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Reflection Subquotients
of Unitary Reflection Groups
To H. S. M. Coxeter on the occasion of his ninetieth birthday.

G. I. Lehrer and T. A. Springer

Abstract. Let G be a finite group generated by (pseudo-) reflections in a complex vector space and let g be any
linear transformation which normalises G. In an earlier paper, the authors showed how to associate with any
maximal eigenspace of an element of the coset gG, a subquotient of G which acts as a reflection group on the
eigenspace. In this work, we address the questions of irreducibility and the coexponents of this subquotient,
as well as centralisers in G of certain elements of the coset. A criterion is also given in terms of the invariant
degrees of G for an integer to be regular for G. A key tool is the investigation of extensions of invariant vector
fields on the eigenspace, which leads to some results and questions concerning the geometry of intersections
of invariant hypersurfaces.

1 Introduction and Statement of Results

Let G be a finite reflection group acting on V = C�. We suppose V to be endowed with a
positive definite Hermitian form such that G ⊂ U (V ), the corresponding unitary group.
Fix an integer d, let ζ be a primitive d-th root of unity and for x ∈ GL(V ) write V (x, ζ) for
the ζ-eigenspace of x. The following theorem was proved in [LS1], to which this paper is a
sequel.

Theorem 1.1 ([LS1, (2.5), (4.2)]) Assume that g ∈ NU (V )(G) is such that dim
(
V (g, ζ)

)
≥

dim
(
V (gx, ζ)

)
for all x ∈ G. Write E = V (g, ζ), N = {x ∈ G | xE = E} and C = {x ∈ G |

xe = e for all e ∈ E}. Let f1, . . . , f� be a set of basic invariants for G acting on V , such that
g. fi = δi fi , i = 1, . . . , �. Write di = deg fi .

Then N = N/C acts as a unitary reflection group on E, whose reflecting hyperplanes are
the intersections with E of those of G. A set of basic invariants for N is given by the restrictions
to E of those fi satisfying ζdiδi = 1.

If the pointwise isotropy group C is trivial, or equivalently, if there is no reflecting hy-
perplane of G which contains E, we say that the triple (G, g, ζ) is regular.

If, in (1.1), we take g to be in G, then N is a reflection group which is determined up to
linear isomorphism by the integer d and the group G. We denote N by G(d); if C is trivial,
we say that d is regular. It was shown in [LS1, (2.9)] that if e divides d, then

G(d) ∼= G(e)(d).(1.2)
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In this paper we shall prove several results which supplement those of [LS1]. Given a
triple (G, g, ζ) as above, we say it is twisted, or that we are in the twisted case if we allow the
possibility that g /∈ G. Theorems A and B apply to the twisted case. Notation is as above.

Theorem A If G is irreducible, so is the reflection group N = N/C on E.

When the triple (G, g, ζ) is regular, Theorem A was proved in the untwisted case by
Denef and Loeser [DL], using a case by case analysis.

Theorem B There is an element c ∈ C such that if ZG(x) denotes the centraliser in G of x, we
have N = ZG(gc) ·C.

Theorem C Let d be any integer and let G(d) be as above. Then

(i) The coexponents of G(d) form a subset (in the sense of multisets—i.e., including multi-
plicities) of those coexponents of G which are congruent to 1 (mod d).

(ii) The two multisets of (i) coincide if d is regular.
(iii) The converse of (ii) is true.

Part (ii) was treated by Denef and Loeser in [DL], using a case by case argument. We
shall deduce a stronger version of (ii) which applies to the twisted case from a more general
statement concerning extensions of invariant regular functions. Our proofs of (i) and (iii)
involve a little case by case checking. Some corollaries of the main theorems are given
below.

Our groups G(d) arise in the context of the “maximal Φd-subgroups” of Broué and
Malle [BM1] as the automorphism groups WG(L) of the Levi subgroups L which are cen-
tralisers of maximal Φd-subgroups. In this context they have been investigated empirically
in [BM2], [BMM], [BrM] and [M]. These groups provide the framework for the study of
ramification groups of “induced” representations (cf. [HL]).

2 Irreducibility

In this section we shall prove Theorem A. Maintaining the notation above, write N = N/C
and assume that G is irreducible. Then all degrees di are greater than 1, so from (1.1) it
follows that all basic invariants of N have degree greater than 1. Hence the fixed point set
EN is zero.

Assume that N acts reducibly on E. Then there is a decomposition E = E1⊕E2 such that
any reflection in N fixes either E1 or E2 pointwise. Since the reflecting hyperplanes of N are
the intersections of those of G with E (by [LS1, (2.7)]), the same is true of any reflection in
G. If a reflection of G fixes E1 and E2 pointwise, it fixes E pointwise. Since G is irreducible,
this can not apply to all reflections of G unless E = {0} or V , cases in which the result
is trivial. Thus we may assume that there are reflections in G which fix E1 pointwise, but
which do not fix E2 pointwise. Denote this set of reflections by R1, let R be the set of all
reflections of G and write R2 = R−R1; then R2 is the set of all reflections of G which fix E2

pointwise.
Let G1 be the subgroup of G generated by R1. We show that G1 is a normal subgroup

of G. For this, it suffices since G is generated by R, to show that for r ∈ R, rG1r−1 = G1.
If r ∈ R1 this is clear; thus we are reduced to the case r ∈ R2. Let r1 ∈ R1, r ∈ R2. Then

https://doi.org/10.4153/CJM-1999-052-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-052-4


Reflection Subquotients of Unitary Reflection Groups 1177

s = rr1r−1 is a reflection. If s fixes E2 pointwise, then so does r1 (since r does). But r1 ∈ R1,
so that r1 does not fix E2 pointwise, whence the same is true of s. Thus s ∈ R1 and it follows
that G1 is a normal subgroup of G.

Let V1 = V G1 be the fixed point subspace of G1. It is non-zero since E1 ⊂ V1 and is
a proper subspace. Since G1 is normal, V1 is stabilized by G, whence G is reducible. This
completes the proof of Theorem A.

3 Proof of Theorem B

In the proof of Theorem B, we shall require the following result from [Sp, (6.2)]. Notation
is as in (1.1).

Lemma 3.1 ([Sp. (6.2)]) The maximal spaces among the eigenspaces {V (x, ζ) | x ∈ gG}
are all conjugate under the action of G.

Let V = E0 ⊕ · · · ⊕ Et be an ordered g-eigenspace decomposition of V , where Ei =
V (g, ζi) and ζ0 = ζ , the ζi being distinct. For i = 0, 1, . . . , t , write Ci for the pointwise
stabiliser in G of the subspace E0 ⊕ · · · ⊕ Ei and define C−1 to be G. Then Ci ⊇ Ci+1 for all
i, C0 = C and Ct = {1}. Say that g is quasi-regular if there is an ordering of its eigenvalues
such that dim Ei = maxc∈Ci−1 dim V (gc, ζi) for each i.

