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Studi di Firenze, viale Morgagni 67/a, 50134 Firenze, Italy
(daniele.angella@unifi.it, daniele.angella@gmail.com,
francesco.pediconi@unifi.it)

(Received 13 July 2021; accepted 17 January 2022)

We investigate the geometry of Hermitian manifolds endowed with a compact Lie
group action by holomorphic isometries with principal orbits of codimension one. In
particular, we focus on a special class of these manifolds constructed by following
Bérard-Bergery which includes, among the others, the holomorphic line bundles on

m−1, the linear Hopf manifolds and the Hirzebruch surfaces. We characterize
their invariant special Hermitian metrics, such as balanced, Kähler-like, pluriclosed,
locally conformally Kähler, Vaisman and Gauduchon. Furthermore, we construct
new examples of cohomogeneity one Hermitian metrics solving the
second-Chern–Einstein equation and the constant Chern-scalar curvature equation.
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1. Introduction

One of the most useful ways to construct concrete examples of Einstein metrics is
by considering Riemannian manifolds with a large symmetry group, for example,
homogeneous spaces and manifolds of cohomogeneity one, see e.g. [10, 56, 57]
and references therein. As another useful tool, the Calabi–Yau theorem assures
the existence of Einstein metrics on compact complex Kähler manifolds with non-
positive first-Chern class [8, 59], and also the existence of Kähler–Einstein metrics
on Fano manifolds has been recently understood.

The first non-homogeneous example of compact Riemannian Einstein manifold
with positive scalar curvature has been provided by Page [45, 46] on CP2#CP2,
and then generalized by Bérard-Bergery in [9] as follows. Let P be a compact
Kähler–Einstein manifold with positive scalar curvature [1, 34, 35], for example,
P = CP1 in case of the Page example. Let the first-Chern class be c1(P ) = pα,
with p > 0 integer and α ∈ H2(P ;Z) indivisible. For n > 0 integer, consider the
line bundle C → En → P with c1(En) = nα, and the associated projective bun-
dle CP1 → Mn → P . Then one can use the theory of Riemannian submersion [43]
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to compute the Riemannian curvature of both En and Mn. In particular, when
P = G/K is a Hermitian symmetric space, then En and Mn are cohomogeneity one,
and by consequence their curvature is determined by the structure constants of the
Lie algebra g := Lie(G) and by the induced 1-parameter family of scalar products
[9]. The Einstein equation is then reduced to a system of second-order ordinary dif-
ferential equations (ODEs), in both the spaces En and Mn, that can be integrated
to get Einstein metrics which are also Hermitian, see [9, théorèmes 1.10 and 1.13].

In the complex setting, Kähler C-spaces (i.e. compact, simply-connected, homo-
geneous Kähler manifolds) are well understood [1, 12, 55]: in particular, they
always admit a unique Kähler–Einstein metric, up to scaling. On the other hand,
cohomogeneity one Kähler metrics have been studied in [4, 5, 17, 28, 35, 48–50].

In the Hermitian non-Kählerian context, since the Levi-Civita connection does
not preserve the complex structure, one is led to introduce a more suitable notion
of canonical metrics, for example, the second-Chern–Einstein condition. Here, by
second-Chern–Einstein metric on a complex manifold, we mean a Hermitian metric
on the tangent bundle that is Hermite–Einstein with respect to itself [22], see also
[7, 51]. Examples of compact second-Chern–Einstein manifolds include the homo-
geneous Hopf surface [22, 24, 37], holomorphically parallelizable manifolds [11]
and the homogeneous non-Kähler C-spaces studied by Podestà [47]; see also [2] for
the almost-Kähler case. In particular, the only compact complex non-Kähler sur-
face admitting second-Chern–Einstein metrics is the Hopf surface [24, theorem 2],
see also [22]. Note that there still miss (if any) non-Kähler examples of second-
Chern–Einstein metrics with negative Chern-scalar curvature on compact complex
manifolds. Further problems, e.g. the constant Chern-scalar curvature problem,
also known as Chern–Yamabe problem [6], are still not completely understood.
Non-homogeneous examples of Hermitian metrics of positive constant Chern-scalar
curvature on Hirzebruch surfaces, using the Page and Bérard-Bergery ansatz, have
been constructed in [33].

In this note, motivated by the above questions, we start to investigate the cur-
vature and the properties of Hermitian non-Kähler manifolds with large isometry
groups. In particular, we focus on the Bérard-Bergery [9] standard [48] cohomogene-
ity one Hermitian manifolds (M(i,n)(G, K), J, g), with i ∈ {1, 2, 3, 4} and n ∈ N,
that are defined as (the total spaces of) bundles over a simply connected, irreducible,
compact Hermitian symmetric space P = G/K, see definition 3.7. We compute the
Chern–Ricci and Chern-scalar curvatures, see proposition 3.15. This is aimed at
getting the second-Chern–Einstein and the constant Chern-scalar curvature equa-
tions, that we investigate in the last section. Here, we continue by describing the
existence of special metrics.

Our first result concerns the locally conformally Kähler condition. We recall that a
Hermitian metric g is called locally conformally Kähler if it admits a local conformal
change to a Kähler metric [19], which is equivalent to say that dω = 1

m−1ϑ ∧ ω with
dϑ = 0, where ω = g(J·, ·) is the fundamental 2-form associated with the metric,
m denotes the complex dimension and ϑ is the Lee form of g [23], see § 3.3. In
the particular case when ϑ is also exact, say ϑ = (m − 1) dφ, then exp(−φ)ω is
Kähler, and g is called globally conformally Kähler (this includes the case ϑ = 0,
corresponding to g itself being Kähler). When ϑ is not exact, we say that the metric
is strictly locally conformally Kähler. Moreover, a strictly locally conformally Kähler
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metric is called Vaisman if the Lee form ϑ is parallel with respect to the Levi-Civita
connection.

It is worth noticing that homogeneous, strictly locally conformally Kähler met-
rics on compact manifolds are Vaisman [25, 29]. On the other hand, in the
cohomogeneity one case, we prove the following.

Theorem A (see proposition 4.1, corollary 4.2 and proposition 4.3). Let
(M(i,n)(G, K), J, g) be one of the Bérard-Bergery standard cohomogeneity one Her-
mitian manifolds. Then, g is locally conformally Kähler. Furthermore, g is strictly
locally conformally Kähler if and only if (M(i,n)(G, K), J) is compact without sin-
gular orbits (case i = 3) and, on such manifolds, g is Vaisman if and only if it is
homogeneous.

Our second result concerns other kinds of special conditions for Hermitian met-
rics. To this regard, we recall that the balanced condition in the sense of Michelsohn
[40] amounts to d∗ω = 0. The pluriclosed condition, a.k.a. strong Kähler with tor-
sion (SKT for short), means that ddc ω = 0. Moreover, the Gauduchon condition
[21] refers to d∗ϑ = 0, equivalently, ddc ωm−1 = 0.

Theorem B (see corollaries 4.7, 4.9 and proposition 4.6). Let (M(i,n)(G, K), J, g)
be one of the Bérard-Bergery standard cohomogeneity one Hermitian manifolds.
The following three conditions are equivalent: g is pluriclosed, g is balanced, g is
Kähler. Moreover, if (M(i,n)(G, K), J) has singular orbits, then g is Gauduchon if
and only if it is Kähler.

Finally, we investigate the second-Chern–Einstein and the constant Chern-scalar
curvature problems (see § 2.2) on this class of manifolds. Firstly, we prove a local
existence and uniqueness result for second-Chern–Einstein metrics with prescribed
Chern-scalar curvature (see theorem 5.1), by using a method due to Malgrange [39]
already exploited by Eschenburg and Wang [20] and by Böhm [14, 15]. Then, con-
cerning the existence of complete solutions to the second-Chern–Einstein equations,
we prove the following.

Theorem C (see remark 5.2, theorem 5.3, proposition 5.5). Let (M(i,n)(G, K), J)
be one of the Bérard-Bergery standard cohomogeneity one complex manifolds.

(a) If (M(i,n)(G, K), J) has no singular orbits (cases i = 1 and i = 3), then it
admits homogeneous second-Chern–Einstein metrics.

(b) If (M(i,n)(G, K), J) has one singular orbit (case i = 2), then it admits a
complete, non-Kähler, second-Chern–Einstein metrics of cohomogeneity one.

(c) If (M(i,n)(G, K), J) has two singular orbits (case i = 4), then it does not
admit any cohomogeneity one, submersion-type metrics which are second-
Chern–Einstein.

