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Abstract

This paper is concerned with deformations corresponding to antiplane
shear in finite elastostatics. The principal result is a necessary and sufficient
condition for a homogeneous, isotropic, incompressible material to admit
nontnvial states of anti-plane shear. The condition is given in terms of the
strain energy density characteristic of the material and is illustrated by
means of special examples.

1. Introduction

A solid body which occupies a cylindrical region in its undeformed
configuration is said to be deformed to a state of anti-plane shear if the
displacement of each particle is parallel to the generators of the cylinder and
independent of the axial position of the particle. Deformations of this kind
are receiving increasing attention, especially in connection with problems
which involve cracks or notches and are therefore of interest in the study of
fracture1. Although of less direct practical interest than their counterparts in
plane strain or plane stress, such problems acquire a measure of importance
from their comparative analytical simplicity. They are thus well suited to the
role of pilot problems to be studied for the purpose of uncovering qualitative
features — the effect of nonlinearity on crack-tip singularities, for example —
which present much more formidable technical obstacles in plane strain or
generalized plane stress2.

1. A sample of the relatively recent literature pertaining to static or dynamic anti-plane
shear of bodies containing cracks is furnished by references [1], [2], [4], (5], [9], [10], [13] and [14].

2. In the setting of finite elasticity, the comparative simplicity of crack problems in
anti-plane shear — as opposed, say, to tension-crack problems — is aptly illustrated by the
contrast between the analyses to be found in [10] on the one hand and [11], [12] on the other.
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[2] Finite anti-plane shear for incompressible elastic materials 401

Most of the analytical effort alluded to above in connection with
anti-plane shear is directed toward problems which are formulated either in
terms of the classical linearized theory of elasticity or on the basis of theories
in which displacement gradients are assumed infinitesimally small, but a
nonlinear relation between stress and strain is used in place of the conven-
tional linear one. Exceptions, however, may be found in the work reported in
[10] and [13], where the governing equations are those of the fully nonlinear
equilibrium theory of finite elasticity.

The first detailed study of anti-plane shear in the context of finite
elasticity appears to have been that of Adkins [3], who considered incompress-
ible isotropic bodies with a view toward applications to rubber-like materi-
als'. It is implicit in Adkins' discussion that the two final differential equations
to which he reduced the theory restrict in general not only the form of the out-
of-plane displacement in the problem at hand, but also the strain energy
density characteristic of the material under consideration. Thus, although any
elastic material — even a compressible one — admits deformations corre-
sponding to simple shear2, it is not to be expected that an arbitrary isotropic
incompressible material will sustain nontrivial states of anti-plane shear in the
absence of body forces3. For the special case of a material of the so-called
Mooney type, no inconsistency arises between the two differential equations
mentioned above, and nontrivial states of anti-plane shear are possible in this
instance. Much of the detailed analysis in [3] applies only to this special case,
which, to be sure, is of great importance for the description of the mechanical
behavior of rubber.

It is known from the results in [10] and [13] that there are strain energy
densities other than that of the Mooney type which admit nontrivial states of
anti-plane shear. The question of determining necessary and sufficient
conditions on the strain energy density in order that the corresponding
incompressible material shall admit nontrivial states of anti-plane shear was
not considered in [3], [10] or [13] and appears to be still open. This issue is the
subject of the present paper.

In the following section the theory of finite anti-plane shear following a
homgeneous axial pre-stretch is sketched for isotropic, incompressible elastic
bodies. While the content of Section 2 is by no means new, the presentation
differs somewhat from those given in [3] and [8]. In Section 3 the central
question is formulated, and the desired necessary and sufficient condition on

1. A summary of Adkins' results may be found in Chapter II of [8].
2. In simple shear the displacement gradient is constant.
3. An entirely analogous issue arises for compressible elastic materials.
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the strain energy density is derived for anti-plane shear deformations which
are unaccompanied by an axial pressure gradient. The principal tool used in
the derivation is a transformation of hodograph type. Some of the conse-
quences of the restriction derived in Section 3 are discussed in the final
section.

