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Abstract

In this paper, we consider a class of combined optimal parameter selection and
optimal cttfitrol problems with general constraints. The first aim is to provide
a unified approach to the numerical solution of this general class of optimisa-
tion problems by using the control parametrisation technique. This approach is
supported by some convergence results. The second aim is to show that several
different classes of optimal control problems can all be transformed into special
cases of the problem considered in this paper. For illustration, four numerical
examples are presented.

1. Introduction

Reference [6] presents a unified and efficient computational scheme for solving
a general class of fixed terminal time optimal control problems involving joint
continuous constraints on the state and control variables, and the terminal and
interior point constraints on the state variable. The constraints are allowed to be
of equality as well as inequality type, while the computational scheme is based
on the control parametrisation technique (cf. [17], [18] and [19] for example).
However, there are many practical problems which do not belong to this general
class of optimal control problems. Examples include:

(i) optimal parameter selection problems;
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(ii) free terminal time optimal control problems, including minimum time
problems;

(iii) minimax optimal control problems (problems with Chebyschev perfor-
mance index);

(iv) boundary value control problems, including problems with periodic
boundary conditions; and

(v) general combined optimal parameter and optimal control problems.
The aim of this paper is to extend the results of [6] to a more general class

of optimisation problems so that all these important problems mentioned above
can be regarded as special cases. Furthermore, as in [6], the algorithm presented
in this paper also possesses the following important properties:

(i) the method always produces a suboptimal solution;
(ii) it is a unified approach, straightforward to apply and easily understood;
(iii) it is easily programmable and makes use of existing efficient optimisation

algorithms;
(iv) the method has associated convergence results; and
(v) a software program has been developed for actual implementation of this

algorithm [7].
For illustration, several examples are solved using the proposed computational

scheme. We refer the interested reader to [5] for a list of relevant papers in
computational methods (e.g. [4], [8], [11], [12], [13], [14] and [15]) for optimal
control, and to [2], [3] and [5] for theoretical aspects of optimal control.

To close this section, we wish to note that from our computational experience,
it was found that the computational scheme proposed in this paper does not
appear to work well for free time optimal control problems if the optimal control
is of the bang-bang type. For such problems, we propose to use the algorithm
of [6] to solve a sequence of fixed terminal time optimal controls, following the
idea of [19].

2. Problem statement

Consider a process described by the following differential equation defined on
the fixed time interval (0,T):

i ( 0 = /(*,*(*). «(*),?), (la)

where x = [ x i , . . . , i n ] T eR",u = [ui,...,uT]T <= JT,f = [ ? i , . . . , f s ] T e Ra are,
respectively, the state, control, and organic parameters; f = [fi,..., fn]

T e Rn;
and the superscript T denotes the transpose.

The initial condition for the differential equation (la) is

z(0) = z°(f) (lb)
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where x° = [ i ° , . . . , z°]T is a given function of the organic parameters f.
Define

and

where a* and 6,-, i = 1 , . . . , s, a, and /?,-, i = 1, . . . , r, are real numbers. Clearly,
Z and {/ are compact and convex subsets of R" and RT, respectively.

Any measurable function denned on [0, T] with values in U is called an ad-
missible control. Let ^ be the class of all such admissible controls.

Let Lgo denote the Banach space Loo([0,T],Rg) of all essentially bounded
measurable functions from [0, T] into R9. Its norm is defined by

Halloo = ess sup
te[o,r] ^*T

For each (u, f) e U^ x Ra, let x(u, f) be an absolutely continuous function
defined on [0, T] which satisfies the differential equation (la) almost everywhere
on (0, T] and the initial condition (lb). This function is called the solution
of the system (1) corresponding to the combined control and parameter vector

We may now state our combined optimal parameter and optimal control prob-
lem as follows: given the system (1), find a combined control and organic pa-
rameter ( u , f ) e ^ x 2 such that the cost functional

f1

J(u, f) = go(u, f) = *0(s(l) , f) + / Sb(t, x(t), u(t), f) dt (3)
Jo

is minimised subject to equality constraints (in canonical form [6])

= 0, i=l,...,ne (4a)
'o

and inequality constraints (in canonical form)

[ 0 , i = ne + l,...,N (4b)
o

where $,, i = 0 , 1 , . . . , N, and .2?, i = 0 , 1 , . . . , iV, are given real valued func-
tions; and r, is referred to as the characteristic time for the ith constraint. For
convenience, this optimisation problem is to be referred to as the problem (P).