Let us stress that the homogeneous second-Chern–Einstein metrics on
(M(1,n)(G, K), J) and (M(3,n)(G, K), J), corresponding to case (a) in theorem C,
are clearly of constant Chern-scalar curvature. They include the classical example
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of the standard metric on the diagonal Hopf manifold, which corresponds in our
notation to M(3,1)(G, K) with G = SU(m) and K = S(U(1) × U(m − 1)). On the
other hand, the metrics that we constructed on manifolds with singular orbits, cor-
responding to cases (b) and (c) in theorem C, are weakly second-Chern–Einstein,
namely, they do not have constant Chern-scalar curvature. Therefore, this brings
us to investigate the constant Chern-scalar curvature problem for such manifolds.
In this direction, we obtain

Theorem D (see remark 5.2, theorems 5.7, 5.8). All the Bérard-Bergery stan-
dard cohomogeneity one complex manifolds (M(i,n)(G, K), J) admit complete,
non-Kähler metrics of cohomogeneity one with constant Chern-scalar curvature.

Note that, in complex dimension m = 2, the compact case with two singular
orbits (corresponding to i = 4) reduces to the Hirzebruch surfaces. This case has
been treated by Koca and Lejmi [33], who proved the existence of positive constant
Chern-scalar curvature of cohomogeneity one.

The paper is organized as follows. In § 2, we recall some basics on the Chern
connection and cohomogeneity one actions. In § 3, we recall the construction of
(M(i,n)(G, K), J, g) following Bérard-Bergery, and we compute the Hermitian cur-
vatures and torsion of such manifolds. In § 4, we investigate the existence of special
non-Kähler Hermitian metrics, proving theorems A and B. In § 5, we prove theo-
rems C and D. Finally, in Appendix A, we collect the detailed computations needed
in § 3, precisely to prove propositions 3.15 and 3.17, and in § 4, namely to prove
equation (4.3).

2. Preliminaries

In this section, we briefly recall some facts on the Chern connection and on
Hermitian manifolds with cohomogeneity one actions by holomorphic isometries.

2.1. The Chern connection

Let (M, J, g) be a connected, complete, Hermitian manifold of real dimension
dimR M = 2m. Let us denote by ω := g(J · , · ) its fundamental 2-form, by D its
Levi-Civita connection and by ∇ its Chern connection, which is defined by

g(∇AB,C) := g(DAB,C) − 1
2

dω(JA,B,C) (2.1)

for any A, B, C ∈ Γ(TM). Since, by the Koszul formula,

2g(DAB,C) = LA(g(B,C)) + LB(g(A,C)) − LC(g(A,B))

+ g([A,B], C) − g([A,C], B) − g([B,C], A) (2.2)

and

dω(A,B,C) = LA(g(JB,C)) − LB(g(JA,C)) + LC(g(JA,B))

+ g([A,B],JC) + g([B,C],JA) + g([C,A],JB), (2.3)
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it follows that

2g(∇AB,C) = LA(g(B,C)) − LJA(g(JB,C)) + g([A,B], C)

− g([JA,B],JC) − g([A,C], B) + g([JA,C],JB). (2.4)

Moreover, it is well-known that the Chern connection is characterized by the
following properties

∇g = ∇J = 0, Jτ(A,B) = τ(JA,B) = τ(A,JB), (2.5)

where τ(A, B) := ∇AB −∇BA − [A, B] is the torsion tensor of ∇.
For later use, we observe the following straightforward

Lemma 2.1. For any A ∈ Γ(TM) it holds that

LAJ = −[∇A,J], (2.6)

LJAJ = J ◦ LAJ. (2.7)

Proof. If E ∈ Γ(End(TM)), then

(LAE)B = LA(EB) − E(LAB)

= ∇A(EB) −∇EBA − τ(A,EB) − E(∇AB) + E(∇BA) + E(τ(A,B))

= −[∇A,E]B + (∇AE)B + E(τ(A,B)) − τ(A,EB) .

Then, equation (2.6) follows by setting E = J and using equation (2.5). On the
other hand, from equations (2.5) and (2.6) we get

LJAJ = −[∇JA,J] = −[J∇A,J] = −J[∇A,J] = J ◦ LAJ

and so the thesis follows. �

A real vector field A ∈ Γ(TM) is holomorphic if LAJ = 0. Hence, we get

Corollary 2.2. Let A ∈ Γ(TM). Then it holds:

• A is holomorphic if and only if

∇JBA = J∇BA for any B ∈ Γ(TM);

• A is holomorphic if and only if JA is holomorphic.

Finally, we set dc := J−1◦ d ◦J, so that

d= ∂ + ∂̄, dc = −√−1(∂ − ∂̄), ddc = 2
√−1∂∂̄

and, for any smooth function f : M → R, we denote by ΔCh
g f := g(ddcf, ω) the

Chern–Laplacian of f .
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2.2. Second-Chern–Einstein metrics

Let (M, J, g) be a connected, complete, Hermitian manifold of real dimension
dimR M = 2m. We recall that, by the lack of symmetries of the Chern-curvature

RCh(g)(A,B) := ∇[A,B] − [∇A,∇B ],

we have (at least) two ways to trace the Ricci tensor. We call first Chern–Ricci
curvature the tensor defined by

RicCh[1](g)(A,B)x :=
∑
eα

gx

(
RCh(g)x(Ax,JBx) eα, Jeα

)
,

where (eα, Jeα) is a (J, g)-unitary frame for the tangent space at x. Similarly, we
call second Chern–Ricci curvature the tensor defined by

RicCh[2](g)(A,B)x :=
∑
eα

gx(RCh(g)x(eα,Jeα)Ax, JBx).

Finally, the Chern-scalar curvature is the function given by

scalCh(g)(x) := 2
∑
eα

RicCh[i](g)x(eα, eα), i = 1, 2.

We remark that, according to our notation, when g is Kähler it holds that
RicCh[1](g) = RicCh[2](g) = Ric(g) and scalCh(g) = scal(g), where Ric(g) and scal(g)
denote the Riemannian Ricci tensor and the Riemannian scalar curvature of g,
respectively.

This yields to the following

Definition 2.3. Let i ∈ {1, 2}. The metric g is said to be weakly (respectively,
strongly) ith-Chern–Einstein if there exists λ ∈ C∞(M, R) (respectively, λ ∈ R)
such that

RicCh[i](g) =
λ

2m
g.

We stress that the first-Chern–Einstein problem is basically understood for
compact complex manifolds X = (M, J), see [7, 52]. Indeed, strongly first-
Chern–Einstein metrics with non-zero Chern-scalar curvature are Kähler–Einstein.
Moreover, by conformal methods, if a Hermitian metric g is weakly first-
Chern–Einstein with non-identically zero Chern-scalar curvature, then it is confor-
mal to a Kähler metric in the class ±c1(X) (see [7, theorem A]). Finally, compact
complex manifolds with first-Bott–Chern class cBC

1 (X) = 0 are the so-called non-
Kähler Calabi–Yau manifolds [52] and always admit Chern–Ricci flat metrics [52,
theorem 1.2], see also [53, corollary 2].

On the other hand, the second-Chern–Einstein problem seems to be geometri-
cally more appealing, see e.g. [7, 24, 47, 51]. Note that a Hermitian metric g on
X = (M, J) is second-Chern–Einstein according to definition 2.3 if and only if the
induced Hermitian metric h(V, W ) := g(V, W ) on the holomorphic tangent bundle
T 1,0X is Hermite–Einstein by taking trace with itself [22].
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Remark 2.4. We observe that the second-Chern–Einstein condition is satisfied by
a Hermitian metric g if and only if it is satisfied by all the metrics in its conformal
class (see [22]), since for any smooth function f : M → R it holds that

RicCh[2](efg) = RicCh[2](g) − (ΔCh
g f)g.

We remark that this is strongly different from the Riemannian analogue, i.e. the
Einstein condition. On the other hand, we stress that a Kähler metric is second-
Chern–Einstein if and only if it is Einstein.

Note that, up to our knowledge, a non-Kähler example of second-Chern–Einstein
metric on a compact complex manifold of complex dimension m > 2 with negative
scalar curvature is still missing.

2.3. Cohomogeneity one group actions on Hermitian manifolds

Let us consider a compact, connected real Lie group G which acts effectively by
holomorphic isometries on (M, J, g) with cohomogeneity one [9, 10, 41, 48]. Then,
the orbit space Ω := G\M is homeomorphic to one of the following:

(i) Ω � R, (ii) Ω � [0,+∞), (iii) Ω � S1, (iv) Ω � [0, π].

Up to homothety, we can choose a unit speed geodesic γ : I → M which intersects
orthogonally any G-orbit [9, § 2.7], where the interval I ⊂ R is defined as

(i) I := R, (ii) I := (0,+∞), (iii) I := (−π, π), (iv) I := (0, π).

