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A RING OF QUOTIENTS FOR GROUP 
RINGS WHICH IS EASY TO DESCRIBE 

BY 

W. D. BURGESSC1) 

1. Recently Luedeman studied certain idempotent topologizing families of left 
ideals in semi-group rings AS which arise from such families of left ideals of A. 
Let 2 be an idempotent topologizing family of left ideals in A and G a group, let 
2(7 denote the family of left ideals of AG which contain left ideals of the form LG, 
L e S . Luedeman has shown that if G is finite the ring of quotients of AG corre­
sponding to 2G is the group ring with coefficients in the ring of quotients of A 
corresponding to 2 . In this note the theorem is proved for arbitrary groups but 
with a finiteness condition on 2 . 

2. Throughout, A will be a ring with 1, G a group and 2 an idempotent topol­
ogizing family ([1]), tf-set in [5]) of left ideals of A. The notation generally is that 
of [2]. If G is a group, AG denotes the discrete group ring with elements TtgeG agg, 
ag G A all but finitely many of which are zero ; if r e AG the coefficient of g in r is 
denoted by r{g). For a left ^4-module M we can similarly define an ^fC-module MG 
whose elements are sums 2g e G mgg, mge M all but finitely many of which are zero, 
if n G MG the coefficient of g in n is denoted by n{g). The family 2 is said to be of 
finite type if each L e 2 contains a finitely generated element of 2 (see [1]). This 
means that the finitely generated elements of 2 are cofinal in the filter. 

Luedeman [5] has shown that the family of left ideals of AG, 2G={L | L 
contains KG for some K G 2} is again an idempotent topologizing family. Clearly 
if 2 is of finite type, {KG \ K e 2 , ^finitely generated} is cofinal in 2G. 

Let Zz(M) = {m e M | Ann(m) e 2}. This is a submodule and Z^{A) is an ideal. 
Gabriel in [1] defined the module of quotients Q^{M) as 

l i m M Hom^(L, M/Z^M)). 

Q^{A) is a ring and Qz(M) is a gz(^4)-module. Clearly in the limit we may take a 
cofinal family from 2 . 

THEOREM. Let A be a ring, G a group, 2 an idempotent topologizing family of 
finite type. For any A-module M, QZGMG^Q1:(M)G as Q^G(AG)-modules and 
QJ:G(AG)^QII(A)G as rings (this last isomorphism leaves (AlZz(A))G fixed). 
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Proof. We remark first that ZZG(MG)=ZZ(M)G. If meZ^MG) then for 
some L e S , LGm=0. But L g LG in a natural way so Lra=0 and all the co­
efficients of m are in ZE(M). Conversely, if m eZ^M), Lm=0 for some L e S s o 
LGm=0. Hence, MG/Zz^(MG)^(M/ZL(M))G in a natural way, denote this by 
MG. Then 

Q1G(MG) = lim i e s UomAG(LG, MG) 
—> 

and we may assume that each L is finitely generated as a left ideal. 
Let <£ 6 Hom^^(LG, MG), L finitely generated in 2 , </> gives rise to a family of 

^4-homomorphisms L-+Mas follows. For g e G, let i:L->LG be defined by i(a)=al 
and 7Tg:MG-+M by 7Tg(m)=m(g). The composition <^=7rff<£/ G Hom^(L, M). 
Since <£ is an ^G-homomorphism the maps ^ determine </>. Indeed <f>(ag)(h)= 
{^{a)g){h)=(j){a){g~1h)==^g-lh{a). Suppose now that L=Aax-\ YAan then every 
(f)g is determined by its action on al9. . . , an. For each < ,̂ <t>(al)(g) = cj)g(at) is zero 
for all but finitely many g e G. So {g | ^ ( a ^ O for some / = 1 , . . . , « } is finite. 
Hence, </> gives rise to a finite set fa ,... , fa of ^-homomorphisms L-+M and <j> 
is determined by this set. 

Now let ml9... , mr be the elements of Q^M) determined by fa ,... , fa 
respectively. In this fashion, </> determines an element SJ m ^ of QIi(M)G. 

