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A RING OF QUOTIENTS FOR GROUP
RINGS WHICH IS EASY TO DESCRIBE

BY
W. D. BURGESS(Y)

1. Recently Luedeman studied certain idempotent topologizing families of left
ideals in semi-group rings A4S which arise from such families of left ideals of 4.
Let Z be an idempotent topologizing family of left ideals in 4 and G a group, let
2ZG denote the family of left ideals of 4G which contain left ideals of the form LG,
L € 2. Luedeman has shown that if G is finite the ring of quotients of AG corre-
sponding to XG is the group ring with coeflicients in the ring of quotients of 4
corresponding to X. In this note the theorem is proved for arbitrary groups but
with a finiteness condition on Z.

2. Throughout, 4 will be a ring with 1, G a group and X an idempotent topol-
ogizing family ([1]), o-set in [5]) of left ideals of 4. The notation generally is that
of [2]. If G is a group, AG denotes the discrete group ring with elements X, a,g,
a, € A all but finitely many of which are zero; if r € AG the coefficient of g in r is
denoted by r(g). For a left A-module M we can similarly define an 4G-module MG
whose elements are sums X . m,g, m, € M all but finitely many of which are zero,
if n € MG the coefficient of g in n is denoted by n(g). The family X is said to be of
finite type if each L € X contains a finitely generated element of X (see [1]). This
means that the finitely generated elements of X are cofinal in the filter.

Luedeman [5] has shown that the family of left ideals of AG, £G={L | L
contains KG for some K € X} is again an idempotent topologizing family. Clearly
if X is of finite type, {KG | K € X, K finitely generated} is cofinal in =G.

Let Zy(M)={m € M | Ann(m) € Z}. This is a submodule and Zz(4) is an ideal.
Gabriel in [1] defined the module of quotients Qx(M) as

lim ey Hom (L, M/Zs(M)).

0x(4) is a ring and Qz(M) is a Qz(4)-module. Clearly in the limit we may take a
cofinal family from 2.

THEOREM. Let A be a ring, G a group, X an idempotent topologizing family of
finite type. For any A-module M, QyqMG=Qs(M)G as Qsz(AG)-modules and
05¢(AG)~05(A)G as rings (this last isomorphism leaves (A|Z5(A))G fixed).
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Proof. We remark first that Zy;o(MG)=Zy(M)G. If m € Zyo(MG) then for
some L € X, LGm=0. But L < LG in a natural way so Lm=0 and all the co-
efficients of m are in Zz(M). Conversely, if m € Zz(M), Lm=0 for some L € Z so
LGm=0. Hence, MG|Zyo(MG)==(M[Zy(M))G in a natural way, denote this by
MG. Then

0:¢(MG) = lim ey Hom ,4(LG, MG)

and we may assume that each L is finitely generated as a left ideal.

Let ¢ € Hom, (LG, MG), L finitely generated in X, ¢ gives rise to a family of
A-homomorphisms L—M as follows. For g € G, let i: L—LG be defined by i(a)=al
and =7,:MG—M by m,(m)=m(g). The composition ¢,=m,pi € Hom (L, M).
Since ¢ is an AG-homomorphism the maps ¢, determine ¢. Indeed $(ag)(h)=
(d(@)g)hy=¢(a){g " h)y=d¢,-1,(a). Suppose now that L=Aa;+ - -+ Aa, then every
é, is determined by its action on a;, . . . , a,. For each a;, ¢(a,))(g)=4¢,(a;) is zero
for all but finitely many g € G. So {g ] ¢,(a,)#0 for some i=1, ..., n} is finite.
Hence, ¢ gives rise to a finite set ¢, , . .. , ¢, of A-homomorphisms L—A7 and ¢
is determined by this set.