2. Finite anti-plane shear

Consider a body of imcompressible, isotropic elastic material which in its
undeformed state occupies a region £%. A deformation of the body is a
smooth, one-to-one relationship of the form

y=y(x), x<E®, (2.1)

between the position vectors x and y locating a given particle in the
undeformed and deformed configurations, respectively. The deformation
gradient tensor F is defined by

F = Vy, (2.2)

and the incompressibility of the material requires that

det F = 1 (2.3)

for every admissible deformation. The left Cauchy-Green tensor associated
with (2.1) is

G = FFT, (2.4)

where FT stands for the transpose of F. The first two fundamental invariants
of G are

= TrC, /2 = i[(TrC)2-Tr(C)2]. (2.5)1
/,

The mechanical response of a material of the type under consideration is
determined by the strain energy W per unit undeformed volume; W depends
only on the invariants /, and /2: W = W(It, I2). The stress-deformation
relation may be taken in the form2

<r = 2j^F + 2^ (7 ,1 - G)F-p(FT)-', (2.6)

where <r is the nominal (or Piola) stress tensor (force per unit undeformed
area), p is an arbitrary hydrostatic pressure, 1 stands for the unit tensor, and

1. The third invariant /, = det G = det F2 has the value unity because of (2.3). It is possible
to show that, if det C = 1, then always /, S 3 , J2g 3.

2. See Equations (43A.3), (47.8) and (86.9) of [15].
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(F r ) ' indicates the inverse of FT. The true (or Cauchy) stress tensor T is
related to <r according to

T = <rFT (2.7)

in the case of incompressible materials; r is symmetric, but a in general is
not.

In the absence of body forces, the local equilibrium condition for the
body may be written as

div <r = 0 on (2.8)

For the study of anti-plane shear, one considers the case of a cylindrical
region £%, chooses a system of cartesian coordiantes x,,x2, x3 with the x3-axis
parallel to the generators of Sft., and examines deformations (2.1) of the special
form

y< = != A u(x,,x2). (2.9)

Here y, and x, are the components' in the chosen coordinate frame of y and x,
respectively, A is a positive constant, and u is a function which is twice
continuously differentiable on the open cross-section 3) of the cylinder. The
deformation (2.9) may be thought of as one in which the body first undergoes
an axial elongation (or contraction) of stretch ratio A (regarded as given), and
is then subjected to an anti-plane shear with out-of-plane displacement u. The
matrices of components (in the given coordinate frame) of the tensors F and
G of (2.4) may be readily calculated for deformations of the form (2.9):

A"*

(2.10)2

(2.11)

u,, \~'u,2 A2 + |Vu | 2 /

here

| Vw |2 = «„«,„. (2.12)

1. Latin subscripts take the values 1, 2, 3, while Greek subscripts are limited to the range
1, 2. Repeated subscripts are summed over the appropriate range. A subscript preceded by a
comma indicates differentiation with respect to the corresponding x-coordinate.

2. The same symbol is used for a tensor (e.g. F) and its matrix of components.
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One notes from (2.10) that the incompressibility condition (2.3) is automati-
cally fulfilled for every A and u. The invariants of (2.5) may be determined
from (2.11) to be

A-2 + 2A + A- ' |VU | 2 . (2.13)

When A = 1, so that there is no pre-stretch, (2.13) reduce to

(A=l) . (2.14)

If the values of F, G, I, and I2 are substituted from (2.10)-(2.13) into (2.6),
the components of nominal stress which follow are

= A "5 [ 2 ^ + 2(A2 + A - + I Vu |2) ̂ - Ap] 8aP - 2 A " ^ u,au,p,

(2.15)1

(2.16)

( 2 1 7 )

When the above components of a- are in turn substituted into the component
form of the equilibrium conditions (2.8), the latter yield

q,a + (2~^f u,aU,p),p - p,3u,a = 0, (2.19)

- A ~ l p ' 3 = o ' ( 2 - 2 0 )

where the abbreviation

<7 = A p - 2 - | ^ - 2 ( A 2 + A-1 + | V M | 2 ) | ^ (2.21)

has been introduced. The fact that u,a, and therefore /,, I2, are independent of
x3 permits one to infer from (2.20) that p,3 has this same property. Thus p, and
therefore q, are linear in x3. It then follows from (2.19), (2.21) that q,a and p,a
are independent of x3. Thus

p(x,,x2, x3)= cx3 + p(xux2), (2.22)

1. SaB is the Kronecker delta.
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where c is a constant — to be called here the axial pressure gradient — and p
is an undetermined function. In view of (2.22), the equilibrium equations
(2.19), (2.20) reduce to

(q - cu ),„ + (2 j ^ u^y, = 0, (2.23)

The system (2.23), (2.24) consists of three differential equations for the
two functions q and u which must be satisfied (for a suitable value1 of c and
for the given constant A) if the deformation (2.9) is to be possible for the
material characterized by the given strain energy density W.