Then, for r ∈ I, the orbit Sr := G · γ(r) is principal and can be identified with
a fixed homogeneous space by means of the 1-parameter family of G-equivariant
diffeomorphisms

φr : G/H → Sr, φr(aH) := a · γ(r),

where H ⊂ G is a closed subgroup. For r ∈ ∂I, the following cases occur:

(i) ∂I = ∅ and all the orbits are principal;

(ii) ∂I = {0}, the orbit S0 := G · γ(0) is non-principal and G-equivariantly diffeo-
morphic to a homogeneous space G/L, where H ⊂ L ⊂ G is an intermediate
subgroup and L/H is a sphere, see e.g. [9, § 2.12];

(iii) ∂I = {±π}, the orbits S±π := G · γ(±π) are principal but in general γ(−π) �=
γ(π), see e.g. [9, § 2.10];

(iv) ∂I = {0, π}, the orbits S0 := G · γ(0), Sπ := G · γ(π) are non-principal and
G-equivariantly diffeomorphic to two homogeneous space G/L±, with H ⊂
L− ∩ L+ and L±/H are spheres, see e.g. [9, § 2.13].

The subset M reg :=
⋃

r∈I Sr of regular points is an open, dense submanifold of
M which projects onto I by means of the canonical projection M → Ω and the
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restricted Riemannian metric splits as

g|Mreg = dr2 + g|Sr
,

where r is the coordinate on I. We fix an Ad(G)-invariant inner product Q on the
Lie algebra g := Lie(G) and a Q-orthogonal decomposition g = h + m, with h :=
Lie(H). We consider identified m � TeHG/H by means of the evaluation map X �→
d
ds exp(sX)H

∣∣
s=0

, where exp : g → G denotes the Lie exponential map of G. We also
identify any G-invariant tensor field on G/H with the corresponding Ad(H)-invariant
tensor on m in the usual way.

Firstly, we define the 1-parameter family (gr) ⊂ Sym2(m∗)Ad(H) by

gr := (φr)∗(g|Sr
).

We also set

Tr :=
(dφr)−1

eH

(
Jγ(r)γ̇(r)

)
∣∣(dφr)−1

eH

(
Jγ(r)γ̇(r)

)∣∣
Q

∈ m, θr := Q(Tr, ·)|m ∈ m∗.

Then, for any r ∈ I, the complex structure J induces a linear complex structure Jr

on pr := ker(θr) ⊂ m by setting

Jr : pr → pr, Jr := (dφr)−1
eH ◦ Jγ(r) ◦ (dφr)eH|pr

.

The integrability of J implies that, for any X, Y ∈ pr,

[JrX,Y ]m + [X,JrY ]m ∈ pr,

Jr

(
[JrX,Y ]m + [X,JrY ]m

)
= [JrX,JrY ]m − [X,Y ]m.

(2.8)

Moreover, since the subgroup H ⊂ G leaves any point of the geodesic γ fixed and G
acts by holomorphic isometries, it follows that

[h, Tr] = 0 for any r ∈ I (2.9)

and so (θr, Jr) is a 1-parameter family of G-invariant CR structures on G/H, see
e.g. [3].

We recall now the following definition [48]: G/H is said to be ordinary if G is
semisimple, the normalizer K := NG(Ho) of the connected component Ho of H is the
centralizer of a torus and dim K = 1 + dimH. This implies that:

• T ≡ Tr and p ≡ pr do not depend on r ∈ I;

• the Lie algebra k := Lie(K) splits Q-orthogonally as k = h ⊕ RT .

Moreover, the complex structure J is said to be projectable if each Jr is Ad(K)-
invariant. In this case, (Jr)r∈I is mapped onto a 1-parameter family of G-invariant
complex structures on the flag manifold G/K. Since the set of invariant complex
structures on a flag manifold is discrete [1, 42], it follows that J ≡ Jr is constant.
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Definition 2.5 [4, 48]. The Hermitian manifold (M, J, g) acted by G is said to
be standard if the following conditions are satisfied:

• the principal orbits are ordinary and the complex structure J is projectable;

• the non-principal orbits, if they exist, are flag manifolds with the induced
complex structure.

In § 3, a distinguished kind of cohomogeneity one standard Hermitian manifolds
will be investigated.

3. Bérard-Bergery standard cohomogeneity one Hermitian manifolds

In this section, we consider a special class of standard cohomogeneity one Hermitian
manifolds, following the construction of Bérard-Bergery [9]. Then, we compute the
Chern connection and the Chern–Ricci tensors of such manifolds.

3.1. Chern connection of standard cohomogeneity one Hermitian
manifolds

Let (M, J, g) be a standard cohomogeneity one Hermitian manifolds acted
effectively by holomorphic isometries by a compact, connected real Lie group G.

Hereafter, we adopt the same notation introduced in § 2. Note that the comple-
ment m of h in g admits a Q-orthogonal, Ad(H)-invariant decomposition m = a + p,
where a := RT is the trivial submodule. Since, by hypothesis, p does not contain
any trivial Ad(H)-submodule, the metrics gr induced by g on m split uniquely as

gr = F (r)2Q|a⊗a + gr|p⊗p

by means of the Schur lemma, where F : I → R is a smooth, positive function,
possibly satisfying some appropriate boundary condition.

From now on, given V ∈ g, we denote by V ∗ ∈ Γ(TM) the fundamental vector
field on M associated with V , that is V ∗

p := d
ds exp(sV ) · p∣∣

s=0
, and we also set

N := F
∂

∂r
. (3.1)

Note that, by construction,

(JN)γ(r) = T ∗
γ(r) (3.2)

and, for any V, W ∈ g, it holds

[V ∗,W ∗] = −[V,W ]∗, [N,V ∗] = 0. (3.3)

We observe also that, for any X ∈ p and for any Y1, Y2 ∈ m, we have

g(Y ∗
1 , Y ∗

2 )γ(r) = gr(Y1, Y2), (JX∗)γ(r) = (JX)∗γ(r). (3.4)

By hypothesis, the fundamental vector fields V ∗ are holomorphic, i.e.

[V ∗,JA] = J[V ∗, A] for any A ∈ Γ(TM). (3.5)
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By using equations (2.2) and (2.3), one can directly obtain the explicit formu-
las for the Levi-Civita connection and the 3-form dω. Here and in the following
statements, we consider the context and assume the notation as above.

Proposition 3.1. Let X, Y, Z ∈ p. Then, the non-vanishing components of the
Levi-Civita connection are given by

2g
(
DY ∗X∗, Z∗

)
γ(r)

= gr([X,Y ], Z) + gr([Z,X], Y ) + gr([Z, Y ],X),

2g
(
DY ∗X∗, T ∗

)
γ(r)

= gr([X,Y ], T ) + gr([T,X], Y ) + gr([T, Y ],X),

2g
(
DY ∗X∗, N

)
γ(r)

= −F (r)
∂

∂r
(gr(X,Y )),

2g
(
DT∗X∗, Z∗

)
γ(r)

= −gr([X,Z], T ) − gr([T,X], Z) − gr([T,Z],X),

2g
(
DNX∗, Z∗

)
γ(r)

= F (r)
∂

∂r
(gr(X,Z)),

2g
(
DY ∗T ∗, Z∗

)
γ(r)

= −gr([Y,Z], T ) + gr([T, Y ], Z) − gr([T,Z], Y ),

2g
(
DT∗T ∗, N

)
γ(r)

= −2F ′(r)F (r)2,

2g
(
DNT ∗, T ∗

)
γ(r)

= 2F ′(r)F (r)2,

2g
(
DY ∗N,Z∗

)
γ(r)

= F (r)
∂

∂r
(gr(Y,Z)),

2g
(
DT∗N,T ∗

)
γ(r)

= 2F ′(r)F (r)2,

2g
(
DNN,N

)
γ(r)

= 2F ′(r)F (r)2.

Proposition 3.2. Let X, Y, Z ∈ p. Then, the 3-form dω is given by

dω(X∗, Y ∗, Z∗)γ(r) = gr([X,Y ], JZ) + gr([Y,Z], JX) + gr([Z,X], JY ),

dω(X∗, Y ∗, T ∗)γ(r) = gr([T,X], JY ) + gr([T, JY ],X),

dω(X∗, Y ∗, N)γ(r) = F (r)
∂

∂r

(
gr(JX, Y )

)
+ gr([X,Y ], T ),

dω(X∗, T ∗, N)γ(r) = 0.

By combining propositions 3.1 and 3.2, and by equation (2.1), we obtain explicit
formulas for the Chern connection along the geodesic γ(r). More precisely
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Proposition 3.3. Let X, Y, Z ∈ p. Then the non-vanishing components of the
Chern connection are

2g
(
∇Y ∗X∗, Z∗

)
γ(r)

= gr([X,Y ], Z) + gr([X,JY ], JZ)

+ gr([Z, Y ],X) − gr([Z, JY ], JX),

2g
(
∇Y ∗X∗, T ∗

)
γ(r)

= gr([X,Y ], T ),

2g
(
∇Y ∗X∗, N

)
γ(r)

= gr([X,JY ], T ),

2g
(
∇T∗X∗, Z∗

)
γ(r)

= F (r)
∂

∂r

(
gr(JX,Z)

)
− gr([T,X], Z) − gr([T,Z],X),

2g
(
∇NX∗, Z∗

)
γ(r)

= F (r)
∂

∂r
(gr(X,Z)) + gr([T, JX], Z) + gr([T,Z], JX),

2g
(
∇Y ∗T ∗, Z∗

)
γ(r)

= 2gr([T, Y ], Z) − gr([Y,Z], T ),

2g
(
∇T∗T ∗, N

)
γ(r)

= −2F ′(r)F (r)2,

2g
(
∇NT ∗, T ∗

)
γ(r)

= +2F ′(r)F (r)2,

2g
(
∇Y ∗N,Z∗

)
γ(r)

= gr([JY,Z], T ),

2g
(
∇T∗N,T ∗

)
γ(r)

= 2F ′(r)F (r)2,

2g
(
∇NN,N

)
γ(r)

= 2F ′(r)F (r)2.