Lemma 3.2 Let E0 = V (g, ζ) and assume dim E0 = maxx∈G dim V (gx, ζ). Then there is
an element c ∈ C0 = C = GE0 such that gc is quasi-regular.

Proof We shall inductively define subspaces Ei of V and elements gi ∈ gC0 (i = 0, 1, . . . )
such that

(a) Ei+1(�= 0) is orthogonal to E0 ⊕ · · · ⊕ Ei (all i).
(b) If Ci = CE0⊕···⊕Ei , then gi+1 = gici ∈ giCi for all i.
(c) For each i and each k with 0 ≤ k ≤ i, Ek = V (gi , ζk) and the ζk are distinct.
(d) With i, k as in (c), dim Ek = maxc∈Ck−1 dim V (gic, ζk).

If t is the smallest integer such that V = E0 ⊕ · · · ⊕ Et , then gt = gc0c1 · · · ct−1 ∈ gC0 is
quasi-regular. This construction will therefore prove the lemma. Notice that property (c)
implies that gi normalises each of the reflection groups Ci .

To start the construction, we have E0 and g0 = g given. Suppose we have E0, . . . , E j

and g0, . . . , g j satisfying the above conditions. To produce E j+1 and g j+1 proceed as follows.
Let ζ j+1 be any eigenvalue of g j which is distinct from ζ0, . . . , ζ j ; such an eigenvalue exists
unless V = E0 ⊕ · · · ⊕ E j , in which case we are finished. Let c j ∈ C j (= GE0⊕···⊕E j )
be such that dim V (g jc j , ζ j+1) = maxc∈C j dim V (g jc, ζ j+1) and take g j+1 = g jc j , E j+1 =
V (g jc j , ζ j+1).

Then (a) is clear, as is (b). To prove (c), we must show that for 0 ≤ k ≤ j + 1, we
have Ek = V (g j+1, ζk). Now Ci ⊇ Ci+1 for each i, whence g j+1 ∈ gkCk. But by hypothesis,
dim Ek = maxc∈Ck−1 dim V (gkc, ζk) ≥ maxc∈Ck dim V (gkc, ζk), so that dim V (g j+1, ζk) ≤
dim Ek. But Ek ⊆ V (g j+1, ζk) and (c) follows.

For (d) we require that for 0 ≤ k ≤ j + 1, dim Ek = maxc∈Ck−1 dim V (g j+1c, ζk). If
k = j + 1, this holds by construction; if k ≤ j, then g j+1Ck−1 = g jCk−1 by construction
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and the statement follows from the induction hypothesis. This completes the proof of the
lemma.

Proposition 3.3 In the above notation, if g ∈ NU (V )(G) is quasi-regular then N = {g ∈ G |
gE0 = E0} = ZG(g) ·C.

Proof Assume g is quasi-regular and let n ∈ N . Write V = E0 ⊕ · · · ⊕ Et as above, with
Ei = V (g, ζi). We shall construct a sequence n0, n1, . . . , nt such that

(a) ni ∈ N , n0 = n,
(b) ni+1 ∈ Cini (all i) and
(c) nign−1

i g−1 ∈ Ci (all i).

If we have such a sequence, then ni+1 ∈ CiCi−1 · · ·C0n0 = C0n0 for all i. But nt ∈ ZG(g)
since Ct = {1} and so nt = c0n implies that n = c−1

0 nt ∈ C0ZG(g). Hence N = C.ZG(g) =
ZG(g).C , since C is normal in N .

To construct the sequence, proceed as follows. Suppose we have n0, . . . , n j ; then
n jgn−1

j g−1 fixes E0⊕· · ·⊕E j pointwise and since E j+1 is the ζ j+1-eigenspace of g, n jE j+1 is

an eigenspace for n jgn−1
j with eigenvalue ζ j+1. Moreover n jgn−1

j = n jgn−1
j g−1 ·g ∈ C jg =

gC j , so that
dim n jE j+1 = max dim

c∈C j

V (cg, ζ j+1)

by the quasi-regular nature of g. It follows, using (3.1) applied to the pair (C j , g), that there
is an element c j ∈ C j such that n jE j+1 = c jE j+1. Let n j+1 = c−1

j n j ∈ C jn j .

Then n j+1gn−1
j+1g−1 fixes E0 ⊕ · · · ⊕ E j pointwise since n jgn−1

j g−1 does. Furthermore,

since n j+1E j+1 = E j+1 and g acts as a scalar on E j+1, n j+1gn−1
j+1g−1 ∈ C j+1. This proves the

properties (a), (b) and (c) for (n0, . . . , n j+1) and completes the proof of the proposition by
induction.

Theorem B now follows immediately from (3.2) and (3.3).
We remark that the centralisers of elements of G are of significance in the equivariant

cohomology of the hyperplane complement corresponding to G, cf. [L].

Corollary 3.4 Suppose G is a reflection group in V and let g ∈ NU (V )(G). If E = V (g, ζ)
and dim E = maxx∈G dim V (gx, ζ) then there is an element c ∈ C = GE such that
ZG(gc)/

(
ZG(gc) ∩C

)
acts as a reflection group in E.

This follows immediately from Proposition (3.3) because

N ∼= ZG(gc).C/C ∼= ZG(gc)/
(

ZG(gc) ∩C
)
.

For c ∈ C , write γ(c) = g−1cg ∈ C . Say that c and c ′ ∈ C are γ-conjugate if there is an
element d ∈ C such that c ′ = γ(d)cd−1. Let ∼ be the equivalence relation on C generated
by conjugacy under ZG(g) and γ-conjugacy.

Corollary 3.5 With notation as in (3.4), assume (as we may by (3.2)) that g is quasi-regular.
Then
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(i) If h ∈ G then dim V (g, ζ) = dim V (gh, ζ) if and only if gh is G-conjugate to an element
of gC.

(ii) The G-conjugacy classes of elements gh such that dim V (gh, ζ) is maximal are in bijection
with the set of equivalence classes C/∼.

Proof (i) By (1.1), dim V (gh, ζ) = dim V (g, ζ) if and only if there is an element x ∈ G
such that V (g, ζ) = xV (gh, ζ). This is equivalent to requiring that x(gh) ∈ gC .

(ii) By (i), each G-conjugacy class of elements of the required type is represented in
gC . But if two elements ga and gb of gC satisfy gb = x(ga)x−1, then xE = E, so that
x ∈ N = ZG(g) ·C (by quasi-regularity). The result follows.