REMARK 2.1.

(i) (4a) and (4b) reduce to terminal equality constraints and terminal inequal-
ity constraints, respectively, if 7v = T and .2? = 0.

https://doi.org/10.1017/S0334270000006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006299


[4] A computational method for control problems 353

(ii) Similarly, the corresponding versions of (4a) and (4b) with 0 < r, < T
and S?i = 0 are, respectively, equality interior point constraints and inequality
interior point constraints.

(iii) The continuous equality constraint:

h{t,x{*)MtU)=0, t€[0,T\,

is equivalent to (4a) with TV = T, $i(x(T),f) = 0 and

&i{t,x(t)MtU) = (h(t,x(t),u(t),S))2-

(iv) Similarly, the continuous inequality constraint:

h(t,x{t),u{t),$)>0, te{O,T],

is equivalent to (4a) with r, = T, $,(a:(r), f) = 0 and

(0,u(0,f) = [mm{h{t,x{t),u{t),$),0}}2.

Let | • | denote the usual norm in any finite dimensional Euclidean space. We
assume throughout that the following conditions are satisfied:

(Al)
$ t : Rn x Rs -> R, i = 0,l,...,N,
J25: [0,T] x Rn X Rr x Ra -» R, i = 0 , 1 , . . . , N;

(A2) for each i = 1,...,N and for each compact set fi x 0 C RT x Ra,
there exists a positive constant K such that \Jzfi{t,x,u,f)| < K(l + \x\) for all
(t, x, u, f) e [0, T] x Rn x n x 6;

(A3) -2J, i = 0 , 1 , . . . , N, are piecewise continuous on [0, T] for each (x, u, f) €
Rn x Rr x Rs, and continuously differentiable with respect to each of the com-
ponents x, u and f for each t e [0, T\;

(A4) $,, t = 0 , 1 , . . . , N, are continuously differentiable with respect to each
of the components x and <;.

REMARK 2.2. From Theorem 1 of [9], we recall that system (1) admits a unique
solution, z(u,f), corresponding to each (u, <;) e L1^ x Z, and hence for each

3. Formulation of approximate problems

In this section, we use the problem (P) to construct a sequence of problems
such that the solution of each of these approximate problems is a suboptimal
solution to the problem (P). This is done thorugh the discretisation of the
control space. More precisely, we approximate each control by a zeroth order
spline (i.e. a piecewise constant control) as follows.
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Consider a monotone non-decreasing sequence {Sp}p*Lx of finite subsets of
[0,1]. For each p, let the n p + 1 points of Sp, denoted by tp

0,<?,..., <p
p, satisfy

<o = 0, tp = 1, and tv
k_l < tp

k, k = 1,2,... , np. Furthermore, associated with
each Sp there is the obvious partition Ip of [0,1] defined by Ip = {Ik: k =
1 , . . . , np} where Ik = [tP._1, t

v
k). We choose Sp such that limp_oo Sp is dense in

[0,1]. This is equivalent to requiring that limp_oomaxfc=1|... inp | / P | = 0, where
| / p | = tp

k — tp
k_l, the length of the fcth interval.

Let %p consist of all those elements from % which are piecewise constant and
consistent with the partition P. It is clear that each u G %p can be written as:

ap-k
XU), te[0,l], (5)

/t=i '*

where ap'k e U and \j denotes the characteristic function of / . This means
that each control u G ̂ p can be identified with ap, the rnp control parameter
vector [CTPI1 , . . . ,ap'"pT]r and vice versa. Thus, when no confusion can arise,
we interchangeably refer to u G %p and <rp € ̂ p .