In the other direction, m^m^-] Vmrgr e QIi(M)G determines an element 
QZG(MG). In the direct limit which defines Q^(M) choose a finitely generated L £ 2 
so that each mu / = 1 , . . . , « , is represented by some faeïlomA(L, M). For 
a e L, fa(a)=ami e M for / = 1 , . . . , n. Thus if r e LG, r(m1g1+- • -+mrgr) e MG, 
so "multiplication" by m gives an element 4> e Hom i G(LG, MG) and hence an 
element of QZG{MG). 

One can readily verify that these correspondences give an g2G(^4G)-module 
isomorphism from QxG(MG) to QIi(M)G and that, for M=A, we have a ring iso­
morphism. 

Note that the same proof applies for any S if G is finite and this gives a proof of 
[5, Theorem p. 485] without the restriction that ZI^(^4G)=0. Further, for any G 
and any 2 , we have QZ(M)G^ QxG(MG). 

One can see also that the same proof applies to polynomial rings. 

THEOREM. If 2 is an idempotent topologizing family of finite type in A then 

Ô Z M ( M * ] ) — ô i ( A O M as QuxMMy^nodules and Q^Alx^c^Q^A^x] as rings. 

This theorem can be extended to other semigroup rings, at least to the case of a 
monoid which can be embedded in a group. 

The following example shows that some restriction on 2 or G is essential for the 
theorem to be true. In what follows, the symbol y may be thought of as either the 
indeterminate of a polynomial ring or a generator of an infinite cyclic group. Thus 
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we will have, at the same time, an example for the group ring and polynomial ring 
cases. 

Let F[xx, x29...] be the polynomial ring over a field in a countably infinite set 
of indeterminates and let R be the ring produced by dividing out the ideal generated 
by all expressions x{xj9 i^j, and x^—x^ Denote the image in R of x{ by x{. Then, 
if A is the ideal of R generated by have that A is an idempotent 
maximal ideal. Hence, 2 = { J R , A} is an idempotent topologizing family in R. 
Qx(R) is the ring of all expressions SJ°a^ , a^eF and the elements of R are 
identified with expressions Stf^- where for some n, an=an+1=- • \ 

Now Qx[yi(R[y]) c a n t>e identified with a subring of ôzC^)[[?]]• If w e l e t / o + 
Ay H denote a power series mthf e QZ(R) then f—Ha^Xj for a{j eF. Then, 
&[2/](i?[j])={/o+/i7+* • • | for each y only finitely many au are nonzero}. An 
example of an element of this ring which is not in Qx(R)[y] is 1 +x±y+x2y

2+• • •. 
3. At the end of [5] Luedeman asks if A is 2-injective iff An is 2n-injective where 

Sw is the family of left ideals, of the matrix ring An9 {I \ I^Jn some / e 2} (here Jn 

means the set of matrices with entries from/). Luedeman remarks that the method 
of Utumi for ordinary injectivity does not readily generalize; however that of Kaye 
[3] does. More generally Turnidge [6] has studied the connections between idem-
potent topologizing families in Morita equivalent rings. If G\RJK-+SJ% and 
H\sJ(->RJt are functors giving a category equivalence, there is a pairing between 
the hereditary torsion theories [6] in R<J( and $J£ and, hence, between the idem-
potent topologizing families of left ideals. Let ^(R) be a torsion theory in RJ( 
then the pairing is given by corresponding to ^(R) the torsion class $~{S)= 
{Me8J£ | H(M) e3T(R)}. Turnidge shows that R is c^(i?)-torsion free (corre­
sponding singular ideal is zero) iff S is <^(S)-torsion free. Further he shows that 
M in jgJV is ^(jR)-injective iff G(M) is ^(S)-injective. 

The categories jçJt and R J( are equivalent in the above sense with the equiv­
alence (see [3]) given by G(M)=Mn and i7(iV)=^117Vr (e±1 the matrix unit). One 
can readily verify that the pairing of torsion theories pairs that generated by S with 
that generated by Sw. Hence Rn is Sw-injective iff Rn is S-injective iff R is 2 -
injective. 

Just as predicted by Luedeman, this last fact yields the following theorem, the 
proof of which is a modification of that of the last theorem of [5]. 

THEOREM. If S is a finite inverse semigroup, A a ring, 2 an idempotent topologizing 
family of left ideals of A; then AS is HS-injective iff A is H-injective. 
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