growing and
breaking stages.
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Figure 8. Reynolds shear stress normalized by the square of the nominal friction, −〈u′w′〉/u2∗, as a function
of the vertical wave-following coordinate ζ for (a) u∗/c = 0.5 and (b) u∗/c = 0.9. The Reynolds shear stress is
averaged over the same time windows as in figure 7. The dot-dashed curves represent the instantaneous values
during the breaking stage, i.e. ωt ∈ [58 − 98] for u∗/c = 0.5 and ωt ∈ [22 − 42] for u∗/c = 0.9. The dashed
green curve represents the Reynolds stress on a flat stationary surface at Re∗ = 720.

During the growing stage, the peak in the Reynolds stress is 0.62 for u∗/c = 0.5,
whereas it is 0.76 for u∗/c = 0.9. This larger peak is due to the increased drag, primarily
from the pressure component, at higher u∗/c. When the wave field breaks, as shown
from the dot-dashed curves, both peaks decrease without a significant change in the peak
location, with a more pronounced reduction at larger u∗/c related to the stronger breaking
event.

Thus, wind-induced wave breaking greatly modulates the Reynolds stress and confirms
the discussion made when analysing the pressure field. During the growing stage, the
turbulent drag, i.e. −〈u′w′〉/u2∗, is larger as u∗/c increases, while when the wave breaks,
the turbulent drag is reduced, and such loss increases with u∗/c. We note that both cases
are run at the same Re∗,λ, so the phenomenology is indeed controlled by the wind forcing
and breaking dynamics and is much less affected by the Reynolds number.

4.4. Extraction of the surface roughness from the velocity profiles
The breaking-induced shift can be quantified considering the velocity profiles in semi-
logarithmic form and rescaled in wall units, as shown in figure 9. The velocity profiles
display a consistent upshift which extends for the entire inner layer (Pope 2000; Cimarelli
et al. 2023), composed of the viscous sublayer (0 < ζ+ < 5), the buffer layer (5 < ζ+ <

30) and log-law region (ζ+ > 30), where ζ+ is the vertical coordinate in wall units ζ+ =
ζu∗/νa with νa = μa/ρa . The upshift is associated with the change in the instantaneous
steepness due to breaking, leading to an overall drag reduction in the flow. Note that this
upshift in the logarithmic region is mainly confined near the wave field (30 < ζ+ � 100).
For larger ζ+, the mean velocity profile in the post-breaking stage, i.e. G2,a , approaches
that in the pre-breaking stage, i.e. G1, confirming that the airflow modulation induced by
wave breaking is negligible in this region.

It is also worth mentioning that the streamwise velocity profile at the same Re∗ for a flat
stationary wall is well above that with moving waves. Indeed, flows over waves experience
much larger drag due to the added contribution of the pressure component, which is zero
for flows over a flat wall (Belcher & Hunt 1998). This observation agrees with experimental
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Figure 9. Streamwise velocity profile normalized by the friction velocity, 〈u+
a 〉 = 〈ua〉/u∗, as a function of

vertical wave-following coordinate (in wall units) ζ+ = ζu∗/νa with νa = μa/ρa for (a) u∗/c = 0.5 and (b)
u∗/c = 0.9, both at Re∗,λ = 214 (Re∗ = 720). The velocity profiles are averaged over the same time windows
as in figure 7. The dotted black lines refer to the fitted logarithmic law employed to estimate the intercept for
each case. The continuous black line represents the mean velocity profile at Re∗ = 720 for a flat stationary
surface.

works where a downshift of the velocity profile was observed as the wave steepness was
increased (Buckley & Veron 2016; Buckley et al. 2020).

Using the velocity profile in logarithmic form, we can quantify this upshift induced by
the wave breaking. For this purpose, we express 〈ua〉 using the wall-normal coordinate:

〈ua, f 〉 − 〈ua,i 〉
u∗

= 1
κ

log

(
ζ+

f − ζ+
i

z+
0

)
, (4.3)

where κ is the Von Kármán constant, z+
0 is the surface roughness and ζ+

i, f are the initial
and final extents of the log-law region, i.e. ζ+

i and ζ+
f . The corresponding velocities at

these positions are termed 〈ua,i 〉 and 〈ua, f 〉, respectively. Using the velocity profile in the
logarithmic region, both κ and z+

0 can be estimated using a least-squares fit procedure
(Sullivan et al. 2000; Lin et al. 2008) applied to the growing and breaking regimes. To
evaluate z+