A further reduction of the first two equilibrium equations (2.23) may be
obtained by eliminating q — cu by appropriate cross-differentiation if q and u
are twice and three-times continuously differentiable, respectively. The result
is

( ^ ) = 0 , (2.25)

where eay is the two-dimensional alternator: eu = e22 = 0, ei2= - e2i = 1.
This equation was obtained by Adkins2, who preferred to use ya rather than
xa as independent variables. The equivalent of all of the preceding analysis, in
fact, was given by Adkins and may be found in §2.20 of [8], except that the
presentation there (as well as in [3]) is "Eulerian", in contrast to the
"Lagrangian" approach adopted here.

For a given material — and thus for a given W — it is to be expected that
(2.23), (2.24) (or (2.24), (2.25)) constitute an over-determined system in
general, in the sense that only very special solutions u of (2.24) will be
consistent with (2.23) (and hence with (2.25)). It was shown by Adkins in [3],
however, that if W has the Mooney form

W(I,,I2)=A(Il-3) + B(I2-3), (2.26)

where A and B are material constants, then every solution u of (2.24)
automatically satisfies (2.25). It is obvious this statement is also true for strain
energy densities W which are independent of J2:

1. The constant c is normally determined from the boundary conditions in a particular
boundary value problem. If the traction acting along a generator of the cylindrical boundary is
independent of x3 in such a problem, then c = 0; see, for example, the crack problem treated in
[10].

2. See Eq. (2.20.13), p. 85 of [8].
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W(Ilt I2) = W(h). (2.27)

A class of boundary value problems for idealized materials of this latter type
was examined in [10] as well as in [13]. One can readily confirm that if W is of
the form

W(I,,I2)=W(Il)+W(h) (2.28)

then, as Lo [13] has observed in a special case, (2.25) and (2.24) are consistent
in the absence of axial pre-stretch (i.e. for A = 1, so that (2.14) holds), in the
sense that every solution of (2.24) also satisfies (2.25).

A necessary and sufficient condition on W for the simultaneous satisfac-
tion of (2.23) and (2.24) in the case of zero pressure gradient (c = 0) is
obtained in the following section.

3. Nontrivial states of anti-plane shear

In the present section, the system (2.23), (2.24) is considered for the case
in which the axial pressure gradient is absent1, so that c = 0. It is convenient to
introduce the functions

(3.1)

where, in accordance with (2.13), /,, I2 are given by

/ , = A2 + 2 A - + |VM|2, / 2 = A - 2 + 2 A + A - | V U | 2 . (3.2)

In terms of F, G, the systems (2.23), (2.24) can be written as follows when
c = 0:

q,a +(Gu,au,p),p =0 on 3), (3.3)

(F«>A,),p=0 on 3). (3.4)

The strain energy density W is assumed to be a given, three times
continuously differentiable function of /,, 72 which is such that the following
inequality is satisfied:

-^ [RF(R2; A)] > 0 for all R i? 0, A > 0, (3.5)

where F is defined in (3.1). For a fixed R ^ 0, this inequality assures the
ellipticity2 of the quasilinear partial differential equation (3.4) at a solution u

1. Note from (2.22) that when c = 0, p and hence the stresses are independent of x3.
2. See pp. 163-164 of [7].
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and at a point (x,,x2) for which |Vw(x,,x2)| = R. Thus (3.5) guarantees that
(3.4) is elliptic at every solution u and at every point in 3). Moreover, it
follows from (3.5) that

F(K2;A)>0 for Ri?0 , A >0 . (3.6)

It may be noted that the Mooney material described by the special choice
(2.26) of W satisfies (3.5) if and only if the material moduli A and B are
positive and nonnegative, respectively.

Regardless of the special form of W, the three differential equations
(3.3), (3.4) are satisfied by the choice

u = kaxa, q = constant on 3), (3.7)

where fc, and k2 are constants. Such a deformation is a simple shear. In
general, however, only special solutions1 u of (3.4) will be such that there
exists a corresponding choice of q (and thus of the hydrostatic pressure p of
(2.21)) satisfying (3.3). A material characterized by the strain energy density W
will be said to admit nontrivial states of anti-plane shear for a given pre-stretch
A if, for every domain 3) and for every solution u of (3.4), there is a function q
such that (3.3) holds2 for the given value of A. The objective of the present
section is the determination of a necessary and sufficient condition to be
satisfied by W if the associated material is to have this property.