The authors are grateful to Jean Michel for discussions which led to the next two obser-
vations.

Remark 3.6 It is clear that, with notation as in (3.4), the coset gC may be characterised as
the set of elements x ∈ gG such that the eigenspace V (x, ζ) = E. For if this set is denoted
S, then clearly gC ⊂ S. Conversely, if g1 and g2 are any two elements of S then g−1

1 g2 ∈ C ,
so that g2 ∈ g1C . Taking g1 = g, we see that S ⊂ gC , which proves the assertion. It follows
easily that

N = NG(gC) = {x ∈ G | xgC = gCx}(3.6.1)

To see this, observe that for any pair x, y of linear transformations of V such that y is in-
vertible, and element λ ∈ C, we have yV (x, λ) = V (yxy−1, λ). The above characterisation
of gC therefore yields (3.6.1).

In case g ∈ G (the “untwisted” case), we say that the coset gH ∈ NG(H)/H of the
parabolic subgroup H of G is (ζ-)special for some ζ ∈ C if there is a subspace E ⊂ V such
that gH is the set of elements x ∈ G such that E = V (x, ζ) and E is a maximal ζ-eigenspace
among the elements of G. We refer to gH as a special parabolic coset. The next result is a
generalisation of the statement that any power of a regular element of G is regular.

Proposition 3.7 Any power of a special parabolic coset contains a special parabolic coset.

Proof Suppose gC is ζ-special, where ζ is a primitive d-th root of unity. We shall show that
for any integer e such that e | d, some element of the coset gd/eC has a maximal ζe = ζd/e-
eigenspace. As in the proof of (2.9) in [LSp1], we may take E(d) = V (g, ζ) ⊆ E(e), where
for any integer k, E(k) denotes a maximal ζk-eigenspace V (x, ζk), where ζk is a primitive k-th
root of unity. Thus for the respective pointwise stabilisers (parabolic subgroups), we have
C(d) = C ⊇ C(e). Moreover by the argument in [LSp1, loc. cit.], G(e)(d) = G(d), from
which it follows that N(d) ⊆ N(e)C(d), where N(k) denotes the setwise stabiliser of E(k).
Hence in particular, gd/ec ∈ N(e) for some element c ∈ C(d). Thus gd/eC ⊇ gd/ecC(e),
which proves (3.7) since gd/ecC(e) is special.
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4 Extension of Invariant Regular Functions

In this section, although we continue to work in the general setting where g ∈ NU (V )(G), we
shall as far as possible use the notation of [LS1]. However we shall require some extensions
of the results of [loc. cit., Section 3] to the twisted case. These will be stated in a short
digression below without proof, since the proofs are entirely analogous to those in [LS1].
Denote by A(G) and A(N) respectively the sets of reflecting hyperplanes of G on V and N
on E. By [LS1, (2.7)], A(N) consists of the set of intersections with E of those elements of
A(G) which do not contain E.

We use a basis v1, . . . , va, . . . , vs, . . . , v� of g-eigenvectors in V , so that

gvi = ζivi for i = 1, . . . , �(4.1)

and we assume notation chosen so that 〈v1, . . . , va〉 = E and 〈v1, . . . , vs〉 =
⋂

H⊃E
H∈A(G)

H. As

in (1.1), we suppose that the basic invariants { f1, . . . , f�} satisfy

g fi = δi fi for i = 1, . . . , �(4.2)

and numbering is chosen so that if a = a(G, g, ζ) = |{i | δiζ
di = 1}|, then f1, . . . , fa are

precisely the invariants satisfying this condition. We take as basis of the free SG
V -module

(SV ⊗V )G the set

φi =
�∑

j=1

fi j ⊗ v j , i = 1, . . . , �(4.3)

where degree ( fi j ) = ni (the i-th coexponent of G). A simple argument shows that we may
assume the φi chosen as eigenfunctions of g, so that

gφi = ξiφi for i = 1, . . . , �.(4.4)

The elements of SV ⊗V may be interpreted as polynomial vector fields on V in the usual
way and we have the map

ρ : SV ⊗V −→ SE ⊗ E

given by ρ = resV
E ⊗pE, where resV

E is the restriction map and pE is the projection onto the
eigenspace E; ρ is clearly surjective. Its restriction to (SV ⊗V )G will be denoted

ρ0 : (SV ⊗V )G −→ (SE ⊗ E)N .

Using the automorphism g, one shows that ρ0(φi) = 0 unless ξiζ
ni−1 = 1. Write

b = b(G, g, ζ) for the number of φi satisfying ξiζ
ni−1 = 1. The following statements are

analogues of [LS1, (3.3) and (3.5)] and are proved in a similar way. There are permutations
π and κ of {1, . . . , �} such that for i = 1, . . . , s,

ζi = ξπiζ
nπi = δ−1

κi ζ
1−dκi .(4.5)

If we writeαi = ζ
diδi and βi = ξiζ

ni−1, then we have the following analogue of [LS1, (3.6)].
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Proposition 4.6 Suppose (G, g, ζ) is a regular triple. Then there is a numbering of the φi

such that for each i, βi = α
−1
i . In particular, in the regular case, a = b.

Definition 4.7 We say that the extension property holds for (G, g, ζ) if the map ρ0 defined
above is surjective.

Proposition 4.8 If the extension property holds for (G, g, ζ) then the coexponents of N form
a subset (in the sense of multisets) of those of G.

Proof Write MV = (SV ⊗V )G. Let M̃V = MV/IMV , where I is the augmentation ideal of
SG

V . Then M̃V is a graded vector space and the degrees of the elements of a homogeneous
basis of M̃V coincide with the coexponents of G. Similarly, we have a graded vector space
M̃E. If ρ0 is surjective we obtain a surjective linear map M̃V → M̃E, and the lemma follows.

To study the extension property, we start with the following easy observations. Let V0

be the subspace of fixed points of G on V . Let V1 be its orthogonal complement, on which
G acts as a reflection group. Write Ei = E ∩Vi , i = 0, 1. These spaces are normalised by g
and N .

Lemma 4.9

(i) With the above notation, (G, g, ζ) has the extension property if and only if (G|V1 , g|V1 , ζ)
does.

(ii) Assume that there is a hyperplane H in E which is contained in all reflecting hyperplanes
of G. Then the extension property holds for (G, g, ζ).

Proof (i) We have, since SV = SV0 ⊗ SV1 and G acts trivially on SV0 ,

(SV ⊗V )G = (SG
V ⊗V0)⊕

(
SV0 ⊗ (SV1 ⊗V1)G

)
and similarly

(SE ⊗ E)N = (SN
E ⊗ E0)⊕

(
SE0 ⊗ (SE1 ⊗ E1)N

)
.