0 and κ , we consider ζ+
i = 30 for all the stages, which corresponds, in physical

units, to ζi = 0.56λ, 0.28λ and 0.14λ for Re∗,λ = 53.5, 107 and 214, respectively. The final
extent ζ+

f is taken equal to a common value of ζ+
f ≈ Re∗,λ/2 to capture the breaking-

induced drag reduction, which is confined in the near-wave region, as clearly shown in
figure 9. Note that such ζ+

f corresponds to a physical reference height of ζ f = λ/2, similar
to the reference height employed to compute the wind-wave growth in Jeffreys (1925) and
Donelan et al. (2006) and to the height to compute the aerodynamic drag coefficient in
§ 5.1.

Results are reported in table 2. We note that the surface roughness slightly increases
with u∗/c, whereas when the wave field breaks, its value drops and decreases with u∗/c.
This trend is also confirmed during the second breaking cycle for the cases where it is
available, although the change in z+

0 during breaking is smaller due to the reduced breaking
strength. Note that z+

0 immediately after the breaking stage, i.e. over G2,a , is smaller than
z+

0 evaluated before the second breaking, i.e. G2,b (when available), as the wave field
has grown between the two windows. It is worth remarking that irrespective of the cases,
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Re∗,λ (L0 − hW )/λ u∗/c z+
0,G1

z+
0,G2,a

z+
0,G2,b

z+
0,F

214 3.36 0.3 1.05 — — —
214 3.36 0.4 1.10 0.87 — —
214 3.36 0.5 1.14 0.83 — —
214 3.36 0.7 1.18 0.80 1.07 0.89
214 3.36 0.9 1.21 0.77 1.15 0.85

53.5 3.36 0.9 0.26 0.17 — —
107 3.36 0.9 0.55 0.36 0.50 0.40
107 6.72 0.9 0.57 0.38 0.52 0.42

Table 2. Surface roughness for the stages G1, G2,a , G2,b and F , as defined in § 3.2 (see figure 3 b). The surface
roughness is expressed in viscous (or plus) units, z+

0 = z0u∗/νa with νa = μa/ρa . The values are extracted
from the velocity profiles in logarithmic form using a best-fit procedure reported in figure 9. For the case
u∗/c = 0.3, only one surface roughness value is reported since the wave field, in this case, is in equilibrium
with the flow. For the cases u∗/c = [0.7 − 0.9] at Re∗,λ = 214 and for the case u∗/c = 0.9 at Re∗,λ = 107 with
(L0 − hW )/λ= 6.72, z+

0 is also reported for the second breaking cycle.

we found a common value for the Von Kármán constant κ ≈ 0.40, in agreement with the
employed value in ocean and atmosphere models.

We note that the drag reduction mentioned here is studied at a fixed Re∗,λ and with
(L0 − hw)/λ= 3.36. To assess the sensitivity of the results to these parameters, we
perform three additional simulations at u∗/c = 0.9, two at Re∗,λ = 53.5 − 107 with (L0 −
hw)/λ= 3.36 and one at Re∗,λ = 107 with (L0 − hw)/λ= 6.72. Results are discussed in
Appendices D and E, and the surface roughness of these cases is reported in table 2. We
observe a breaking-induced drag reduction of comparable magnitude to that measured at
the largest Re∗,λ. This supports that the drag modulation induced by wave breaking is
primarily controlled by u∗/c and is less sensitive to Re∗,λ and (L0 − hW )/λ.

5. Drag coefficients over growing and breaking waves
In this section, we connect our analysis of the momentum flux under growing and breaking
waves at high wind speeds to formulations of the drag coefficient. We split our analysis
between the growing waves and the breaking waves, for different u∗/c and Re∗,λ. Two
formulations are discussed: one based on first principles and directly integrating the
momentum flux, and the one used in the laboratory and field observations.