The principal tool to be used in the proof of the theorem below is the
hodograph transformation, in which

& = «,„(*!. *2) (3-8)

become the new independent variables3. This transformation is assumed to
define a one-to-one, smooth mapping from 3) in the physical plane to a
domain A in the hodograph plane, in which £« are rectangular cartesian
coordinates. The associated Jacobian is

H = u,,,u,22- u,2,2; (3.9)

under the assumptions above, H^ 0 on 3). It is convenient to introduce as a
new unknown function the Legendre transform U of u by setting

U(£i, &) = XpU^ix,, x2)- u(x,,x2) = *0& - u(x,,x2). (3.10)

By differentiating (3.10) with respect to £, and using (3.8), one obtains the
relations

1. See the discussion on p. 85 of [8].
2. It is assumed that u and q are twice continuously differentiable on 2).
3. See §3 of Chapter 1 of [6].
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Xa= ljr(€» b) (3.11)

«(*., X2) = & | r («•« €2)- U{fr, &) = 6*1 - l/(f,, 6). (3-12)

which are dual to (3.8), (3.10). If (3.11) is differentiated with respect to Xp, the
resulting four simultaneous equations for di-y/dxp may be inverted to give the
gradients of the mapping (3.8) in the form

u,oP = H e a ^ ^ - . (3.13)

The system (3.3), (3.4) for u, q may now be converted with the help of
(3.12), (3.13) to a set of three differential equations for U and Q, where

x2). (3.14)

One finds these equations to be

{If SaP+^[G(R2;A)&&]}£^^-=0 on A, (3.15)

^ [ F ( R 2 ; A ) & ] e ^ ^ - = 0 on A, (3.16)

where

(3.17)

If one introduces polar coordinates R, <p in the hodograph plane by writing

tt = Rcos<p, £> = Rsin(p, (3.18)

one can transform the system (3.15), (3.16) to polar coordinates with the
following result: (3.15) gives rise to

dQ(±dHJ ±3U\_±dQnjUJ__±dU\= }
dR \R2 d<p2 R dR) R dtp \R dRdcp R2 dtp) ' K '

(\ d2U \8U\ dQ(\ d2U 1 8U\
\R dRd<p R2 d<p) dR \R dRd<p R2 d<pj

while the remaining differential equation (3.16) becomes
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F d2U i 1 dU 1 d 2 l / = Q ( 3 n )

F + 2R2F' dR2 R dR R2 dtp2 ' (• )

In (3.19)-(3.21), G' = G'(R2; A), F' = F'(R2; A) stand for the derivatives of F
and G with respect to R2. It may be noted that the coefficient F(F + 2R 2F')''
in (3.21) is finite and positive for R g 0 because of (3.5) and (3.6).

THEOREM. / / the strain energy density W(IU I2) is such that (3.5) holds,
then the associated incompressible elastic material admits nontrivial states of
anti-plane shear for a given pre-stretch A if and only if W also satisfies

for some constant b which may depend on A, for all values of I,, I2 such that

+ i?2, h= \~2 + 2\+\-'R2, RgO. (3.23)1

PROOF. TO prove the necessity of (3.22), one first assumes that the
material admits nontrivial states of anti-plane shear, constructs a solution of
(3.4) for a special domain 3>, and deduces (3.22) as necessary for the existence
of a function q satisfying (3.3). To carry out this task, it is useful to start with
the linear equation (3.21) which is the hodograph version, in polar co-
ordinates, of (3.4). It is easy to verify that

U(R,<p)=V(R)cos<p, (3.24)
with

i'$hry (325)

is an exact solution2 of (3.21) on the domain A described by R > 0, 0 < <p < IT.
The convergence of the integral in (3.25) is assured by the fact that, according
to (3.5), pF(p2;A) is monotone increasing.