The map ρ0 is induced by restriction of functions on V , V0, V1 respectively to their inter-
sections with E and projection of these spaces onto their intersections with E. The state-
ment (i) follows by observing that the maps SG

V → SN
E , V0 → E0 and SV0 → SV0 are all

surjective.
(ii) By (i), we may assume that V0 = 0, so that H ⊂ V0 implies that H = 0, whence

dim E is either 0 or 1. If E = 0 there is nothing to prove. If dim E = 1, write the basis of V ∗

dual to v1, . . . , v� as X1, . . . ,X�. Then φ =
∑

i Xi ⊗ vi ∈ (SV ⊗V )G and ρ0(φ) = X1 ⊗ v1,
which is a generator of the SN

E -module (SE ⊗ E)N .

The main result of this section is

Theorem D If (G, g, ζ) is a regular triple, then ρ0 is surjective, i.e., (G, g, ζ) enjoys the exten-
sion property.
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Of course given Theorem D, Theorem C(ii) follows immediately from (4.8).
The set of common zeros of fa+1, . . . , f� is the union X = XG of the translates xE of E

(x ∈ G) (see [Sp, Section 6]). These translates are the irreducible components of X. Let
A = SV /( fa+1, . . . , f�). Then C[X] is the quotient of A by its radical; it is equal to A if and
only if A is reduced. The group G acts on both A and C[X] and we denote the respective
rings of G-invariants by AG and C[X]G.

Lemma 4.10 Let A = SV /( fa+1, . . . , f�). Then

(i) AG ∼= SG
V /( fa+1, . . . , f�) ∼= C[ f1, . . . , fa].

(ii) A is a free graded module over AG.
(iii) The map A→ C[X] induces an isomorphism AG ∼= C[X]G.

Proof The sequence ( f1, . . . , f�) is homogeneous and regular in SV , i.e., the image of fi

in SV/( fi+1, . . . , f�) is not a zero divisor (see [B, p. 115]). It is clear that the canonical
surjection SV → A induces a surjective map SG

V → AG, since if a ∈ AG is the image of
f ∈ SV , a is also the image of AvG( f ) = |G|−1

∑
h∈G h f ∈ SG

V . To prove (i) it therefore
suffices to prove the following fact: if f ∈ SG

V and

f = gi fi + · · · + g� f�

with g j ∈ SV then there is also such a relation with g j in SG
V for i ≤ j ≤ �. In fact, if we have

such a relation it follows from the definition of a regular sequence that for all x ∈ G we
have c(x) = xgi−gi ∈ ( fi+1, . . . , f�). Then c is a 1-cocycle of G with values in ( fi+1, . . . , f�);
i.e., for any two elements x, y ∈ G, we have c(xy) = xc(y) + c(x). Such a cocycle being a
coboundary (take the average of the relation for c(xy) over all y ∈ G), it follows that we
may modify gi by an element of ( fi+1, . . . , f�) so as to become G-invariant. Using induction
this establishes what we wanted, and proves (i). Then (ii) follows from the fact that SV is
free as SG

V -module [B]. The map AG → C[X]G is surjective by the averaging argument
above, and its kernel consists of nilpotent elements. Since AG is an integral domain by (i),
the kernel must be zero and (iii) follows.

We shall freely use the identification between P(V,V ), the space of regular functions
φ : V −→ V and SV ⊗ V , via

∑
hi ⊗ vi �→ φ : V −→ V defined by φ(v) =

∑
hi(v)vi .

More generally, we write P(A,B) for the space of regular functions (i.e., morphisms) from
a variety A to a variety B. Still more generally, for any sets A, B, let F(A,B) be the set of all
functions from A to B. If H is a group which acts on both A and B, then F(A,B) has the
obvious H-action, given by

(hφ)(a) = h
(
φ(h−1a)

)
Lemma 4.11 The restriction map τ : P(V,V )G −→ P(X,V )G is surjective. Hence ρ0 is
surjective if and only if σ0 : P(X,V )G → P(E, E)N is surjective.

Proof The first statement follows by the averaging argument given in the proof of (4.10).
The second assertion is clear.
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In view of (4.11), we are reduced to the study of extensions of N-invariant functions
on E to G-invariant functions on X. Moreover since every G-orbit on X intersects E, any
N-invariant function on E has at most one extension to X which is G-invariant.

In addition to the space of regular functions, we shall speak of the space R(A,B) of ratio-
nal functions from an affine variety A to an affine variety B. This is the space of functions
f which are defined and regular on a dense open subvariety U f of A, modulo the equiv-
alence relation which identifies two functions which agree on a dense open subvariety of
A. Generalities concerning such functions may be found in [G, Section 20.2, p. 231]. Any
element ω ∈ R(A,B) has a domain (of definition), which is the largest open set U such
that ω contains a representative function f : U → B. When B = C, the space of rational
functions from A to B and the domain of definition of such a function are identified in

Proposition 4.12

(i) (cf. [GD, (8.1.9)], [G, (20.2.3)]) The space of rational functions R(A,C) is isomorphic to
the localisation C[A]Σ, where Σ = Σ(A) is the set of non zero-divisors in the coordinate
ring C[A].

(ii) (cf. [G, (20.2.14)]) Let ω ∈ R(A,C) be a rational function. Define the “ideal of denomi-
nators” D(ω) of ω by

D(ω) = {h ∈ C[A] | hω ∈ P(A,C)}.

Then the domain of definition of ω is the complement in A of the set of zeros of D(ω).

If f ∈ Σ, g ∈ C[A], the domain of f−1g contains the principal open set A f := {a ∈ A |
f (a) �= 0}. Note that for any affine variety A, the set of non zero-divisors in the coordinate
ring C[A] is the set of those regular functions on A which have non-zero restriction to each
irreducible component of A. In particular, if A is irreducible, R(A,C) is the quotient field of
C[A], i.e., the function field of A. Note also, that if H is a group which acts on the varieties
A and B, then H acts on R(A,B) in analogous fashion to its action on F(A,B).

The space R(A,C) is clearly a C[A]-module; moreover it is clear that for any two varieties
B and C , R(A,B×C) ∼= R(A,B)×R(A,C) (as sets). Similarly, if B is an affine space Ar of
dimension r, then

R(A,B) ∼= R(A,C)⊗ Cr ∼= C[A]Σ ⊗ Cr(4.13)

where the right hand side has a natural structure as C[A]-module. Assume for the rest of
this discussion that B is an affine space. The space P(A,B) is a C[A]-submodule of R(A,B)
and clearly

R(A,B) ∼= C[A]Σ ⊗C[A] P(A,B) ∼= P(A,B)Σ.

Similar remarks to those in the preceding paragraph apply to the space F(A,B). This is
also a C[A]-module, which contains P(A,B) as a submodule.