As a direct consequence of proposition 3.3 and equation (2.6), we get

Corollary 3.4. It holds that (LNJ)γ(r) = 0, i.e. [N, JA]γ(r) = J[N, A]γ(r) for
any A ∈ Γ(TM).

We can also characterize the Kähler metrics as follows. By proposition 3.2 it
follows that

dω(X∗, Y ∗, T ∗)γ(r) = 0 for any X,Y ∈ p

if and only if the restriction gr|p⊗p is Ad(K)-invariant for any r ∈ I. This is equiva-
lent to say that the metrics (gr) on G/H are of submersion-type with respect to the
homogeneous circle bundle K/H → G/H → G/K, namely, they induce metrics on
the base such that the projection is a Riemannian submersion. Moreover, if gr|p⊗p

is Ad(K)-invariant, then the condition

dω(X∗, Y ∗, Z∗)γ(r) = 0 for any X,Y,Z ∈ p
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holds true if and only if the induced metrics on the flag manifold G/K are Kähler.
Let us fix now a Q-orthogonal, Ad(K)-invariant, irreducible decomposition

p = p1 + · · · + p�. (3.6)

Since flag manifolds are equal rank homogeneous spaces, namely rank(K) = rank(G),
it follows that their isotropy representations are always monotypic, namely pi �� pj

for any 1 � i < j � �. Hence, the decomposition (3.6) is unique (up to order) and,
by the Schur lemma, the metrics gr splits uniquely as

gr = F (r)2Q|a⊗a + h1(r)2Q|p1⊗p1 + · · · + h�(r)2Q|p�⊗p�
.

Then, the condition

dω(X∗, Y ∗, N)γ(r) = 0 for any X,Y ∈ p

holds true if and only if

ad(T )|pi
= −2

hi(r)h′
i(r)

F (r)
J for any 1 � i � �. (3.7)

3.2. Construction of Bérard-Bergery manifolds

Let us assume that P = P (G, K) := G/K is a simply-connected, irreducible com-
pact Hermitian symmetric space, i.e. G is a connected, compact, simple Lie group
and K ⊂ G is a maximal, connected, compact subgroup with centre isomorphic to
the circle group [30, theorem 6.1]. Set dimR P = 2(m − 1), with m � 2, and let
p ∈ N be the unique positive integer such that p−1c1(P ) is an indivisible (positive)
class in the cohomology group H2(P ;Z), see [13, chapter 5, § 16]. In the following,
we list the possibilities for P , following [10, § 7.102 and § 9.124].

P m p conditions
SU(k1 + k2)/S(U(k1)×U(k2)) k1k2 + 1 k1 + k2 k2 � k1 � 1

SO(2k)/U(k)
k(k − 1)

2
+ 1 2(k − 1) k � 5

Sp(k)/U(k)
k(k + 1)

2
+ 1 k + 1 k � 2

SO(k + 2)/(SO(2)×SO(k)) k + 1 k k � 5
E6/SO(2)Spin(10) 17 12 −

E7/SO(2)E6 28 18 −

Denote by H := [K, K] the commutator of K. By hypothesis, there exists an integer
s � 1 such that H ∩ Z(K) � Zs. Fix an isomorphism ı : U(1) → Z(K) and consider
the generator α := ı(e

√−1(2π/s)) of H ∩ Z(K). Then, consider the right action of
Zs on H × U(1) given by (h, z) · j := (hαj , e−

√−1(2jπ/s)z) and take the quotient
H·U(1) := H ×Zs

U(1). We can consider identified K = H·U(1) by means of a Lie
group isomorphism (see e.g. [16, chapter 0, theorem 6.9]) and, for any positive
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integer n, we take the representation

ρn : K → U(1) , ρn([h, z]) := z−sn.

Then, consider the associated bundle

§n = §n(G,K) := G ×ρn
U(1)

with the projection πn : §n → P given by πn([a, z]) := aK. Note that G acts tran-
sitively on the left on §n by ã · [a, z] := [ãa, z] and the stabilizer of [e, 1] is the
subgroup ker(ρn) = H×Zn ⊂ K, where

H×Zn � H ×Zs
Zsn ⊂ H·U(1) = K by (h, j) �→ [

h, e
√−1(2jπ/n)

]
.

We are ready to construct the family M(i,n)(G, K), with 1 � i � 4 and n ∈ N, of
standard cohomogeneity one Hermitian manifolds in the following way.

(i) We set M(1,n)(G, K) := §n × R and we let G act on M(1,n) via a · (x, r) :=
(a · x, r). The orbit space is Ω = R.

(ii) We let M(2,n)(G, K) := §n ×U(1) C be the homogeneous complex line bun-
dle over P associated with πn : §n → P by means of the standard action
of U(1) on C. Then, M(2,n)(G, K) is equivariantly diffeomorphic to the quo-
tient of §n × [0, +∞) by the fibration §n × {0} → P , on which G acts by left
multiplication on the first factor.

(iii) We set M(3,n)(G, K) := §n × S1 and we let G act on M(3,n)(G, K) via a ·
(x, z) := (a · x, z). The orbit space is Ω = S1.

(iv) We let M(4,n)(G, K) := §n ×U(1) CP1 be the homogeneous CP1-bundle over
P associated with πn : §n → P by means of the standard action of U(1) on
CP1. Then, M(4,n)(G, K) is equivariantly diffeomorphic to the quotient of §n ×
[0, π] under the identification of the two boundaries by means of the fibrations
§n × {0} → P and §n × {π} → P , on which G acts by left multiplication on
the first factor.

We observe that the manifolds in families M(3,n)(G, K) and M(4,n)(G, K) are com-
pact, and the manifolds in families M(2,n)(G, K) and M(4,n)(G, K) are simply con-
nected. Moreover, manifolds in family M(4,n)(G, K) are almost-homogeneous in the
sense of [31], i.e. the complexified Lie group GC acts on them by biholomorphisms
with one open orbit, see [49].

Let M(i,n)(G, K) be as above. We denote by B be the Cartan–Killing form of
g := Lie(G) and we set k := Lie(K), h := Lie(H), a := z(k) = Lie(Z(K)). Then, the
positive definite Ad(G)-invariant scalar product Q := 1

4m (−B) on g determines a
Ad(H)-invariant, Q-orthogonal decomposition

g = h + a︸ ︷︷ ︸
k

+

m︷ ︸︸ ︷
p, with [k, k] = h, [h, a] = {0}, [k, p] ⊂ p, [p, p] ⊂ k.

https://doi.org/10.1017/prm.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.5


558 D. Angella and F. Pediconi

We fix a vector T ∈ a with Q(T, T ) = 1 and we pick the only λ > 0 such that

J := λ−1 ad(T )|p (3.8)

is a linear complex structure on p [32, chapter XI, theorem 9.6]. Note that a direct
computation implies

−4m = B(T, T ) = Tr(ad(T ) ◦ ad(T )) = −λ2 Tr(Id2(m−1))

and so

λ2 =
2m

m − 1
. (3.9)

Remark 3.5 [48, p. 814]. The linear complex structure J on p determines uniquely
a G-invariant, projectable, complex structure J on M(i,n)(G, K).

Moreover, we stress that:

• the restriction Qp := Q|p⊗p induces a G-invariant Kähler–Einstein metric on
the base space P satisfying the equation Ric(Qp) = 2mQp

• the scalar product 2m(m−1)n2

p2 Qa, with Qa := Q|a⊗a, corresponds to the stan-
dard metric of radius 1 on the fibres of πn : §n → P

Then, being P irreducible, any G-invariant Hermitian metric g on
(M(i,n)(G, K), J) which is of submersion-type with respect to M(i,n)(G, K) → P
is completely determined by two positive, smooth functions f, h : I → R, satisfying
some appropriate smoothness conditions, by means of the splitting

gr =
2m(m − 1)n2

p2
f(r)2Qa + h(r)2Qp, (3.10)

where (gr) is again the 1-parameter family of G-invariant metrics induced by g on
the principal orbits. Case by case, the smoothness conditions are the following (see
e.g. [54, p. 7] and [9, p. 39]).

(i) For i = 1, I = R and there are no boundary conditions.