The solution u of (3.4) which corresponds to (3.24) is obtained from
(3.11), (3.12). If r, 6 are polar coordinates in the physical plane, so that

jc2=rsin0 (3.26)

(3.11), (3.24) yield

1. Note that (3.22) need not hold for all values /, g 3, 72s 3, but merely for those values
determined by (3.23) as R varies from 0 to °° with A fixed at its given value. If, for example, there
is no pre-stretch, so that A = 1, then (3.22) must hold only for those values of It, I2 such that
J, = /2i=3.

2. Solutions of (3.21) which are independent of <p are not useful for present purposes; they
lead to axially symmetric solutions of (3.4) for which, as observed by Adkins [3], there always
exists a function q satisfying (3.3), regardless of the form of W.
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r cos 8= V'{R)cos2<p+^V(R)s\n2(p,

r sin 0 =

while (3.12), (3.24) furnish

u =[RV\R)- V(R)]cos<p.

on A, (3.27)

(3.28)

It is possible to show by calculations too lengthy to include here that (3.27)
provides a one-to-one mapping from the half-plane A: i? >0, 0 < <p < TT, onto
the domain 3) in the physical plane defined by

):r>0, - TT < 6 < IT (3.29)

Thus 3) consists of the entire X\, x2 plane cut along the negative real axis.1 In
establishing the one-to-one nature of the transformation (3.27), one makes
essential use of the ellipticity condition (3.5). Equations (3.26), (3.27), (3.28)
then implicitly furnish a solution u of the original differential equation (3.4)
on the domain 3) of (3.29).

By assumption, there exists a function q on 3) satisfying (3.3) when u is
chosen to be the solution of (3.4) constructed above. If Q is the hodograph
image of q (see (3.14)), the one-to-one nature of the mapping 3) <-» A assures
that Q must satisfy (3.19) and (3.20) on A when U is given by (3.24), (3.25).
Substitution from (3.24) into (3.19), (3.20) yields, after some manipulation, the
equations

(3.30)

• ^ sin <p - (F + 2R 2F') ^ ^ cos 9 = 0,

where the abbreviation

G(p2;\)pdP (3.31)

has been introduced. Solving (3.30) for the derivatives of Q, one obtains

1. As suggested by the form of the domain 3, the solution (3.24) plays a major role in the
treatment of a crack problem in finite anti-plane shear; see §6 of [10].
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9Q = - k cos2(p
dR /cos2<p + s\n2(p '

(3.32)

dQ _ — 7?g sin <p cos <p
fcos2<p +sin2<p ' .

where

for R i= 0. (3.33)

(3.34)-

Elimination of Q from (3.32) by cross-differentiation gives

[R(fg'- gf') + 3/g]cos2<p + (Rg' + 2fg + g)sin2«p =0, R g O

(3.35)

It follows that / and g must satisfy the two ordinary differential equations

* ( / g ' - g / ' ) + 3/g = 0, RSO, (3.36)

Rg' + g + 2 / g = 0 , R ^ O . (3.37)

Let

^ y R^O, (3.38)

note from (3.33), (3.34) that

fc(0;A) = 0, (3.39)

and observe that (3.36) can be written as

Rh' + 3h=0, RSO. (3.40)

The initial value problem (3.40), (3.39) has the unique solution h =0; from
(3.38) one then concludes that

g = 0 , Rgfl, A>0.

Reference to (3.34) shows that (3.41) implies

FG ' -F 'G=0 , RgO, A>0, (3.42)

so that

1. It may be noted that (3.37), as well as (3.36), is satisfied when g =0.
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G = bF, R^O, A > 0, (3.43)

where b is a constant which may depend on A. From (3.43) and the definitions
(3.1) of F and G, one concludes that

lh ( / " h ) = b[lh ( / " h ) + X~^ ( / " h ) \ (344)

provided

/, = A2 + 2A~' + R2, 72 = A-2 + 2A + A-'R2. (3.45)

The necessity of (3.22), (3.23) is therefore established.
To show that (3.22), (3.23) provide a sufficient condition for the existence

of nontrivial states of anti-plane shear, one observes that, if these conditions
hold, then so does (3.43), so that (3.3) may now be written as

q,a + b(Fu,au,p),p = 0 on S. (3.46)

Now suppose that 3) is an arbitrary domain and u an arbitrary twice
continuously differentiable solution of (3.4) on 3). Then

q,a + b(Fu,au,p),p = q,a + bFu^u,^ = q,a +1 (| VM \2),OF on 3). (3.47)

Define

q = -%r F(p;\)dp, R^O, (3.48)1

I Jo

where

R = | V M | (3.49)

Then, by (3.47), q and w satisfy (3.46) on % so that the material characterized
by the strain energy density W does indeed admit nontrivial states of
anti-plane shear.