Proposition 4.14

(i) Suppose v1, v2 ∈ E and assume that v2 = hv1 for some h ∈ G. Then v2 = nv1, for some
n ∈ N.
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(ii) If φ ∈ F(E,V )N and e ∈ E is such that he = e(h ∈ G), then hφ(e) = φ(e).

(iii) If φ ∈ F(E,V )N , there is a unique function φ̃ ∈ F(X,V )G which extends φ.

Proof (i) If v2 = hv1, then f (v1) = f (v2) for all f ∈ SG
V ; since resV

G : SG
V −→ SN

E is
surjective (see [LS1, (2.5)]), this implies that v1 and v2 lie in the same N-orbit in E.

(ii) Since he = e, by Steinberg’s theorem [St1], h is a product of reflections in hy-
perplanes through E. It therefore suffices to prove the result when h is such a reflection
rH ,H ∈ A(G). If H ⊇ E, then rH ∈ N and the result is clear. If not, then there is a
non-trivial element nH ∈ N , which represents a reflection in N and which fixes e. Thus
φ(nHe) = φ(e) = nHφ(e). Hence φ(e) is contained in the fixed point set of nH , which is
contained in H; thus rHφ(e) = φ(e).

(iii) The definition φ̃(he) = hφ(e)(h ∈ G, e ∈ E) is unambiguous by (ii).

Proposition 4.15

(i) Let h ∈ G− N. Then E ∩ hE is contained in a reflecting hyperplane of N.
(ii) Let v be any point of E. The isotropy group Gv acts transitively on the components of X

which contain v.
(iii) Fix H ∈ A(N) (this is a hyperplane in E). If hE ∩ E = H, there is an element x ∈ GH

such that hE = xE.

Proof (i) If e = he ′ ∈ E ∩ hE, then there is an element n ∈ N such that e = ne ′ = nh−1e.
Since h /∈ N , nh−1 /∈ N . Thus nh−1 is a product of reflections in hyperplanes which
contain e (by Steinberg’s theorem), at least one of which does not contain E. So e lies in
some hyperplane H ∈ A(G) with H � E. Thus E ∩ E ′ is contained in the union of all such
hyperplanes and being irreducible, must be in one of them.

(ii) If E and hE are two components of X which contain v, then as in (i), we take n ∈ N
such that nh−1 ∈ Gv. Then hE = hn−1E ⊂ GvE, as stated.

(iii) Take e ∈ H such that e is in no reflecting hyperplane of G which does not contain
H. Then Ge = GH and the result is immediate from (ii).

Fix φ ∈ P(E, E)N . We are interested in showing that the extension φ̃ of (4.14)(iii) is a
regular function. In the next result, we show first that φ̃ ∈ R(X,V )G and our strategy is

to show that the domain of definition of φ̃ has complement of codimension at least two,
i.e., that φ̃ is regular except on a subvariety of codimension at least two; in the case where
(G, g, ζ) is regular, this will suffice, because in that case we shall show that if φ̃ is not regular,
it is irregular on a hypersurface of X.

Suppose ω ∈ R(X,V )G and that U is an open set in X. To show that ω is regular on
U (or equivalently that its domain includes U ), it suffices (by, e.g., [Mu, Prop. 1, p. 42]) to
show that for any point v ∈ U , there is a Zariski open neighbourhood of v in X on which
ω is regular.

Proposition 4.16

(i) For any φ ∈ (SE ⊗V )N , the function φ̃ of (4.14)(iii) is in R(X,V )G.
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(ii) Let E1 be the set of all points of E which lie in at most one reflecting hyperplane of N on E.

Let X1 =
⋃

h∈G hE1. Then φ̃ is regular on X1.

Proof (i) Let E0 be the set of points of E which lie on no reflecting hyperplane of N and let
X0 =

⋃
h∈G hE0. This is an open dense subvariety of X and each of its points has a Zariski

neighbourhood contained in just one irreducible component of X. Since the restriction of
φ̃ to any component is a G-translate of φ, which is regular, it follows that φ̃ is regular on X0,
which proves (i).

(ii) It suffices, since φ̃ is G-invariant to show that φ̃ is regular on E1, which by the
remarks above, will follow if we show that for each element v ∈ E1, there is a Zariski open
subset Uv � v of X1 on which φ̃ is regular.

If v ∈ E1 does not lie on any reflecting hyperplane, such a neighbourhood exists by (i).
Suppose v ∈ E1 lies in a unique reflecting hyperplane H of N on E. We prove by induction

on |G| that φ̃ is regular at v. Clearly g normalises GH . Let X ′1 be the complement in X1 of the
union of the components of X which do not contain v. Then X ′1 is an open neighbourhood
of v in X1 which by (4.15)(ii) coincides with a neighbourbood in X1(H) =

⋃
h∈GH

hE1. If
G �= GH , then applying the induction hypothesis to the pair (g,GH) we deduce that the
unique GH-invariant extension of φ to

⋃
h∈GH

hE is regular at v ∈ X1(H). Of course this

extension coincides with the restriction of φ̃ to X1(H). This proves the statement, except
when GH = G. But in this case (4.9)(ii) shows that φ̃ is regular.

We remark that (i) also follows from a result about the rank of the matrix
(

fi j(v)
)

for
any v ∈ V (see (4.3) above), which is analogous to that of Steinberg [St2].

We have seen in (4.10) that restriction from X to E defines an isomorphism C[X]G ∼= SN
E

and in (1.1) that we have a natural isomorphism C[ f1, . . . , fa] ∼= SN
E , given by restriction

from V to X. We shall identify all three algebras without further comment. Thus SN
E will be

thought of as an algebra of functions on E, V and X.

Let X(φ̃) ⊂ X be the complement of the domain of definition of φ̃, regarded as a rational
function. This is a G-invariant, closed subvariety of X.

Corollary 4.17 The irreducible components of X(φ̃) have codimension at least 2 in X.

Proof This is an immediate consequence of (4.16).

The ring C[X]G is the coordinate ring of the affine variety G \ X, whose points are the
orbits of G on X. Under the identification C[X]G ∼= C[ f1, . . . , fa], G \ X is identified with
Ca and the quotient map

π : X −→ G \ X

is realised as the map x �→
(

f1(x), . . . , fa(x)
)

.