Now let my, ..., m, be the elements of Qz(M) determined by ¢, ,...,d,
respectively. In this fashion, ¢ determines an element X7 m,g; of Qx(M)G. '

In the other direction, m=m,g,+- - -+m,g, € Qs(M)G determines an element
Q:¢(MG). In the direct limit which defines Qy(2/) choose a finitely generated L € %
so that each m,, i=1,...,n, is represented by some ¢, € Hom (L, M). For
aeL, ¢,(@=am; € M fori=1,...,n Thusifr € LG, r(mg,+- - -+m,g,) € MG,
so “multiplication” by m gives an element ¢ € Hom,4(LG, MG) and hence an
element of Qy(MG).

One can readily verify that these correspondences give an Qy;(A4G)-module
isomorphism from Qyz(MG) to Qx(M)G and that, for M=A, we have a ring iso-
morphism.

Note that the same proof applies for any X if G is finite and this gives a proof of
[5, Theorem p. 485] without the restriction that Z;3(4G)=0. Further, for any G
and any X, we have Qx(M)G < Q5(MG).

One can see also that the same proof applies to polynomial rings.

THEOREM. If Z is an idempotent topologizing family of finite type in A then
Oso(M[x))= Qs(M)[x] as Qsppy(A[X])-modules and Qyp 1 (A[x]) = Qx(A)[x] as rings.

This theorem can be extended to other semigroup rings, at least to the case of a
monoid which can be embedded in a group.

The following example shows that some restriction on X or G is essential for the
theorem to be true. In what follows, the symbol y may be thought of as either the
indeterminate of a polynomial ring or a generator of an infinite cyclic group. Thus
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we will have, at the same time, an example for the group ring and polynomial ring
cases.

Let F[x;, x,, . . .] be the polynomial ring over a field in a countably infinite set
of indeterminates and let R be the ring produced by dividing out the ideal generated
by all expressions x,x;, i/, and x;—x,. Denote the image in R of x; by X;. Then,
if A is the ideal of R generated by X;, X,, ..., we have that A is an idempotent
maximal ideal. Hence, X={R, A} is an idempotent topologizing family in R.
Os(R) is the ring of all expressions X°a,X;, a;, € F and the elements of R are
identified with expressions Xa,%; where for some n, a,=a, ;=" "".

Now Qsp,1(R[y]) can be identified with a subring of Qz(R)[[y]]. If we let f,+
fiy+- -+ denote a power series with f; € Ox(R) then f;=Z2a,%; for a;; € F. Then,
Osry(RIyD={fo+fiy+- - - | for each j only finitely many a,; are nonzero}. An
example of an element of this ring which is not in Qx(R)[y]is 14X, y+ %, )%+ - -.

3. At the end of [5] Luedeman asks if 4 is Z-injective iff 4, is X -injective where
X, is the family of left ideals, of the matrix ring 4,,, {I | I>J, someJ € 2} (here J,
means the set of matrices with entries from J). Luedeman remarks that the method
of Utumi for ordinary injectivity does not readily generalize; however that of Kaye
[3] does. More generally Turnidge [6] has studied the connections between idem-
potent topologizing families in Morita equivalent rings. If G:gz#—g# and
H: g M— M are functors giving a category equivalence, there is a pairing between
the hereditary torsion theories [6] in z.# and g.# and, hence, between the idem-
potent topologizing families of left ideals. Let 7 (R) be a torsion theory in p.#
then the pairing is given by corresponding to 7 (R) the torsion class 7 (S)=
{M e g# | HM) €7 (R)}. Turnidge shows that R is 7 (R)-torsion free (corre-
sponding singular ideal is zero) iff S is J (S)-torsion free. Further he shows that
M in gzt is T (R)-injective iff G(M) is 7 (S)-injective.

The categories z.# and g # are equivalent in the above sense with the equiv-
alence (see [3]) given by G(M)=M" and H(N)=e;;N (e;; the matrix unit). One
can readily verify that the pairing of torsion theories pairs that generated by X with
that generated by X,. Hence R, is 2, -injective iff R" is Z-injective iff R is X-
injective.

Just as predicted by Luedeman, this last fact yields the following theorem, the
proof of which is a modification of that of the last theorem of [5].

THEOREM. If S is a finite inverse semigroup, A aring, X an idempotent topologizing
Samily of left ideals of A; then AS is ZS-injective iff A is Z-injective.
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