5.1. Estimation of the aerodynamic drag coefficient
In § 4.1, we showed that the pressure drag force τp,x increases in time as long as the
wave field grows (associated with increased wave slope) and suddenly decreases when the
wave field breaks. In § 4.2, we observed that the breaking event is associated with a flow
acceleration, i.e. 〈ua〉/u∗ shifts towards larger values, and airflow separation occurs over
the wave crests and troughs. To discuss the relative strength of the variation of the pressure
force with the relative strength of mean flow variation, we introduce a dimensionless
aerodynamic drag coefficient CD,a :

CD,a = 2τ p,x

ρaU
2
re f (ζ = ζre f )AΓ

, (5.1)
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Figure 10. Aerodynamic drag coefficient CD,a (defined by (5.1)) for different u∗/c in the growing (blue
colours) and breaking (red colours) time intervals. For u∗/c < 0.35, the simulated wave field is only growing
(one would have to run the simulations longer to obtain breaking), so that all data are in the growing regime
(and include increasing a0k; see Wu et al. 2022). For u∗/c > 0.35, both growing and breaking are present, and
both ranges are separated by the red dash-dotted line. Whenever available, the data pertaining to the second
growing and breaking cycles G2, B2 are displayed. The growing and breaking stages G1, G2, B1 and B2 are
defined in figure 3(b). Growing dynamics displays a systematic increase in drag with u∗/c, while breaking
induces a decrease in drag with increasing u∗/c. The averages of the breaking and growing cycles are indicated
in magenta, and we observe a saturation of the averaged drag at high wind speed.

where τ p,x is the time-averaged mean momentum flux associated with pressure:

τ p,x = 1
�TG,B

∫
�TG,B

τp,x dt , (5.2)

where �TG,B is the time interval when the wave grows or breaks, respectively, and the
integral is taken over this time interval. An equivalent definition to (5.2) is employed for
Uref . We split the dynamics into the growing and breaking stages to understand their
respective contribution to the total aerodynamic drag, with the same convention as before,
so that the length of the growth and breaking intervals varies with u∗/c.

The choice of the reference far-field boundary layer velocity Uref evaluated at a
reference height ζ = ζre f is based on two requirements: (i) being sufficiently far from
the wave surface to always reside in the air during growth and breaking and (ii) being
sufficiently close to the wave field to be affected by its dynamics (growth and breaking).
It follows that Uref increases as the flow accelerates in the breaking stage. Here, the
requirements are satisfied typically if λ/4 < ζre f < λ, and we consider ζ = λ/2, similar
to wind-wave growth sheltering discussion (Jeffreys 1925; Donelan et al. 2006). Different
ζre f within the interval only changes the magnitude CD,a , without altering the discussion.

Figure 10 shows the estimated CD,a as a function of u∗/c and for both growing and
breaking stages. We also re-analyse the non-breaking growing simulations from Wu et al.
(2022) at lower u∗/c and varying initial slope. In the non-breaking growing regime
(u∗/c < 0.35), CD,a increases with u∗/c, with different values of CD,a at the same u∗/c
corresponding to different initial wave steepness (see also Wu et al. 2022).
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For the range of u∗/c that includes growth and breaking (u∗/c > 0.35), CD,a follows
an increasing trend with u∗/c in the growing (pre-breaking) stage (blue symbols) and
a decreasing trend in the breaking stage (red symbols). Averaging CD,a over both the
growing and breaking stages, the drag coefficient exhibits a saturation with a slight
decrease at the highest wind speed (magenta symbols). Similar results are observed during
the second breaking cycle, as shown in figure 10 for the available cases (u∗/c = [0.7 − 0.9]
at Re∗,λ = 214 and u∗/c = 0.9 at Re∗,λ = 107) with a slightly smaller drag coefficient,
compared with the first breaking cycle. Thus, we can expect that averaging over multiple
growing–breaking cycles would lead to a similar overall behaviour. Finally, the results are
not very sensitive to the friction Reynolds number Re∗,λ and the number of waves in the
simulation box (L0 − hW )/λ.

From the analysis presented in this section, we can conclude that the aerodynamic drag
saturation is driven by breaking events, which cause a marked reduction in the pressure
drag, airflow separation and a loss of coherence between the wave and the pressure fields.