Lemma 4.18 Consider the ideals D0(φ) = {h ∈ SN
E | hφ ∈ Im ρ0} and D(φ̃) = {h ∈ SN

E |

hφ̃ ∈ P(X,V )G} of C[G \ X]. We have D0(φ) = D(φ̃) �= 0.
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Proof If h is any element of D0(φ) then hφ = σ0(ψ) for someψ ∈ P(X,V )G. But thenψ =

(h̃φ) and by uniqueness, h̃φ = hφ̃, whence hφ̃ ∈ P(X,V )G. Since h ∈ Σ(X) by (4.10)(ii),

we conclude that h ∈ D(φ̃), so that D0(φ) ⊂ D(φ̃). Conversely if k ∈ D(φ̃), then kφ̃ ∈
P(X,V )G, whence by (4.11) kφ̃ is the restriction to X of some ψ ∈ P(V,V )G. But then
kφ = ρ0ψ, so that k ∈ D0(φ).

Let Z be the closed subvariety of G \ X defined by the ideal D0(φ) = D(φ̃) of its coordi-
nate ring.

Lemma 4.19 The image πX(φ̃) contains Z.

Proof We need to show that if U is the domain of definition of the rational function de-
fined by φ̃, then π(U ) ∩ Z = ∅. Take a point v ∈ U . By (4.12)(ii), v is not in the zero set
of the denominator ideal of φ̃. Hence there is a function k ∈ C[X] such that k(v) �= 0 and
kφ̃ ∈ P(X,V ).

We shall show that there is an element k ′ ∈ C[G \ X] such that k ′(v) �= 0 and k ′φ̃ ∈
P(X,V )G. This will imply that π(v) /∈ Z, from which the lemma follows.

To prove the existence of k ′, observe first that for any element y ∈ G, y(kφ̃) = (yk)φ̃ ∈
P(X,V ). Let σ j be the j-th elementary symmetric function in the translates yk (over all

y ∈ G). Then for each j, σ j ∈ C[G \ X] and by the first observation, σ j φ̃ ∈ P(X,V )G. To
see that σ j(v) �= 0 for some j, observe that if σ j(v) = 0 for all j, then∏

y∈G

(
1− tk(yv)

)
= 1

for any t ∈ C. This would imply that k(yv) = 0 for any y ∈ G, contradicting the fact that
k(v) �= 0.

Corollary 4.20 Each component of Z has codimension at least 2 in G \ X.

Proof Since G is a finite group, we have dimπY = dim Y for any closed irreducible subset
Y of X. The result is now immediate from (4.19) and (4.17).

Proposition 4.21 Suppose that in the notation of (4.3), a = b (in particular this is the case if
(G, g, ζ) is a regular triple, i.e., C = 1). If φ ∈ (SE⊗E)N is not in Im ρ0, then each component
in G \ X of Z has codimension at most 1.

Proof Recall that ρ0φi = 0 unless i ∈ {1, . . . , b}. It follows from (4.18) that if a = b,
each element ψ of (SE ⊗ E)N is expressible uniquely in the form ψ =

∑a
i=1 kiφ

′
i , where

φ ′i = ρ
0(φi) and ki is in the quotient field K of SN

E = C[ f1, . . . , fa]. Hence h ∈ D(ψ) if and
only if hki ∈ SN

E for each i. If φ /∈ Im ρ0, then for some i, ki /∈ SN
E , so that if h ∈ D0(φ) then

h is in the ideal {h ∈ SN
E | hki ∈ SN

E }, which is principal since SN
E is a unique factorisation

domain. Thus its components, which are subvarieties of those of Z, have codimension 1.
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Proof of Theorem D For any φ ∈ (SE⊗E)N , we know (4.20) that the variety of D0(φ) has
codimension at least 2. From (4.21) we have that when d is regular, D0(φ) has codimension
one if φ is not in the image of ρ0. Hence there is no such element φ and ρ0 is surjective.

We conclude this section with some results and questions concerning the variety X.

Remark The results of this section have involved the reducible affine variety X =⋃
g∈G gE and its coordinate ring C[X]. We have seen that C[X] is the quotient of A =

SV/( fa+1, . . . , f�) by its radical. It is therefore natural to ask when A itself is reduced, or
equivalently, when do we have C[X] = A?

The next Proposition answers this.

Proposition 4.22 The ring A is reduced if and only (G, g, ζ) is a regular triple.

Sketch of Proof By [LS1, 2.3] (for the twisted case, see [loc. cit., Section 4]), (G, g, ζ)
is regular if and only if the intersection multiplicity µ = i(E,Ha+1, . . . ,H�; V ) of E as a
component of the intersection of the divisors Hi defined by the fi (a + 1 ≤ i ≤ l) equals 1.

Let P be the prime ideal of E in SV . Let OP be the localization of SV at P. Then µ =
�(OP/IOP), the length of a local Artinian ring (see [F, 7.1.10]). This shows that µ = 1 if
A = C[X]. Conversely, assume that µ = 1. The minimal prime ideals in SV containing I =
( fa+1, . . . , f�) are the transforms xP (x ∈ G). Denote them by P = P1, . . . , Pt . The radical
of I is the intersection

⋂t
i=1 Pi and I is a (minimal) intersection of a set Ω of associated

primary ideals. Because S is a polynomial algebra and I is generated by a regular sequence,
A is a Cohen-Macaulay ring, and there are no imbedded prime ideals associated to the ideal
I. It follows that the associated prime ideals must be our P j . It also follows that for each j
there is a primary ideal Q j ∈ Ω with radical P j . The interpretation of µ (= 1) as a length
shows that (

⋂
Pi/I)P j = {0} for j = 1, hence also for all j (use the G-action). It follows

that
⋂

P j = I, hence I is reduced and the proposition is proved.

From the above, we conclude that if (G, g, ζ) is regular, C[X] is a free graded module
over the algebra of invariants C[X]G ∼= C[ f1, . . . , fa]. This leads to the following question.

Question 4.23 Is C[X] always a free graded module over C[X]G ?

A positive answer would imply the validity of Theorem D in all cases, i.e., without the
regularity assumption. In fact, the induction argument used in the proof of (4.16) would

give that the rational map φ̃ of [loc. cit.] is defined at all non-zero points of E. If C[X] is

free over C[X]G it is not hard to show that φ̃ is also defined at the point {0}.
Another version of the question is whether C[X] is a graded Cohen-Macaulay algebra.

Since C[X] is the quotient of the Cohen-Macaulay ring A (= SV /( fa+1, . . . , f�)) by its radi-
cal, the latter statement would follow if it were known that such a quotient is always Cohen-
Macaulay. However it has been pointed out to us by Strooker that this is not generally true,
as is shown by an example due to Cowsik and Nori [CN].
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5 Completion of the Proof of Theorem C

Theorem D of the last section, together with (4.8), imply Theorem C(i) in case d is regular
for G. Moreover Theorem C(ii) is immediate from (4.6). Thus to complete the proof of
Theorem C, we need to prove part (i) when d is not necessarily regular and part (iii). As
indicated above, both of these will require some case by case analysis. For convenience,
we paraphrase here the results to be proved. Recall that Theorem C deals only with the
untwisted case, i.e., the case where g ∈ G.