(ii) For i = 2, I = (0, +∞) and the conditions are: f is the restriction of a smooth
odd function on R with f ′(0) = 1 and h is the restriction of a smooth even
function on R.

(iii) For i = 3, f, h need to be S1-periodic.

(iv) For i = 4, I = (0, π) and the conditions are: f is the restriction of a smooth
odd function on R satisfying f(π + r) = −f(π − r) with f ′(0) = 1 = −f ′(π)
and h is the restriction of a smooth even function on R satisfying h(π + r) =
h(π − r).

Conversely, any pair of smooth functions (f, h) satisfying the appropriate
smoothness condition uniquely defines a smooth G-invariant Hermitian metric
g = g(f, h), which is of submersion-type.
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By equations (3.7), (3.9) and (3.10), it follows that the metric g(f, h) is Kähler
if and only if the functions f, h verify

h(r)h′(r) +
mn

p
f(r) = 0 for any r ∈ I. (3.11)

Remark 3.6. We note that the smoothness condition in (iii) and equation (3.11)
imply immediately that the complex manifolds (M(3,n)(G, K), J) cannot admit
cohomogeneity one, submersion-type Kähler metrics (see also [4, corollary 20]).
Actually, it holds more: it can be easily check that π1(§n) is finite, and so its first
Betti number is b1(§n) = 0. In particular, this implies that (M(3,n)(G, K), J) do not
admit Kähler metrics at all.

From now on, we will adopt the following

Definition 3.7. A Bérard-Bergery standard cohomogeneity one Hermitian man-
ifold is a triple (M(i,n)(G, K), J, g), where M(i,n)(G, K) is the bundle over P =
G/K constructed as above, J is the unique G-invariant projectable complex struc-
ture on M(i,n)(G, K) as in remark 3.5 and g = g(f, h) is the Riemannian metric
described in equation (3.10). Accordingly, any pair (M(i,n)(G, K), J) will be called
Bérard-Bergery standard cohomogeneity one complex manifold.

Let us point out that the above construction can be performed in a more general
setting, i.e. by requiring that the base space P = G/K is a Kähler C-space, see [9].
However, in this work, we will just focus in the case of P being symmetric and
irreducible.

Example 3.8. Consider the Hermitian symmetric space P = CPm−1, correspond-
ing to G = SU(m) and K = S(U(1)×U(m − 1)). Here, the Ad(G)-invariant scalar
product Q(A1, A2) := − 1

2 Tr(A1A2) on the Lie algebra g = su(m), defined follow-
ing the above normalization, induces on P the Fubini–Study metric with sectional
curvature satisfying 1 � sec � 4. In this case, the principal orbits are equivariantly
diffeomorphic to the lens space §n = Zn\S2m−1, where Zn acts on S2m−1 ⊂ Cm via
k · z := e−i(2kπ/n)z, and

M(1,n)(G,K) = Zn\S2m−1 × R, M(2,n)(G,K) = OCPm−1(−n),

M(3,n)(G,K) = Zn\S2m−1 × S1, M(4,n)(G,K) = P
(
OCPm−1 ⊕OCPm−1(−n)

)
.

Here, we denoted by OCPm−1 the trivial line bundle over CPm−1, by OCPm−1(−1)
the tautological line bundle and by OCPm−1(−n) := OCPm−1(−1)⊗n. In particular:

• if (i, n) = (3, 1), then we get a diagonal Hopf manifold;

• if (i, n) = (4, 1), then we get the connected sum CPm#CPm;

• if m = 2 and i = 4, then we get all the Hirzebruch surfaces.

Remark 3.9. Let us consider P = CPm−1 and assume that m � 3. Since the
isotropy representation of the odd sphere §1 = S2m−1 = SU(m)/SU(m − 1) is mono-
typic, all the cohomogeneity one Hermitian metrics on (M(i,n)(G, K), J) are of
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submersion type with respect to the fibration M(i,n)(G, K) → CPm−1. This fact
does not hold true in general. For example, starting from the Grassmannian
P = G̃r(2, Rm+1) = SO(m + 1)/(SO(2)×SO(m − 1)) of the oriented 2-planes in
Rm+1, we get that §1 = V (2, Rm+1) = SO(m + 1)/SO(m − 1) is the Stiefel man-
ifold of the orthonormal 2-frames in Rm+1, whose isotropy representation contains
two equivalent irreducible summands.

Remark 3.10. Note that, by means of the action of G, there is a bijective correspon-
dence between the set of G-invariant smooth functions ϕ̃ : M(i,n)(G, K) → R and the
set of functions ϕ : I → R satisfying the appropriate smoothness condition:

(i) if i = 1, I = R and ϕ is smooth;

(ii) if i = 2, I = (0, +∞) and ϕ is the restriction of a smooth even function on R;

(iii) if i = 3, ϕ is smooth and S1-periodic;

(iv) if i = 4, I = (0, π) and ϕ is the restriction of a smooth even function on R
satisfying ϕ(π + r) = ϕ(π − r).

From now on, any function ϕ : I → R satisfying the appropriate smoothness
condition will be called admissible.

Remark 3.11. Let g = g(f, h) a cohomogeneity one, submersion-type metric
on a manifold (M(i,n)(G, K), J) and ϕ : I → R a positive, admissible function.
Then, the metric ϕ2g is still a cohomogeneity one, submersion-type metric on
(M(i,n)(G, K), J) and ϕ2g = g(f̂ϕ, ĥϕ), with

f̂ϕ(r) := ξ′ϕ(ξ−1
ϕ (r))f(ξ−1

ϕ (r)) , ĥϕ(r) := ξ′ϕ(ξ−1
ϕ (r))h(ξ−1

ϕ (r)) ,

where ξϕ(r) :=
∫ r

0
ϕ(t) dt. However we stress that, even if g is complete, in general

the conformal metric ϕ2g is not.

3.3. Curvature and torsion computations for Bérard-Bergery manifolds

We begin this section by listing the Levi-Civita connection and the Riemannian
Ricci tensor of the manifolds (M(i,n)(G, K), J, g). By straightforward computations,
from proposition 3.1 and equations (3.10), (3.8) we get

Proposition 3.12. Let X, Y, Z ∈ p. Then

DY ∗X∗∣∣
γ(r)

=
λ

2

(
Q(JX, Y )T ∗

γ(r) −
p

mn

h(r)h′(r)
f(r)

Q(X,Y )Nγ(r)

)
,

DT∗X∗∣∣
γ(r)

= − 2
λ

(
mn

p

)2
f(r)2

h(r)2
(JX)∗γ(r),
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DNX∗∣∣
γ(r)

=
2mn

λp
f(r)

h′(r)
h(r)

X∗
γ(r),

DY ∗T ∗∣∣
γ(r)

=

(
λ − 2

λ

(
mn

p

)2
f(r)2

h(r)2

)
(JY )∗γ(r),

DT∗T ∗∣∣
γ(r)

= −2mn

λp
f ′(r)Nγ(r),

DNT ∗∣∣
γ(r)

=
2mn

λp
f ′(r)T ∗

γ(r),

DY ∗N
∣∣
γ(r)

=
2mn

λp
f(r)

h′(r)
h(r)

Y ∗
γ(r),

DT∗N
∣∣
γ(r)

=
2mn

λp
f ′(r)T ∗

γ(r),

DNN
∣∣
γ(r)

=
2mn

λp
f ′(r)Nγ(r).

Moreover, from [27, proposition 1.14], we directly obtain

Proposition 3.13. Let X ∈ p with Q(X, X) = 1. Then the Riemannian Ricci
tensor is given by

Ric(g)(N,N)γ(r) =
2m(m − 1)n2

p2
f(r)2

(
−f ′′(r)

f(r)
− 2(m − 1)

h′′(r)
h(r)

)
,

Ric(g)(T ∗, T ∗)γ(r) =
2m(m − 1)n2

p2
f(r)2

(
−f ′′(r)

f(r)
− 2(m − 1)

f ′(r)
f(r)

h′(r)
h(r)

+ 2(m − 1)
(

mn

p

)2
f(r)2

h(r)4

)
,

Ric(g)(X∗,X∗)γ(r) = h(r)2
(
−h′′(r)

h(r)
− f ′(r)

f(r)
h′(r)
h(r)

− (2m − 3)
h′(r)2

h(r)2

− 2
(

mn

p

)2
f(r)2

h(r)4
+

2m

h(r)2

)

and

Ric(g)(N,T ∗)γ(r) = Ric(g)(N,X∗)γ(r) = Ric(g)(T ∗,X∗)γ(r) = 0 .