5.2. Comparison of the drag coefficient with laboratory and field measurements
The above discussion suggests that in laboratory and field measurement analysis, the drag
saturation at high wind speed is the consequence of the spatial and temporal averages
over breaking events and wave growth. In this section, we can qualitatively compare our
results, obtained for narrowbanded idealized conditions, with the more complex multiscale
observations at high wind speed (Donelan et al. 2004; Janssen 2004; Bye & Jenkins 2006;
Buckley et al. 2020; Curcic & Haus 2020; Sroka & Emanuel 2021), by considering the
classic oceanographic definition of the drag coefficient at 10 m height, termed CD . As
mentioned in § 1, equation (1.1), CD is related to the definition of the total momentum
flux τt,x = ρaCDU 2

10 with τt,x = ρau2∗ since at 10 m height the airflow and the waves are
assumed to be in equilibrium. For neutral atmospheric conditions, the velocity profile at
z can be assumed to follow the logarithmic law of the wall (Edson et al. 2013; Ayet &
Chapron 2022), i.e. U10 = (u∗/κ) log(z/z0) as in (4.3), and CD becomes

CD(z = 10 m) = κ2

log2 (z/z0)
. (5.3)

Using the DNS data generated for this work and those reported in Wu et al. (2022), we
compute CD from (5.3) by using the velocity profiles evaluated during the first and a
fraction of the second growing cycles for the different u∗/c and Re∗,λ (and in the second
growing–breaking cycle when available). We convert the velocity profile in physical units
by considering the length and time scale of the numerical system defined based on the air–
water properties and the wave scales given by the Bond number. Using a best-fit procedure
on the equation of the logarithmic profile (κ = 0.40, as discussed in § 4.2), a dimensional
friction velocity and roughness z0 can be retrieved, and CD can be evaluated using (5.3).
Note that we checked a posteriori that this analysis conserves the ratio of the friction
velocity over the wave phase speed. The calculation of CD is done on two averaging
windows representative of the flow during the first growing cycle (G1) and the disturbed
flow just after breaking (G2,a), since defining a logarithmic velocity profile requires a
quasi-stationary profile. Such an approach differs slightly from the one employed for CD,a ,
but we will see that the physical conclusions are identical, while the 10-m-based drag
coefficient allows us to compare with existing laboratory data.

The values of CD for different u∗/c exhibit a similar qualitative trend to that of
CD,a with u∗/c. We observe a systematic increase of the drag in the growing stage
(dark triangles and blue symbols) with u∗/c, while the drag in the breaking stage (red
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symbols) decreases with u∗/c. When averaging over both growing and breaking regimes,
we observe a saturation at high wind speed (u∗/c > 0.4). As for the aerodynamic drag
coefficient CD,a , the results are not very sensitive to Re∗,λ and (L0 − hW )/λ, as discussed
in Appendix D and Appendix E.

It is remarkable that the numerical values of CD in figure 11, with CD between 0.2 and
0.8 × 10−3 for u∗/c < 0.3 and CD between 1.5 and 2.0 × 10−3 for u∗/c > 0.4, closely
match those reported in laboratory experiments (Buckley et al. 2020; Curcic & Haus
2020) for similar values of u∗/c (shown in green symbols). In laboratory experiments at
high wind speeds, the drag coefficient is determined by long-time averaging over multiple
growing and breaking cycles, leading to drag saturation.

We note that the saturation of CD occurs at lower u∗/c and armsk in our simulations than
in laboratory experiments. This discrepancy may be attributed to differences in set-up:
our forced narrowbanded wave field contrasts with the laboratory’s multiscale finite fetch
conditions at high wind speeds, where averaging spans multiple breaking–growing cycles,
and the partitioning between regimes at the same u∗/c may differ from our simulations.
Similarly, directly comparing realistic u∗/c values in field conditions is challenging due to
the broad-banded nature of the wave field in the open ocean at high-wind-speed conditions.
Additionally, the lower wave Reynolds number in our simulations affects the effective
growth rate and time to reach breaking conditions and makes direct comparison in physical
units, e.g. actual wind speed and wavelength, more challenging. Nevertheless, the ability
of the simulations to capture drag saturation at high wind speed suggests that we are indeed
approaching the correct asymptotic limit for high Reynolds numbers.

The present analysis can be related to the discussion from Sullivan et al. (2018) and
Wu et al. (2022) on the control of the form drag by the wave slope, armsk, for steep
non-breaking waves. In the present work, we showed that the breaking event, which is
responsible for wave slope saturation controls the saturation of the drag coefficient when
presented as a function of u∗/c.