Clearly, for each u € ^ p , the control constraints defined in (3) are equivalent
to

<*i < ap'k < Pu t = l , . . . , r . (6)

For brevity, define

9p = [ap^\T. (7)

Let x(0p) be the solution of the system (1) corresponding to the combined
control and organic parameter vector 6P e %p x Z. Then, the constraints (4a)
and (4b) are reduced, respectively, to

f' && X^P)^)' ^ ) d t = °' * = 1. • • • ,«. (8a)
o

and

f
Jo

_ (8b)

where .5?, i = 1,...,N, are obtained from -2J, i = 1, . . -,N, in an obvious
manner.

Let ^p be the set of all combined vectors $p = (CTP, f) such that the constraints
(8) are satisfied and that <rp are consistent with those elements in ^ p . Then,
we can pose the approximate problem (Pp) as follows: find a combined vector
0p € H?p such that the cost functional

J(6p) = G0{9p)

M(t,x(0P)(t),0p)dt ^
o
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is minimised over ^"p, where 2Q is obtained from -So in an obvious manner.
Note that for each p, the approximate problem (Pp) can be viewed as a finite

dimensional optimisation problem, namely, a nonlinearly constrained mathemat-
ical programming problem. This is the main theme behind the concept of the
control parametrisation technique: to transform an optimal control problem to
a mathematical programming problem. The discussion of the computational
aspect will be given in Section 7.

4. Some convergence results

In this section, we shall discuss convergence properties of the sequence of
approximate optimal combined controls and organic parameter vectors. To be
more precise, let {0p}p*L1 be the sequence of optimal combined vectors to the
sequence of finite dimensional optimisation problems {Pp}p

xL1. Furthermore,
let {(up,fp)}£l1 be the corresponding sequence in % x Z. Clearly, each of
them is a suboptimal solution to the original problem (P), and is such that
J(«*>+1,?f'+1) < J{vP,f) for all p = 1,2,....

To continue the discussion similar to that reported in Section 4 of [6], we need
to introduce

DEFINITION 4.1. A combined vector 0p is said to be e-relaxed feasible if it
satisfies the following e-relaxed constraints:

Gi{Op)>-e, i = ne + l,...,N.

Let ^E
p be the set which consists of all such e-relaxed feasible combined vectors.

Clearly, &~? C &p for any e > 0.
We now consider the e-relaxed version of the approximate problem (Pp) as

follows: find a combined vector 6P € ^p such that the cost functional (9) is
minimised over ^p.

For brevity, call this e-relaxed problem the problem (Pp,£) and let 0Pi* be an
optimal combined vector of the problem (Pp,e)- Since &~p c ^ p for any e > 0,

for any e > 0, where 0Pi* is an optimal solution to the problem (Pp).
We may now specify the required additional condition mentioned earlier as

follows.
(A5) For each positive integer p,
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This assumption is, indeed, not restrictive in view of the discussion following
the assumption (A5) of [6].

For each « 6 ^ and each p, define

up(t) =
]=l

where

* \u)j = TrP] / u(s) "s) J = 1) • • • i np

and

Since U is compact and convex, it is clear that V(u)p € U. Hence, up € %.
We are now in a position to present the convergence results in the next two

theorems. Their proofs are similar to those given for Theorem 4.1 and Theorem
4.2 of [6], respectively.

THEOREM 4 . 1 . Let (up,?p) be the optimal combined control and organic pa-
rameter vector of the approximate problem (Pp). Suppose that there exists an
optimal combined control and organic parameter vector, (u*,f*), of the original
problem (P). Then

lim J(up,^p) = J(u*,$*).
p—*oo

THEOREM 4.2. Let (up,fp) be the optimal combined control and organic pa-
rameter vector of the approximate problem {Pp). Suppose that

lim \uP(t) — u*(t)\ = 0 almost everywhere on [0,T]

and
lim \?-<*\=0.

p->oo

Then, (u*,f*) is an optimal combined control and organic parameter vector of
the problem (P).

5. Model transformation

In this section, our aim is to show that many different classes of optimal
control problems can be transformed into special cases of problem (P).