5.1

(i) If a(d) = b(d) then d is regular for G.
(ii) The set of coexponents of G(d) is a subset of the (multi-)set of coexponents of G whose

degree is congruent to 1 (mod d).

Note first that (5.1)(ii) is clear when a(d) = 1 (which is the case dim E = 1) by (4.9)(ii)
and (4.8). Moreover it is easy to see that it suffices to prove the assertions (5.1) in the case
that G is irreducible, which we shall henceforth assume. We shall use the classification of
the irreducible groups which is due to Shephard and Todd [ST].

To deal with the imprimitive groups we use

Proposition 5.2 If G is the group G(r,m, �), then G(d) ∼= G(r ′,m ′, � ′), for some integers
r ′,m ′, � ′.

For the proof of (5.2), which was proved in the case when G = S� in [BMM], we shall
require the following generalisation of [LS1, (2.9)].

Lemma 5.3 For any reflection group G and integers d, e, we have G(e)(d) ∼= G
(

lcm(d, e)
)
.

Proof Suppose first that H is a finite reflection group each of whose degrees is divisible by
the integer e. Write l = lcm(d, e) and let ζl be a primitive l-th root of unity. If E = V (g, ζl)
is a maximal ζl-eigenspace, then since any degree di of H is divisible by d if and only if it is

divisible by l, it follows that E = V (gl/d, ζ
l/d
l ) is a maximal ζd = ζ

l/d
l -eigenspace of V (they

both have dimension equal to #{i | d divides di}). It is therefore clear that H(d) = H(l).
Applying this statement with H = G(e), we obtain G(e)(d) = G(e)(l) = G(l), the last
equality following from [LS1, (2.9)].

Proof of Proposition 5.2 We assume that G = G(r,m, �). Recall that this group acts in
C�, and is the semi-direct product of the symmetric group S�, acting by permutations of
the canonical basis (ei), and the group of diagonal maps ei �→ θiei , where θr

i = 1 and
(θ1 · · · θ�)n = 1. Here m divides r and r = mn. When r = 1 this group is the symmetric
group S�; it does not act irreducibly. The degrees of G are

r, 2r, . . . , (�− 1)r, �n.(5.2.1)

If we denote the coordinate function for ei by Xi , the invariant for the last degree may
be chosen to be

f� = (X1 · · ·X�)
n.
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Let us begin by observing that (5.2) is true for G = S�. For if we write � = qd + r, with
0 ≤ r < d, then we may take g ∈ S� to be a permutation with q d-cycles and one r-cycle to
obtain a maximal ζ-eigenspace V (g, ζ), where ζ is a primitive d-th root of unity. It is then
straightforward to verify that G(d) ∼= G(d, 1, q), verifying (5.2).

Write e =
(
gcd(d, r)

)−1
d. By Theorem (1.1) the degrees of G(d) are{

er, 2er, . . . , [e−1(�− 1)]er if d � �n,

er, 2er, . . . , [e−1(�− 1)]er, �n otherwise.

Case 1 Assume d | �n.
Then d | �r and e | �. Put G ′ = G(r, 1, �). Then G ⊂ G ′ and the degrees of G ′ are

r, 2r, . . . , �r.

Hence the degrees of G ′(d) are

er, 2er, . . . , [e−1(�− 1)]er, �n.

The number of these degrees is e−1� = [e−1(�− 1)] + 1, which is the same as the number
of degrees of G(d). It follows that if g ∈ G is such that E = V (g, ζ) has maximal dimension
(= �/e), the same is true if g is regarded as an element of G ′. Hence G(d) is a reflection
group in E which is generated by a subset of the reflections in G ′(d). Consequently if G ′(d)
is imprimitive (i.e., respects a direct sum decomposition of E into lines), the same is true of
G(d).

Thus we need check (5.2) only for G = G ′ ∼= G(r, 1, �). But in this case G ∼= S�r(r), so
that G(d) ∼= S�r(r)(d), which by (5.3) is isomorphic (as reflection group) to S�r

(
lcm(r, d)

)
,

a case which has already been dealt with above.

Case 2 Assume d � �n.
The polynomial f� vanishes on E. Let Hi be the hyperplane of zeros of Xi . Since E is

contained in the union of the Hi , E lies inside one of them, say H�. Now G has a subgroup
G ′ = G(r, 1, �−1) which may be identified in the obvious way as a reflection group acting in
H�. Viewed thus, its degrees are r, 2r, . . . , (�−1)r, whence the degrees of G ′(d) coincide with
those of G(d) which implies that the two groups have the same cardinality. It also follows
that there is an element g ′ ∈ G ′ such that the eigenspace E may be taken as V (g ′, ζ). Since
G(d) and G ′(d) have the same cardinality, all the transformations of E which are induced by
its normaliser in G are induced by elements of G ′, whence G(d) = G ′(d). By induction on
�, G ′(d) is of the form G(r ′,m ′, � ′), whence the result for G(d). This completes the proof
of (5.2).

Proof of (5.1) in the Imprimitive Case We can now prove (5.1) for the case when G =
G(r,m, �). The degrees are given by (5.2.1) and the coexponents are

1, r + 1, 2r + 1, . . . , (�− 2)r + 1, (�− 1)r + 1 (n �= 1),

1, r + 1, 2r + 1, . . . , (�− 2)r + 1, (�− 1)r + 1− � (n = 1),
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see [OS, p. 92, Table 2]. Also, the regular degrees for G are the divisors of

�n (n �= 1),

(�− 1)r (n = 1, � | r),

(�− 1)r, �n (n = 1, � � r),

see [Co, (2.11), p. 391]. In view of the results of Section 4, if d is regular, then (5.1)(ii)
holds.

Case 1 If d | �n then d is regular. For if not, then n = 1 and � | r; so d | � and thus d | r.
But then d | (�− 1)r and so d is regular. Hence (5.1) holds in this case.

Case 2 Suppose d � �n. The degrees of G(d) are

er, 2er, . . . , [(�− 1)/e]er

and we may assume [(� − 1)/e] > 1, since the case dim E = 1 has been taken care of
above. The sequence of degrees is therefore an arithmetic progression. By (5.2), we know
that G(d) is of the form G(r ′,m ′, � ′), whose degrees are

r ′, 2r ′, . . . , (� ′ − 1)r ′, � ′r ′/m ′.(5.1.1)

The sequence (5.1.1) is an arithmetic progression of the form k, 2k, 3k, . . . only if at least
one of the following conditions holds.

(a) m ′ = 1, in which case G(d) ∼= G
(
er, 1, [(�− 1)/e]

)
.