Moreover, the drag coefficient CD is shown as a function of armsk in figure 11. During
the growth phase of the wave field, CD increases with armsk up to approximately armsk ≈
0.15 for non-breaking waves with finite steepness (Wu et al. 2022). As armsk reaches larger
values, wave breaking initiates around armsk ≈ [0.20 − 0.23]. Focusing on the growing
phase of the wave field, CD increases with armsk for the different u∗/c; however, as we
approach the largest values, arms saturates, leading to a corresponding saturation in CD .
Conversely, during the breaking stage, armsk decreases as u∗/c increases, resulting in
a reduction in CD . When considering the mean value of CD over a complete growing
and breaking cycle, the variations in both CD and arms become significantly smaller,
converging to similar values, so that all data points in the saturated drag coefficient also
have saturated slope and appear clustered on the graph. This behaviour highlights that
wave breaking dynamics not only governs the saturation of CD but also controls the
saturation of the wave slope. This discussion presents similarities to Davis et al. (2023)
showing saturation of the wave mean square slope during tropical cyclones observed from
drifting buoys, suggesting that simple parameterizations of the drag coefficient based on a
wave-slope metric could be promising.

We suggest that experimental and field analysis of the drag coefficient reporting
a statistical analysis of the partitioning between breaking and growing (temporally
and/or spatially) could help better understand, quantify and eventually parameterize drag
saturation at high wind speed and constrain momentum flux models leveraging breaking
occurrence statistics (Kudryavtsev et al. 2014).

Finally, it is very important to remark that while the saturation and reduction of CD
has sometimes been attributed to the production of sea sprays (Bye & Jenkins 2006;
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Figure 11. Drag coefficient CD evaluated at z = 10 m using (5.3) as a function of u∗/c (a) and armsk (b)
with arms = a/

√
2. The figure includes the calculation of CD with the data generated in this work and

those retrieved from Wu et al. (2022). For all the cases, the reported CD is an average value between the
first growing cycle, G1, and a fraction of the second growing cycle, G2,a (immediately after the breaking
event). Whenever available, the data pertaining to the second growing cycle G2,b and the final stage F are
displayed. The employed time window to define CD follows the convention given in figure 3(b). For the cases
at u∗/c = [0.4 − 0.5 − 0.7 − 0.9] at Re∗,λ = 214 with (L0 − hW )/λ= 3.36, we separate between these two
stages (blue and red circles). The green symbols display the experimental datasets from Buckley et al. (2020)
up to u∗/c ≈ 0.71 and from Curcic & Haus (2020) up to u∗/c ≈ 2.25.
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Veron 2015), in the current set-up, the production of droplets is negligible during the
breaking stage of the wave field. Yet, we observe that the drag coefficient, whether defined
as CD,a or CD , displays a saturation at high u∗/c when wave breaking is considered. This
aspect shows that wave-breaking events, which cause the marked reduction of the pressure
stress and the associated flow separation and determine the loss of coherence between the
pressure and the wave fields, are sufficient to saturate the drag coefficient at high u∗/c.

6. Conclusions
We used state-of-the-art two-phase-fluid DNS of wind-forced breaking waves to get new
insights into the processes controlling momentum flux at high wind speed. We consider
the ratio of wind friction velocity to wave phase speed, u∗/c, ranging from 0.3 to 0.9.
The wave field is initialized with an amplitude below the breaking threshold, allowing the
wind to be the primary driver of wave growth until the breaking conditions are reached and
simulate the growing–breaking wave life cycle. We analyse the momentum flux, separating
the growth and breaking stages, and treating them as two distinct subprocesses, and revisit
drag coefficient analysis.

The momentum flux analysis underscores the dominance of the pressure force over the
viscous force throughout all stages of wave evolution. When breaking occurs, the pressure
force sharply decreases, and this reduction is compensated by a sudden acceleration of
the flow field to conserve momentum. The remaining terms in the momentum budget,
including a convective term accounting for the relative velocity between the airflow and
waves, and a viscous force contribution, show smaller magnitudes and are less affected.
The modulation of airflow caused by wave breaking results in an upshift in the streamwise
velocity profile, corresponding to the drop in pressure force.

The relative strengths of these effects are quantified using the aerodynamic drag
coefficient CD,a , defined as the ratio of mean pressure force to mean velocity at a reference
height within the wave-boundary layer (z = λ/2). During wave growth, CD,a increases
with u∗/c, while during breaking, it decreases with u∗/c. When averaging over both
growing and breaking regimes, we obtain a saturation of the drag coefficient CD,a at high
enough u∗/c. A similar behaviour is obtained if one computes from the DNS results the
drag coefficient commonly employed in air–sea interaction, CD , which is based on wind
friction velocity u∗ and the reference velocity at 10 m height, U10. The trend in the DNS
closely mirrors field observations and laboratory experiments at high wind speeds for CD ,
and the magnitudes of the drag in both DNS and laboratory are in remarkable agreement.
We observe a difference of the critical u∗/c for which the drag starts to saturate, which
might be attributed to the differences in set-up, narrow- or broad-banded wave field as well
as averaging procedure.