Furthermore, the Riemannian scalar curvature is

scal(g)(r) = −2
f ′′(r)
f(r)

− 4(m − 1)
h′′(r)
h(r)

− 4(m − 1)
f ′(r)
f(r)

h′(r)
h(r)

− 2(m − 1)(2m − 3)
h′(r)2

h(r)2
+

4m(m − 1)
h(r)2

− 2(m − 1)
(

mn

p

)2
f(r)2

h(r)4
.
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We compute now the Chern connection and the Chern–Ricci tensors of the man-
ifolds (M(i,n)(G, K), J, g). From proposition 3.3 and equations (3.10), (3.8) we
get

Proposition 3.14. Let X, Y, Z ∈ p. Then

∇Y ∗X∗∣∣
γ(r)

=
λ

2

(
Q(JX, Y )T ∗

γ(r) + Q(X,Y )Nγ(r)

)
,

∇T∗X∗∣∣
γ(r)

=
2mn

λp
f(r)

h′(r)
h(r)

(JX)∗γ(r),

∇NX∗∣∣
γ(r)

=
2mn

λp
f(r)

h′(r)
h(r)

X∗
γ(r),

∇Y ∗T ∗∣∣
γ(r)

=

(
λ − 2

λ

(
mn

p

)2
f(r)2

h(r)2

)
(JY )∗γ(r),

∇T∗T ∗∣∣
γ(r)

= −2mn

λp
f ′(r)Nγ(r),

∇NT ∗∣∣
γ(r)

=
2mn

λp
f ′(r)T ∗

γ(r),

∇Y ∗N
∣∣
γ(r)

= − 2
λ

(
mn

p

)2
f(r)2

h(r)2
Y ∗

γ(r),

∇T∗N
∣∣
γ(r)

=
2mn

λp
f ′(r)T ∗

γ(r),

∇NN
∣∣
γ(r)

=
2mn

λp
f ′(r)Nγ(r).

We are ready to state the following proposition, whose proof will be given in
Appendix A.

Proposition 3.15. Let X ∈ p with Q(X, X) = 1.

(a) The first Chern–Ricci tensor verifies

RicCh[1](g)(T ∗, T ∗)γ(r)

=
2m(m − 1)n2

p2
f(r)2

×
(
−f ′′(r)

f(r)
+ (m − 1)

(
−h′′(r)

h(r)
+

h′(r)2

h(r)2
− f ′(r)

f(r)
h′(r)
h(r)

))
,

RicCh[1](g)(X∗,X∗)γ(r)

= h(r)2
(

2mn

p

f(r)
h(r)2

(
f ′(r)
f(r)

+ (m − 1)
h′(r)
h(r)

)
+

2m

h(r)2

)
.

(3.12)
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(b) The second Chern–Ricci tensor verifies

RicCh[2](g)(T ∗, T ∗)γ(r)

=
2m(m − 1)n2

p2
f(r)2

×
(
−f ′′(r)

f(r)
+

2m(m − 1)n
p

f ′(r)
h(r)2

+
2m2(m − 1)n2

p2

f(r)2

h(r)4

)
,

RicCh[2](g)(X∗,X∗)γ(r)

= h(r)2
(
−h′′(r)

h(r)
+

h′(r)2

h(r)2
− f ′(r)

f(r)
h′(r)
h(r)

+
2m(m − 1)n

p
f(r)

h′(r)
h(r)3

− 2
(

mn

p

)2
f(r)2

h(r)4
+

2m

h(r)2

)
.

(3.13)

(c) Both the Chern–Ricci tensors satisfy

RicCh[i](g)(N,N)γ(r) = RicCh[i](g)(T ∗, T ∗)γ(r),

RicCh[i](g)(N,T ∗)γ(r) = RicCh[i](g)(N,X∗)γ(r) = RicCh[i](g)(T ∗,X∗)γ(r) = 0.
(3.14)

(d) The Chern-scalar curvature is given by

scalCh(g)(r) = −2
f ′′(r)
f(r)

− 2(m − 1)
h′′(r)
h(r)

+ 2(m − 1)

×
(

h′(r)
h(r)

− f ′(r)
f(r)

)
h′(r)
h(r)

+ 4m(m − 1)
1

h(r)2

+
4m(m − 1)n

p

(
f ′(r) + (m − 1)f(r)

h′(r)
h(r)

)
1

h(r)2
. (3.15)

Given proposition 3.15, we are now able to study the second-Chern–Einstein
equations and the constant Chern-scalar curvature equation for this special class of
Hermitian cohomogeneity one manifolds. This will be done in § 5.

Finally, we recall that the torsion τ of the Chern connection is given by

− 2g(τ(A,B), C) = dω(JA,B,C) + dω(A,JB,C) (3.16)

and that its trace ϑ(A) := Tr(τ(A, ·)) is called Lee form. We recall that it satisfies
dωm−1 = ϑ ∧ ωm−1, see [23, p 500].

From proposition 3.2 and formulas (3.8), (3.10) we obtain
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Corollary 3.16. Let X, Y, Z ∈ p. Then

dω(X∗, Y ∗, N)γ(r) =
4mn

λp
f(r)

(
h(r)h′(r) +

mn

p
f(r)

)
ρ(X,Y ),

where ρ(X, Y ) := Qp(JX, Y ) is the G-invariant Kähler–Einstein form on P , and

dω(X∗, Y ∗, Z∗)γ(r) = dω(X∗, Y ∗, T ∗)γ(r) = dω(X∗, T ∗, N)γ(r) = 0.

and, by consequence

Proposition 3.17. Let X, Y ∈ p. Then it holds τ(N, T ∗)γ(r) = τ(X∗, Y ∗)γ(r) = 0
and

τ(N,X∗)γ(r) =
2mn

λp

f(r)
h(r)2

(
h(r)h′(r) +

mn

p
f(r)

)
X∗

γ(r),

τ(T ∗,X∗)γ(r) =
2mn

λp

f(r)
h(r)2

(
h(r)h′(r) +

mn

p
f(r)

)
(JX)∗γ(r).

Moreover, the Lee form ϑ satisfies

ϑ(N)γ(r) =
4m(m − 1)n

λp

f(r)
h(r)2

(
h(r)h′(r) +

mn

p
f(r)

)
(3.17)

and ϑ(T ∗)γ(r) = ϑ(X∗)γ(r) = 0.

As a direct consequence of proposition 3.17, whose proof will be given in
Appendix A, we get the following

Corollary 3.18. For any A, B ∈ Γ(TM), it holds that

2(m − 1)τ(A,B) =
(
ϑ(A)B − ϑ(B)A

)
−

(
ϑ(JA)JB − ϑ(JB)JA

)
. (3.18)

4. Special Hermitian metrics on Bérard-Bergery manifolds

In this section, we investigate the existence of special non-Kähler Hermitian metrics,
such as balanced, pluriclosed, locally conformally Kähler, Vaisman and Gaudu-
chon, on the Bérard-Bergery standard cohomogeneity one Hermitian manifolds. In
particular, we prove theorems A and B.

4.1. Proof of theorem A

We begin by pointing out the following

Proposition 4.1. All the cohomogeneity one Hermitian metrics g of submersion-
type on the complex manifold (M(i,n)(G, K), J) are locally conformally Kähler.
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Proof. By [19, corollary 1.1], we know that g is locally conformally Kähler if and
only if the complex structure J is parallel with respect to the Weyl connection
associated with (g, 1

m−1ϑ), equivalently, the following is satisfied:

DAJB − JDAB =
1

2(m − 1)

(
ϑ(JB)A − ϑ(B)JA + g(A,B)Jϑ# + g(JA,B)ϑ#

)

for any A, B ∈ Γ(TM), where ϑ# ∈ Γ(TM) is defined by the relation g(ϑ#, ·) = ϑ.
By using equations (2.1) and (3.16), a straightforward computation shows that the
above equation is equivalent to equation (3.18). Indeed, for any C ∈ Γ(TM),

g(DAJB − JDAB,C)

= g(∇AJB,C) + g(∇AB,JC) +
1
2

dω(JA,JB,C) +
1
2

dω(JA,B,JC)

= −g(τ(B,C),JA)

=
1

2(m − 1)
g
(
JA, (ϑ(JB)JC − ϑ(JC)JB) − (ϑ(B)C − ϑ(C)B)

)
=

1
2(m − 1)

g
(
ϑ(JB)g(A,C) − ϑ(B)g(JA,C) + g(A,B)g(Jϑ#, C)

+ g(JA,B)g(ϑ#, C)
)

=
1

2(m − 1)
g
(
ϑ(JB)A − ϑ(B)JA + g(A,B)Jϑ# + g(JA,B)ϑ#, C

)
,

which shows the above mentioned equivalence. �

Corollary 4.2. Let (M(i,n)(G, K), J, g) be a Bérard-Bergery standard cohomo-
geneity one Hermitian manifold. Then, g is strictly locally conformally Kähler if
and only if i = 3.