(b) � ′ = 2.

We check the statements (5.1) in these two cases.
In case (a), m ′ = 1, so G(d) ∼= G(r ′, 1, � ′) = G(er, 1, � ′). Since er > 1 (it is divisible by

d), G(d) has coexponents

1, er + 1, . . . ,
(
[(�− 1)/e]− 1

)
er + 1,

which form a subset of those of G because {er, 2er, . . . , � ′er} ⊂ {r, 2r, . . . , (�− 2)r}. Hence
(5.1)(ii) holds. As to (5.1)(i), clearly a(d) = � ′; we need to show that if b(d) = � ′, d is
regular. If n �= 1 then 1, er + 1, 2er + 1, . . . , � ′er + 1 are among the coexponents of G which
are congruent to 1 mod d. Hence if b(d) = � ′ we must have n = 1 and (�− 1)r = � ′er, so
that d divides (�− 1)r, whence d is regular. This proves (5.1)(i) and completes case (a).

Suppose that we are in case (b). Observe that since � ′ = 2, we have 3 > [(�− 1)/e] ≥ 2,
whence

3e > �− 1 ≥ 2e.(5.1.2)

Further, the degrees of G(d) are r ′ and � ′r ′/m ′ = 2r ′/m ′ = 2n ′. Since these are also
equal to er, 2er, we must have either

r ′ = er and 2n ′ = 2er(b1)
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or

r ′ = 2er and 2n ′ = er.(b2)

In case (b1), m ′ = 1, which is a case we have treated above (case (a)).
In case (b2), we have r ′ = 2er and 2n ′ = er, so that r ′ = 4n ′ and m ′ = 4. Hence

G(d) ∼= G(2er, 4, 2) and the coexponents of G(d) are given by

1, 2er + 1 if n ′ �= 1

1, 2er − 1 if n ′ = 1.
(5.1.3)

If n ′ �= 1, i.e., er �= 2, then the coexponents 1, 2er + 1 are among those of G, except
possibly if n = 1 and (�− 1)r = 2er. But in this case d is regular for G and (5.1)(ii) holds.
Moreover in the non-regular case (n ′ �= 1), 1 + er is a coexponent of G which is not among
those of G(d). Hence a(d) < b(d), which confirms (5.1)(i) in this case.

Finally, suppose n ′ = 1, i.e., er = 2. Then d = 2. Moreover if r = 1, we are in the
case where G = S� is the symmetric group. We have described G(d) completely in this case
in the proof of (5.2) and (5.1) is easily verified as well. Hence we may take r = 2, e = 1
and d = 2. Thus G(d) ∼= G(4, 4, 2). Furthermore, from (5.1.2) we see that � = 3, so that
G = G(2,m, 3). The degrees of G are 2, 4 and 3n; since a(d) = a(2) = 2, we have n = 1,
whence d is regular for G. This completes the proof of (5.1) for G = G(r,m, �) and any d.

We next prove (5.1) when G is primitive, which we assume now. We denote by Gi the
group with number i in the list of [ST]. We shall use the following result.

Lemma 5.4 Let z be the order of the centre of G. It suffices to prove (5.1)(ii) for d = pa,
where a ≥ 1 and p is a prime number such that pa � z, pa−1 | z.

Proof Suppose we know (5.1)(ii) for d of the stated form. Let d be any integer not dividing
z and write d = pae, where p is a prime and p � e. Since G(d) = G(e)(d), if G(e) �= G we are
finished by induction on the pair (|G|, d). If G(e) = G, then e divides z and G(d) = G(pa)
by (5.3). Similarly, we have G(pa) = G(pa−1)(pa), so that by induction, we may asume
that pa−1 | z. Thus if the result is known for all cases in the statement of (5.4), (5.1)(ii) is
known for all G, d.

Proof of (5.1)(ii) for Primitive G As pointed out above, we may assume that d divides at
least two degrees of G and that d is not regular. Under these assumptions we have � > 2.
An explicit check, using the results of [Sp, Section 5] and [Co, p. 412] reveals that the only
cases with d = pa as in Lemma (5.4) above which remain after imposing the conditions
that a(d) ≥ 2 and that d be non-regular, are G33, G34, G36, with d = 4 in each case. The
degrees of G33(4) are 4, 12 and it follows by inspection of the list that G33(4) ∼= G6, whose
coexponents {1, 9} form a subset of those of G33. The degrees of G34(4) are 12, 24. This
leaves G10, G15, G(12, 1, 2) and G(24, 4, 2) as possibilities for G34(4). The coexponents are
therefore either {1, 13} or {1, 25}. Both possibilities are subsets of the coexponents of G34.
Finally, we similarly see that G36(4) is one of G8, G12 or G(12, 3, 2). The possible sets of
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coexponents are therefore {1, 5}, {1, 11} or {1, 13}. In each case we have a subset of the
coexponents of G36. This completes the proof of (5.1)(ii).

To complete the proof of (5.1), we now give the

Proof of (5.1)(i) for Primitive G We need to show that if d is not regular, then b(d), which
is the number of coexponents of G which are congruent to 1 modulo d, is greater than a(d).
In view of Lemma (5.3), we have G(d) = G

(
lcm(d, z)

)
, where z is the order of the centre

of G. Moreover if e | d and G(e) = G(d), then if we know (5.1)(i) for (G, d), we also know
it for (G, e) since if a coexponent of G(d) = G(e) is congruent to 1 modulo d, the same
is true modulo e. Hence (5.1)(i) need only be verified for the largest integers d such that
G(e) = G(d). The results of [Sp, loc. cit.] and [Co, pp. 395, 412] now show that only the
following cases must be checked:

G13 (d = 8), G15 (d = 24), G24 (d = 4), G26 (d = 12), G27 (d = 12), G29 (d = 8, 12),
G32 (d = 18), G33 (d = 4, 12), G34 (d = 12, 18, 24, 30), G35 (d = 5), G36 (d = 4, 8, 10, 12),
G37 (d = 14, 18).

Inspection of the list of coexponents of [OS, p. 92, Table 2] reveals that in all these cases
we have a(d) < b(d), proving (5.1)(i) and completing the proof of Theorem C.

Corollary 5.5 Let G be a Coxeter group. Then d is regular for G if and only if the number of
degrees di which are congruent to 0 (mod d) equals the number of di which are congruent to
2 (mod d).

This follows from (5.1)(i), upon remarking that for a Coxeter group the coexponents
are the numbers di − 1.
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MA, 1997, 73–139.

[Co] A. M. Cohen, Finite complex reflection groups. Ann. Sci. École. Norm. Sup. 9(1976), 379–436.
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Schémas. Inst. Hautes Études Sci. Publ. Math. 32(1967), 5–343.
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