This completes the proof of the theorem.

4. Discussion

A number of observations may be made immediately concerning the
condition (3.22), (3.23) restricting the form of W.

(i) Examples Materials with a strain energy density of the form

W=W(I,) (4.1)

1. An arbitrary constant can be added to q.
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clearly satisfy (3.22), (3.23) for every A > 0 with b = 0. The Mooney material
described by (2.26) also satisfies (3.22), (3.23) for every A > 0, provided A > 0,
B s 0; in this case one has

b = B(A +JB\ . (4.2)

Thus both of these types of materials admit nontrivial states of anti-plane
shear for all values of the axial pre-stretch A.

The most general material which has this latter property and for which b
is given by (4.2) is easily shown to be characterized by a strain energy density
of the form

W = W(AI, + BI2) (4.3)

where A > 0 and B S O are constants, and W is an arbitrary sufficiently
smooth function. Materials for which W has the form (4.3) thus admit
nontrivial states of anti-plane shear for every A > 0 and at the same time
generalize both the Mooney material and materials characterized by (4.1).

If W is of the form (2.28), it is easy to show that (3.22) and (3.23) hold if
A = 1, but they are not in general satisfied when \^ 1. Thus, as pointed out by
Lo [13], materials associated with a strain energy density of the form (2.28)
admit nontrivial states of anti-plane shear, but only in the absence of axial
pre-stretch.

An example of a material for which nontrivial states of anti-plane shear
are not permitted for any value of the axial pre-stretch is provided by strain
energy densities of the form

W = AI,+ W(h) (4.4)

in which A is a constant and W is a function whose second derivative does
not vanish identically for I2 § 3. One shows readily in this instance that (3.22),
(3.23) cannot hold for any A > 0, no matter how b may be chosen.

(ii) The pressure gradient case Although the considerations leading to
the necessity and sufficiency of (3.22), (3.23) were based on the assumption of
vanishing axial pressure gradient (c = 0) in the equilibrium equation (2.24), it
is nevertheless possible to verify that, if (3.22), (3.23) hold for a particular A,
then, for any solution u of (2.24), the choice

F(p;\)dp, R=\Vu\, (4.5)1

1. Compare with (3.48).
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always assures that (2.23) is satisfied for that A, even if c^O. Here F is as
defined in (3.1). Thus (3.22), (3.23) remain sufficient for the existence of
nontrivial states of anti-plane shear in the presence of an axial pressure
gradient; they might, however, not be necessary.

(iii) Stresses Suppose that a material with strain energy density W(It, l2)
admits nontrivial states of anti-plane shear for a fixed A >0 , so that (3.22),
(3.23) hold. From (3.48) and (2.21) it follows that the hydrostatic pressure p is
given (for c = 0) by

P= -JT I" F(p;X)dp+j[l + b(\2+R2)]F(R2;X), 1
2 A J ° " (4.6V

R=\Vu\. J
One may now determine from (4.6), (2.15)-(2.18), and (2.7), (2.10) the
expressions for the nominal and true stresses cr,, and T,,, respectively. Making
use of (3.22) as necessary, one finds for a,,

b fR2

o-af, = \-*2] F{p;k)dp5Qli-k-'bF{R2;K)u,au,p, (4.7)

! [ " F(p ; A )dp + A "'(I + bR 2)F(R2; A)J «,„ (4.8)

tria = F(R2;\)um (4.9)

A), (4.10)

where F is defined in (3.1) and R is given by the second of (4.6). For the true
stresses, one has

Tofl=A-lo-ap, (4.11)

T.,3 = T j . = A-*(T3OT (4-12)

\). (4.13)

When b = 0 (so that (4.1) holds) and A = 1, (4.7)-(4.13) reduce to
corresponding results in [10]2. If the material is of Mooney type, so that W is
given by (2.26), the true stresses (4.11)—(4.13), when expressed explicitly in
terms of «,„ with the aid of (4.7)-(4.10), coincide with those given in [8]\

1. An arbitrary constant may, of course, be added to p.

2. See Eq. (3.3) of [10].
3. See Eq. (2.20.18) of [8); allowance must be made for differences in notation.
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