(i) Free terminal time problems (including minimum time problems):

fT

min J = Go = $0{x(T),T) + Jgg(£, x(t),«(«)) dt (10)
"() Jo
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subject to the differential equation

with initial condition z(0) = x° and final condition x(T) = x!.
If we treat T as an unknown parameter and use the transformation t = TV,

then (10) is converted to

min J = G o = *o(z(l),T)+ / T^0{TT,X{T),U{T))(1T (12)

subject to the differential equation

(r),u{r)) (13)

with initial condition x(0) = x° and final condition x(l) = x?.
(ii) Minimax optimal control problems.
The state dynamical equations are as usual but the cost functional takes the

form (Chebychev Performance Index):

minJ = Go = max C{t,x(t),u(t)) + $o(z(l)) + / 3b{t,x(t),u(t))dt. (14)
"(•) o<t<i Jo

If we introduce an additional parameter

:{t),u{t)) (15)

then the minimax cost functional (14) is equivalent to

min Go = *o(*(l), S) + f -2S(«,x(t),u{t)) dt (16)

subject to
5 - C ( t , i ( 0 , u ( 0 ) > 0 , *e[o, i ] , (17)

where

Here, the continuous constraint (17) can be further transformed into the canon-
ical form:

Gn+1 = f {mm[S - C(t, *(*),«(*)). 0]}2 dt = 0.
JO

(18)

(iii) Problems with periodic boundary conditions (and other interrelated
boundary states).

The cost functional and the state dynamical equations take the usual form
but the initial state and the final state are related through

'0. (19)
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In this case, if n additional parameters are introduced:

x(0) = x°(f) = f, (20)

then, the constraint (19) is equivalent to

Mf,*U)) = 0 . (21)

Once again, we have a special case of problem (P).

6. Smoothness of optimal control

Since control parametrisation uses piecewise constant approximation, the con-
trol is in fact discontinuous. Often this suffices for many practical problems.
However, continuous control, in fact control with any degree of smoothness, can
be accomplished by MISER 2.0 (cf. [7]). This is, of course, done at the expense
of more computational effort.

For example, if piecewise linear continuous control is desired, one only needs
to introduce one extra set of differential equations: ii{t) — v(t) with the initial
conditions u(0) = f,+ i where fs+i is an unknown organic parameter yet to be
determined, u is now a state function rather than a control function, and v is the
control function which are to be approximated by a piecewise constant function.
In this way, the function u is always piecewise linear.

Similarly, if we wish to approximate the optimal control by C1 function we
can introduce two extra sets of differential equations: ii(t) — v(t), v(t) = w(t)
together with the initial conditions u(0) = $s+i, v(0) = &+2> where w(t) is
now the piecewise constant control and u(t) and v(t) are now state variables.
This process can continue, depending on how smooth our approximate control
is desired to be.

7. A unified computational approach

The greatest virtue of solving constrained optimal control problems by control
parametrisation is its generality and ease of implementation. In essence, after
the parametrisation of control, the problem is reduced to that of a nonlinear
mathematical programming problem. This, in turn, can be solved readily by
some of the existing software such as NLPQL [16].

Like many other mathematical programming problems, this algorithm re-
quires, at each iteration, the values of the cost functional and the constraints,
and their respective gradients computed as follows.

Step 1. For a given 9P integrate the state differential equation (1) forward in
time from 0 to r,.

https://doi.org/10.1017/S0334270000006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006299


[10] A computational method for control problems 359

Step 2. Integrate the co-state differential equation

[A»]T = -d&i/dx - [V]rdf/dx (22a)

, T _ a<M*(0p)fr),?)
[ A ( T ) l {Ti) ( '

backward in time from T, to 0. Let the solution be denoted by A*(0P).
Step 3. The gradient is computed from

T, wv uu (23)

where
Hi(t, x, 6, A') = &i(t, x, 0) + [A*]T/(t, x, 6).

During actual computation, very often the control parametrisation is carried
out on equal partitions of the interval [0,1], i.e.

), i = l , . . . , r , (24)

where np is the number of equal subintervals, A = l /np is the uniform partition
length, and the characteristic function is given by

I 0 otherwise.