Proof. Since the complex manifolds (M(2,n)(G, K), J) and (M(4,n)(G, K), J) are
simply connected, any closed 1-form on them is necessarily exact. Moreover, by
remark 3.6, it holds that b1(M(1,n)(G, K)) = 0. Therefore, any locally conformally
Kähler metrics on them are necessarily globally conformally Kähler. Finally, by
using again remark 3.6, the complex manifolds (M(3,n)(G, K), J) do not admit any
Kähler metric. �

Let now g be a cohomogeneity one, submersion-type Hermitian metric on a com-
plex manifold (M(i,n)(G, K), J). By proposition 4.1, it follows that dω = 1

m−1ϑ ∧ ω
which in turn implies that LAϑ = 0 for any holomorphic Killing vector field A ∈
Γ(TM). Hence, by equations (3.1), (3.10) and proposition 3.12, the non-vanishing
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components of the Levi-Civita covariant derivative of ϑ are

(DNϑ)(N)γ(r) =
2mn

λp

(
f(r)

∂

∂r
(ϑ(N)γ(r)) − f ′(r)ϑ(N)γ(r)

)
,

(DT∗ϑ)(T ∗)γ(r) =
2mn

λp
f ′(r)ϑ(N)γ(r),

(DY ∗ϑ)(X∗)γ(r) =
λp

2mn

h(r)h′(r)
f(r)

Q(X,Y )ϑ(N)γ(r),

(4.1)

where λ is given by equation (3.9). By corollary 4.2, the complex manifolds
(M(1,n)(G, K), J), (M(2,n)(G, K), J) and (M(4,n)(G, K), J) cannot admit cohomo-
geneity one, Hermitian metric of submersion-type that are Vaisman. Moreover, from
equation (4.1), we get

Proposition 4.3. A cohomogeneity one Hermitian metric g of submersion-type
on the complex manifolds (M(3,n)(G, K), J) is Vaisman if and only if both f, h are
constant.

Proof. The if part is immediate. Indeed, since ϑ is necessarily non-exact, if both f
and h are constant, then by equations (3.17) and (4.1) it follows that Dϑ = 0.

Conversely, assume that Dϑ = 0. Note that either ϑ(N)γ(ro) = 0 for some ro ∈ I,
or ϑ(N)γ(r) is nowhere vanishing. In the former case, the first equation in (4.1) yields
that ϑ(N)γ(r) is constantly zero. In fact, one gets that ϑ = 0, that is, g is Kähler.
In particular, if g is Vaisman, then the above observation implies that Dϑ = 0 and
ϑ(N)γ(r) is nowhere vanishing. Hence, equations (4.1) immediately imply that f
and h are constant. �

Finally, we note that the manifolds (M(1,n)(G, K), J) (respectively (M(3,n)

(G, K), J)) are acted transitively by the larger group G × R (respectively G × U(1)),
and any metric g = g(f, h) is invariant under this action if and only if the functions
f and h are constant. This completes the proof of theorem A.

Remark 4.4. By propositions 4.1 and 4.3, the compact complex manifolds
(M(3,n)(G, K), J) admit cohomogeneity one, strictly locally conformally Kähler
metrics that are non-Vaisman. Remarkably, in the homogeneous case, this is
excluded by [25, 29]. We stress that the Hopf manifold, which is the main example
of Vaisman manifold [44], corresponds, in our notation, to (M(3,1)(G, K), J) with
G = SU(m) and K = S(U(1) × U(m − 1)), see example 3.8.

Remark 4.5. The locally conformally Kähler metrics by proposition 4.1 include
the globally conformally Kähler, Einstein metrics by Bérard-Bergery [9, théorème
1.10]. We also recall that Einstein, locally conformally Käher, non-Kähler metrics
are completed classified by [18, 36, 38], and they are either the Einstein, globally
conformally Kähler metrics by [9], or they are defined on CP2 by blowing up one
or two points.

4.2. Proof of theorem B

We begin by characterizing the Gauduchon condition as follows.
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Proposition 4.6. A cohomogeneity one Hermitian metric g of submersion-type on
the complex manifolds (M(i,n)(G, K), J) is Gauduchon if and only if it satisfies(

h(r)h′(r) +
mn

p
f(r)

)
f(r)h(r)2(m−2) = k for some k ∈ R. (4.2)

Moreover, if (M(i,n)(G, K), J) has singular orbits, then g is Gauduchon if and only
if it is Kähler.

Proof. Let (ẽα) be a Qp-orthonormal basis for p. Then, a straightforward compu-
tation based on equation (4.1) yields

d∗ϑ(r) = −
(

λp

2mn

)2

f(r)−2(DNϑ)(N)γ(r)

−
(

λp

2mn

)2

f(r)−2(DT∗ϑ)(T ∗)γ(r) − h(r)−2

2(m−1)∑
α=1

(Dẽ∗
α
ϑ)(ẽ∗α)γ(r)

= − λp

2mn
f(r)−1 ∂

∂r
(ϑ(N)γ(r)) − (m − 1)

λp

mn

h′(r)
f(r)h(r)

ϑ(N)γ(r)

= 2(m − 1)
1

h(r)2

((
h(r)h′(r) +

mn

p
f(r)

)(
f ′(r)
f(r)

+ 2(m − 2)
h′(r)
h(r)

)
+

(
h(r)h′′(r) + h′(r)2 +

mn

p
f ′(r)

))
and so g is Gauduchon if and only if(

h(r)h′(r) +
mn

p
f(r)

)(
f ′(r)
f(r)

+ 2(m − 2)
h′(r)
h(r)

)

+
(

h(r)h′′(r) + h′(r)2 +
mn

p
f ′(r)

)
= 0.

Since f(r), h(r) are positive for any r ∈ I and

1
f(r)h(r)2(m−2)

d
dr

((
h(r)h′(r) +

mn

p
f(r)

)
f(r)h(r)2(m−2)

)
=

(
h(r)h′(r) +

mn

p
f(r)

)(
f ′(r)
f(r)

+ 2(m − 2)
h′(r)
h(r)

)
+

(
h(r)h′′(r) + h′(r)2 +

mn

p
f ′(r)

)
,

it follows that g is Gauduchon if and only if equation (4.2) is satisfied.
Let us assume now that (M(i,n)(G, K), J) has a singular orbit, that is i = 2 or

i = 4. Then, the smoothness conditions at r = 0 imply that k = 0 in equation (4.2).
Therefore, in this case, g is Gauduchon if and only if it is Kähler. �
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Since the balanced condition is equivalent to ϑ = 0, from proposition 3.17 and
equation (3.11) we immediately get

Corollary 4.7. A cohomogeneity one Hermitian metric g of submersion-type on
the complex manifolds (M(i,n)(G, K), J) is balanced if and only if it is Kähler.

Remark 4.8. In particular, in view of [58, theorem 1.3], in the non-Kähler case,
both the Levi-Civita and the Chern connections cannot be Kähler-like in the sense
of [26, 58], namely, they do not satisfy the same symmetries as in the Kähler case.

Concerning the pluriclosed condition, a tedious but straightforward computation
(see Appendix A) shows that

ddc ω(X∗, Y ∗, Z∗,W ∗)γ(r) = 4
mn

p
f(r)

(
h(r)h′(r) +

mn

p
f(r)

)
(ρ∧ρ)(X,Y,Z,W ),

(4.3)
where ρ(X, Y ) = Qp(JX, Y ) is again the G-invariant Kähler–Einstein form on P .
Hence, together with equation (3.11), this proves the following

Corollary 4.9. A cohomogeneity one Hermitian metric g of submersion-type on
the complex manifolds (M(i,n)(G, K), J) is pluriclosed if and only if it is Kähler.

which completes the proof of theorem B.

5. Constant Chern-scalar curvature and second-Chern–Einstein metrics

In this section, we investigate the existence of second-Chern–Einstein metrics and
of metrics with constant Chern-scalar curvature on the Bérard-Bergery standard
cohomogeneity one Hermitian manifolds. In particular, we first prove a local exis-
tence and uniqueness result for second-Chern–Einstein metrics with prescribed
Chern-scalar curvature. Then, we prove theorems C and D.

5.1. The second-Chern–Einstein equations

Let (M(i,n)(G, K), J, g) be a Bérard-Bergery standard cohomogeneity one Hermi-
tian manifold and fix a unit speed geodesic γ : I → M which intersects orthogonally
any G-orbit. Then, by means of proposition 3.15, the second-Chern–Einstein
equation

RicCh[2](g) =
λ

2m
g

becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−f ′′(r)
f(r)

+
2m(m − 1)n

p

f ′(r)
h(r)2

+
2m2(m − 1)n2

p2

f(r)2

h(r)4
=

λ(r)
2m

−h′′(r)
h(r)

+
h′(r)2

h(r)2
− f ′(r)

f(r)
h′(r)
h(r)

+
2m(m − 1)n

p
f(r)

h′(r)
h(r)3

−2
(

mn

p

)2
f(r)2

h(r)4
+

2m

h(r)2
=

λ(r)
2m

, (5.1)
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where λ : I → R is an admissible function (see remark 3.10). Note that, in this case,
it holds that λ = scalCh(g).