Our simulations demonstrate that the drag coefficient, whether defined as CD,a or CD ,
saturates when wave-breaking events are included. Notably, the production of droplets
remains negligible due to the moderate Bo, indicating that breaking-induced dynamics –
such as reduced pressure stress, loss of coherence between the airflow and wave field and
airflow separation – is sufficient to cause drag saturation.

The present framework can now be used to explore the associated energy fluxes going
into the water column, including wind-wave growth, energy dissipation by breaking and
oceanic turbulence development, further quantifying the growing–breaking life cycle of
ocean waves under strong wind forcing.
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Appendix A. Procedure for converting Cartesian to wave-following coordinates
In this appendix, we detail the procedure to transform a generic field defined in a Cartesian
coordinate system into a wave-following one. This transformation involves three steps:

(i) The simulation outputs different instantaneous two-dimensional fields, hereinafter
termed q = f (x, z), which has been already averaged along the spanswise y
direction. Next, this generic two-dimensional field q is transformed from a Cartesian
coordinate system into a wave-follower coordinate using a one-dimensional mapping
function (Sullivan et al. 2000; Wu et al. 2022):[

x
z

]
=
[

x(ξ, ζ )

z(ξ, ζ )

]
=
[

ξ

ζ + η(ξ) exp(−k|ζ |)
]

, (A1)

where η(ξ) is the spanwise-averaged surface elevation function. For a sufficiently
large value of k|ζ |, exp(−k|ζ |) ≈ 0 and the vertical Cartesian coordinate coincides
with the vertical wave-following coordinate. Note that alternative mapping functions
to (A1) have been proposed, but the sensitivity of the results to the choice of mapping
is typically negligible (Sullivan et al. 2000).

(ii) Each wave-following two-dimensional field is averaged along the periodic direction
x , including also the regions near the wave troughs.

(iii) The obtained vertical profile, i.e. q = g(ζ ), is time-averaged over the cycles G1 and
G2,a as defined in figure 3(b). Note that during G1 and G2,a (G2,b and F), the airflow
is quasi-stationary, and employing time-averaging is an adequate approach to define
turbulence statistics.

Appendix B. Calculation of the momentum fluxes
We provide details on how we evaluate the momentum fluxes in (4.2), i.e. ρaφc,x , τp,x
and τν,x . These fluxes at the boundaries are not zero only at the two-phase interface,
since at the other faces of the computational box (shown in figure 1), they are zero due
to periodicity along the horizontal directions and at the top boundary due to the imposed
no-penetration/free-slip condition.

The calculation of the momentum fluxes is conducted in two steps. First, the interface
Γ is slightly shifted vertically by �s = 0.1/k, corresponding approximately to four grid
points at a resolution Le = 10. As noted by Wu et al. (2022), this step is a numerical
strategy to ensure that the pressure and the velocity gradients are evaluated in the air
domain only. As long as �s stays within the viscous sublayer, its numerical value has
a negligible impact on the evaluation of the different terms of the momentum budget.
Next, the surface integrals in (4.1) and (4.2) are transformed into volume integrals using
the Gauss theorem, e.g.

∫
Γ

pn · ex dS = ∫
Ωa

∇ · (pex )dV = ∫
Ωa

(∂p/∂x)dV . This surface-
to-volume integral transformation allows evaluating the momentum fluxes over the air
volume Ωa rather than on Γ . Owing to the volume-of-fluid reconstruction, Ωa remains a
conserved quantity in our simulations, even when the wave field breaks, whereas Γ does
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Figure 12. Evolution of the normalized wave energy EW /EW,0 as a function of the dimensionless time ωt with
EW,0 = EW (t = 0) for Re∗,λ = 107 − 214 at u∗/c = 0.9. Note that these two cases share the same Re∗ = 720
but different (L0 − hW )/λ= 3.36 − 6.72. The continuous coloured lines refer to Le = 10, the black symbols
to Le = 11.

not. Importantly, the volume and surface integral formulations yield the same numerical
results when the wave field grows.