As such (23) can be written in a more specific form:

0,

where / = Int(rj/A), and

( 2 6 b )

Based on these ideas, a general purpose FORTRAN program MISER 2.0
[7] has been developed to solve a general class of combined optimal parameter
selection and optimal control problems discussed in the present paper.

8. Illustration examples

To illustrate the efficiency and versatility of the computational scheme pro-
posed in this paper, four representative examples are solved using the software
program MISER 2.0.
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EXAMPLE 1. Minimum time (brachistochrone problem with continuous state
constraint):

min go = tj
x{t) = (20J/)1/2 cos u, x{0) = 0,
2/(0 = (2</2/)1/2 sin u, j/(0) = 0,
terminal state constraint: x(t/) = 1,
continuous state constraint: xtan^ + h > y, 4>,h constants.
Each analytical solution for this problem is available in [1]. The numerical

results are obtained for the case of np = 20, tan (j> = 1/2 and arbitrary initial
guess by MISER 2.0. Their respective optimal costs are summarised as follows:

Exact t'. Computed t*.

(i) Unconstrained, h = oo 0.5662 0.5659
(ii) Constrained, h = 0.1 0.5877 0.5860
(iii) Constrained, h = 0.0 0.6913 0.6896

Note that there is some negligible constraint violation in each case, which
contributes to the fact that the computed t*f is slightly less than the exact t j .

EXAMPLE 2. Minimax optimal control problem:

ii{t) = x2(t) xi(0)=0,

i j (0 = «(0 352(0) = 0 ,
terminal state constraint zi(l) = 1, 12(1) = 0.
The exact analytical solution for this problem is available in [10]. The solution

obtained from the present calculations using np = 10 and arbitrary initial guess
is g$ = 16.61 as compared to the exact value of ffSexact = 16.68.

EXAMPLE 3. Free initial value and periodic boundary conditions optimal control.
This problem was previously considered by Dolezal [4] using quasilinearisation

and a first order gradient algorithm.
min g0 = \ /„ {x\ + x\ + u2) dt
i.\ — X2 x\{0) = free,
X2 = -Xi + U + (1 - X^)X2 I2(0) = 1.0.

We consider three cases:

Case (i) zi(0) = free, no constraint on control

Case (ii) Zi(0) = free, \u\ < 0.5

Case (iii) periodic boundary condition ii(0) - Zi(l) = 0.
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The commuted results using np = 20 are compared with Dolezal's results as
follows.

Dolezal Solution Present Solution

Case (i) 0.6506 0.3792 0.6509 0.3814
Case (ii) 0.6694 0.4341 0.6695 0.4350
Case (iii) 1.019 0.9489 1.019 0.9493

EXAMPLE 4. A minimum time problem with singular arc.

The equations of motion of a vehicle with velocity of magnitude one for which
the angular rate of the velocity is controlled are [5]:

x = cos(/>, y = sin<̂ >, <f> = u.

Assume |u| < 1.

Consider the problem of transferring the vehicle from initial conditions x(0) —
4, y(Q) = 0, 0(0) = 7r/2 to x(tf) = y(tf) = 0 in minimum time tj. This is a
problem appearing on page 57 of [5].

The exact minimum time and exact optimal control (Figure l(i)) are given,
respectively, by ty = 4.7391 and

r i , o < « < < , == 1.9106

The optimal phase trajectory is plotted in Figure l(iii).

With np = 20 and arbitrary initial guess, MISER 2.0 is used to solve the
problem. The computed minimum time is ty = 4.7389 and the computed optimal
control and optimal phase trajectory are plotted in Figure l(ii) and Figure l(iv),
respectively. Note that the computed state trajectory coincides almost identically
with the analytical one.
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1.9106

FIGURE l(i) . Exact optimal control.

tf*= 4.7391

(Exact)

t f*= 4.738

FIGURE l(ii)- Computed optimal control: np = 20.
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FIGURE l(iii). Exact optimal phase trajectory.
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4.0
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FIGURE l(iv). Computed optimal phase trajectory: np = 20.
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