Appendix C. Convergence studies between Le = 10 and Le = 11

We perform a grid convergence study for wave energy and momentum flux for two cases at
u∗/c = 0.9 and Re∗,λ = 214 with (L0 − hW )/λ= 3.36 and (L0 − hW )/λ= 6.72 (four and
eight waves per box size, respectively). Two levels of refinement are considered, Le = 10
and Le = 11. At Le = 10, we have 256 (128) and 512 (256) grid points per wavelength in
the case of (L0 − hW )/λ= 3.36 ((L0 − hW )/λ= 6.72) (and twice as much at Le = 11).
As we will see, the number of grid points per wave boundary layer (as defined in Mostert
et al. (2022)) is enough to obtain grid convergence of energy dissipation due to breaking.

Figure 12 displays the normalized wave energy EW /EW,0 as a function of the
dimensionless time ωt . For (L0 − hW )/λ= 3.36, employing a maximum refinement level
of Le = 10 guarantees grid-converged results across all wave field growing and breaking
stages (results are identical at Le = 11). Moreover, this level of refinement proves adequate
to achieve grid-independent results also for the momentum budget components, as shown
in figure 13(a).

Increasing (L0 − hW )/λ from 3.36 to 6.72, while keeping the other dimensionless
parameters fixed, makes the grid requirement more demanding, as grid convergence still
requires the same number of grid points per wavelength (or per wave boundary layer,
which scales with the wavelength). In particular, during the first growing stage, the wave
energy and the components of the momentum budgets are well captured at a resolution
of Le = 10, as shown in figures 12 and 13(b). Conversely, a deviation with respect to
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Figure 13. Grid-convergence study for the momentum budget in the streamwise direction as in (4.2) for (a)
(L0 − hW )/λ= 3.36 and Re∗,λ = 214 and (b) (L0 − hW )/λ= 6.72 and Re∗,λ = 107 at u∗/c = 0.9. Both cases
share the same Re∗ = 720. The coloured curves refer to Le = 10; the symbols refer to resolution Le = 11. On
the y-axis label T represents the variation in the instantaneous flow ρa∂U/∂t , the viscous stress τν,x , the
pressure stress τp,x , the convective term ρaφc,x or the driving force Π f . Each budget component is normalized
by the total stress ρau2∗ AΓ .
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Figure 14. (a) Contributions of the momentum budget in the streamwise direction, as in (4.2), for Re∗,λ =
53.5 − 107 − 214 with (L0 − hW )/λ= 3.36. On the y-axis label of both panels, T represents the variation in
the instantaneous flow ρa∂U/∂t , the viscous stress τν,x and the pressure stress τp,x . Each budget component
is normalized by the total stress ρau2∗ AΓ . (b) Streamwise velocity profile normalized by the nominal friction,
〈u+

a 〉 = 〈ua〉/u∗, as a function of vertical wave-following coordinate (in wall units) ζ+ = ζu∗/νa for Re∗,λ =
53.5 − 107 − 214 with (L0 − hW )/λ= 3.36 in coloured lines (continuous and dashed lines for the first and
second growing cycle, G1 and G2,a , respectively). The dotted black lines are the linear fit. In blue colour, we
report the corresponding cases pertaining to the stationary and flat wall at the same Re∗ (the equivalent Re∗,λ

is displayed in parenthesis). Note that the velocity profiles are almost indistinguishable in the case of a flat
stationary wall at Re∗ = 360 − 720, while that at Re∗ = 180 (blue dotted lines) is slightly upshifted.
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Figure 15. Contributions of the momentum budget in the streamwise direction, as in (4.2), for the following
cases: Re∗,λ = 214 with (L0 − hW )/λ= 3.36, Re∗,λ = 107 with (L0 − hW )/λ= 6.72 and the case with
Re∗,λ = 107 with (L0 − hW )/λ= 6.72. On the y-axis label T represents the variation in the instantaneous
flow ρa∂U/∂t , the viscous stress τν,x and the pressure stress τp,x . The convective term ρaφc,x or the driving
force Π f are omitted for clarity. Each budget component is normalized by the total stress ρau2∗ AΓ .

Le = 11 occurs during the breaking stage and the second growing stages of the wave
field. Accordingly, fixing all the other parameters, cases with (L0 − hW )/λ> 6.72 requires
Le = 11 to obtain grid-independent results.

Appendix D. Sensitivity of the momentum flux to Re∗,λ

We now present the results of a sensitivity study to the turbulent air-side friction
Reynolds number, Re∗,λ. We consider three cases at a fixed u∗/c = 0.9: Re∗,λ = 53.5
and Re∗,λ = 107 with (L0 − hW )/λ= 3.36, and Re∗,λ = 107 with (L0 − hW )/λ= 6.72,
which correspond to a friction Reynolds number Re∗ = 180 − 360 − 720, respectively.

We start comparing the three cases by inspecting the momentum budget in the
streamwise direction, as displayed in figure 14(a). The budget clearly shows that the time-
varying pressure flux τp,x has a smaller magnitude over the entire growing and breaking
cycles as Re∗,λ decreases. A larger viscous flux, τν,x , compensates for this decrease.

The overall reduced pressure drag experienced by the wave field at lower Re∗,λ modifies
the streamwise velocity profile, as displayed in figure 14(b). As we increase Re∗,λ, the
velocity profile has a consistent downshift compared with the flat and stationary wall
scenario (blue lines in figure 14b), which is caused by the increased drag due to the
pressure component (absent for a flat wall). When the wave breaks, in all the cases,
there is an upshift of the velocity profile, and the associated drag reduction is solely
induced by wave breaking. As visible in the figure, the upshift is largest for Re∗,λ = 214,
and it slightly decreases for Re∗,λ = 53.5 − 107. Despite an unavoidable Re∗,λ effect,
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Figure 16. Streamwise velocity profile normalized by the nominal friction 〈ua〉/u∗ in (a) physical or (b) wall
units for the cases at Re∗,λ ≈ 107 and (L0 − hW )/λ= 3.36 − 6.72. The solid black line in (b) represents the
velocity profile of the flow over a solid wall at the same Re∗,λ = 107. Note that differently from the profiles in
(a), the velocity profiles as a function of the viscous unit do not collapse since the normalization factor for the
viscous unit, i.e. νa/u∗, is independent of the number of waves per unit of the box size.

this analysis confirms that the breaking-induced flow acceleration and consequent drag
reduction is associated with the change in the wave steepness of the wave field and surface
roughness and is not significantly affected by Re∗,λ.

Appendix E. Sensitivity of the momentum flux on (L0 – hW)/λ

We present a sensitivity study on the ratio of the box size to the wavelength, i.e.
(L0 − hW )/λ, or equivalently, the number of waves per box size. To this end, we run an
additional case at Re∗,λ = 107 with (L0 − hW )/λ= 6.72 and u∗/c = 0.9. Given the larger
(L0 − hW )/λ= 6.72, we set Le = 11, as discussed in Appendix C.

This additional case is compared with: (i) the case at different (L0 − hW )/λ= 3.36 but
equal Re∗,λ = 107 and (ii) the case at different Re∗,λ = 214 and (L0 − hW )/λ= 6.72, but
equal Re∗ = 720.

Figure 15 displays the different components of the momentum flux as in (4.2). We can
see that despite the different values of (L0 − hW )/λ, the cases with the same Re∗,λ = 107
display very similar momentum fluxes. Conversely, the case at Re∗,λ = 214 shows larger
pressure and smaller viscous fluxes. These observations suggest two conclusions. First,
while the ratio (L0 − hW )/λ imposes stricter resolution criteria, its effect on the results
is limited. Second, when comparing momentum fluxes across different cases, the relevant
dimensionless parameter is Re∗,λ.

Figure 16 reports the velocity profiles for the two cases at Re∗,λ ≈ 107 with (L0 −
hW )/λ= 3.36 − 6.72. The velocity profiles in figure 16(a) of the two cases display a
good collapse during the two considered growing cycles in the region immediate to the
wave field up to z/λ≈ 1. Here, the profiles are similar since the two cases share the same
Re∗,λ, which is the controlling parameter for the turbulent intensity near the wave field.
Away from the wave-field region, i.e. z/λ> 1, the velocity profile pertaining to the same
growing cycle diverges and the case with (L0 − hW )/λ= 6.72 is downshifted. Indeed, in
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the airflow regions well above the wave field, the turbulent intensity is controlled by Re∗,
which is larger for the case at larger (L0 − hW )/λ.

Figure 16(b) reports the velocity profiles in semi-logarithmic form, which both display
an upshift induced by wave breaking. The upshift is of similar magnitude for both cases,
which further confirms that the breaking-induced drag reduction is mainly controlled by
u∗/c, whereas (L0 − hW )/λ has a limited effect.
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