Our first result in this section concerns the local existence and uniqueness
of second-Chern–Einstein metrics, with prescribed Chern-scalar curvature, in a
neighbourhood of a singular orbit. More precisely

Theorem 5.1. Assume that the complex manifold (M(i,n)(G, K), J) has a singular
orbit, corresponding to the value r = 0 of the orthogonal geodesic γ. For any con-
stant a ∈ R>0 and for any admissible function λ : I → R, there exist ε > 0 and two
smooth functions f, h : [0, ε) → R satisfying the following conditions:

(I) f, h solve the second-Chern–Einstein equations (5.1);

(II) f, h determine a smooth Hermitian metric g = g(f, h) on the open set

U reg
ε :=

⋃
r∈(0,ε)

G · γ(r) ⊂ M(i,n)(G,K)reg

which extends smoothly over the singular orbit G · γ(0);

(III) h(0) = a and the Chern-scalar curvature of g verifies scalCh(g)(r) = λ(r) for
any r ∈ [0, ε).

Moreover, it holds that:

• if there exist ε̃ � ε and f̃ , h̃ : [0, ε̃) → R satisfying the conditions (I), (II), (III)
above, then f̃(r) = f(r) and h̃(r) = h(r) for any r ∈ [0, ε);

• f, h depends continuously on the data a, λ.

Proof. Fix a positive number a > 0 and an admissible function λ : I → R. Let us
write

x(r) :=
f(r)

r
, y(r) := x′(r), z(r) := h(r), w(r) := h′(r). (5.2)

Then, a straightforward computation shows that equations (5.1) become

{
v′(r) =

1
r

A · v(r) + N(r, v(r))

v(0) = vo

, (5.3)
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with

v(r) = (x(r), y(r), z(r), w(r))t, A :=

⎛⎜⎜⎝
0 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 −1

⎞⎟⎟⎠ ,

N(r, v) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(
2m(m − 1)n

p
x2 − λ

2m
x

)
+ r

(
2m(m − 1)n

p
xy

)
+ r2

(
2m2(m − 1)n2

p2

x3

z4

)
w(

w2

z
− yw

x
+

2m

z
− λ

2m
z

)
+ r

(
2m(m − 1)n

p

xw

z2

)
+ r2

(
−2m2(m − 1)n2

p2

x2

z3

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Moreover, the smoothness conditions for the functions f and h, together with
the equation h(0) = a, imply that

vo = (1, 0, a, 0)t. (5.4)

We stress now that the following conditions are satisfied:

• the function N = N(r, v) is smooth in a neighbourhood of (0, vo),

• A · vo = 0,

• det(A − k Id4) �= 0 for any integer k � 1.

Then, by the Malgrange theorem [39, theorem 7.1], see also [14, theorem 2.2],
there exists a unique solution v(r), defined on an interval (−ε, ε), to equation (5.3)
with initial condition (5.4), which depends continuously on the data a, λ.

By equation (5.2), we obtain a pair (f, h) of smooth functions f, h : (−ε, ε) → R
which satisfy equations (5.1) such that

f(0) = 0, f ′(0) = 1, f ′′(0) = 0, h(0) = a, h′(0) = 0. (5.5)

Since the pair (f̂ , ĥ) of functions defined by

f̂ , ĥ : (−ε, ε) → R, f̂(r) := −f(−r), ĥ(r) := h(−r)

satisfy equations (5.1) with the initial conditions (5.5), by uniqueness we conclude
that f is odd and h is even. Therefore, these functions give rise to a smooth Her-
mitian metric g = g(f, h) on the open set U reg

ε ⊂ M(i,n)(G, K)reg, which admits a
unique smooth extension over the singular orbit G · γ(0). �

Concerning complete solutions to equations (5.1), we point out the following
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Remark 5.2. Fundamental examples of complete, non-Kähler, second-Chern–
Einstein metrics can be easily found on the manifolds (M(1,n)(G, K), J) and
(M(3,n)(G, K), J). Indeed, the constant functions

f(r) :=
p

mn
, h(r) := 1 (5.6)

verify the smoothness conditions in case i = 1, 3 and so they give rise to
homogeneous, smooth metrics which are non-Kähler by equation (3.11) and
second-Chern–Einstein by equation (5.1) with constant Chern-scalar curvature
λ = 4m(m − 1). These examples include the standard metric on the linear Hopf
manifold (see example 3.8).

We also stress that, on manifolds (M(1,n)(G, K), J) and (M(3,n)(G, K), J), all the
metrics (not necessarily of cohomogeneity one) in the conformal class of g = g(f, h),
with f, h given by formula (5.6), are second-Chern–Einstein (see remark 2.4). In
particular, by remark 3.11, for any admissible positive function φ : I → R, the pair

fφ(r) :=
p

mn
φ(r), hφ(r) := φ(r) (5.7)

solve equations (5.1) with Chern-scalar curvature λ(r) = 2m
(− φ′′(r)

φ(r)

+ 2(m − 1)φ′(r)+1
φ(r)

)
. Therefore, in the following, we will focus on Bérard-Bergery

manifolds (M(i,n)(G, K), J) with singular orbits, namely, the cases i = 2 and i = 4.

5.2. Complete second-Chern–Einstein metrics in case of singular orbits

In this section, we will construct complete second-Chern–Einstein metrics on the
manifolds (M(2,n)(G, K), J) by using the same technique as [9, § 11].

Let us start by noticing that, for the manifold OCPm−1(−1), the functions

f(r) := r, hk(r) :=
√

r2 + k2, r ∈ [0,+∞), k > 0 (5.8)

solve the second-Chern–Einstein equations (5.1) and define Hermitian metrics gk =
g(f, hk) which extend smoothly over the singular orbit. All the metrics gk are
non-Kähler and their Chern-scalar curvatures are given by

scalCh(gk)(r) = 4m(m − 1)
2r2 + k2

(r2 + k2)2
.

Note that all these metrics are homothetic, indeed the satisfy gk = k2g1 (see remark
3.11). More in general, we have

Theorem 5.3. All the complex manifolds (M(2,n)(G, K), J) have a complete,
Hermitian, non-Kähler, second-Chern–Einstein, cohomogeneity one metric.
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Proof. Fix a manifold (M(2,n)(G, K), J) and set

fφ(r) :=
p

2mn
φ′(r), hφ(r) :=

√
φ(r) (5.9)

for some smooth, positive, increasing function φ : [0, +∞) → R. Note that, in this
case

hφ(r)h′
φ(r) +

mn

p
fφ(r) = φ′(r)

and so this metric is necessarily non-Kähler by equation (3.11). Setting the initial
condition h(0) = 1, second-Chern–Einstein equations (5.1) become⎧⎪⎨⎪⎩

φ(r)
φ′′′(r)
φ′(r)

− mφ′′(r) + 2m = 0

φ(0) = 1, φ′(0) = 0, φ′′(0) =
2mn

p

. (5.10)

Cauchy problem (5.10) admits a unique smooth solution on some interval [0, ε),
which extends to an even smooth function on (−ε, ε). Let us prove that this solution
can be extended to the whole [0, +∞).

Assume that the solution to equation (5.10) is of the form

φ′(r) =
√

u(φ(r)). (5.11)

Then, from equations (5.10) and (5.11), we get the following Cauchy problem for
u(t): ⎧⎨⎩tu′′(t) − mu′(t) + 4m = 0

u(1) = 0, u′(1) =
4mn

p

. (5.12)

The unique solution to equation (5.12) is the function u : [1, +∞) → R defined by

u(t) := −4m(n + p)
p(m + 1)

+ 4t +
4(mn − p)
p(m + 1)

tm+1, (5.13)

which is smooth, positive and increasing. Hence, the function

ϕ : [1,+∞) → R, ϕ(r) :=
∫ r

1

dt√
u(t)

is smooth, positive, increasing and, by construction, its inverse φ := ϕ−1 solves
the Cauchy problem (5.10). Therefore, by means of equation (5.9), the proof is
completed. �

Remark 5.4. The Chern-scalar curvature of the metric gφ = g(fφ, hφ) constructed
from equation (5.9) by solving Cauchy problem (5.10) is given by

scalCh(gφ)(r) = 2m

(
−φ′′′(r)

φ′(r)
+ (m − 1)

φ′′(r)
φ(r)

+ (m − 1)
(

φ′(r)
φ(r)

)2
)

.

Note that, if mn − p = 0, which correspond to the manifolds OCPm−1(−1), function
(5.13) is u(t) = 4(t − 1). Hence, we recover the family of examples introduced in
formula (5.8).
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Finally we observe that, concerning the compact simply-connected manifolds
(M(4,n)(G, K), J), we have the following

Proposition 5.5. On the complex manifolds (M(4,n)(G, K), J) there are no coho-
mogeneity one, submersion-type Hermitian metrics that are second-Chern–Einstein.

Proof. Assume that there exists cohomogeneity one, submersion-type Hermitian
metric g on a complex manifold (M(4,n)(G, K), J) which is second-Chern–Einstein.
Then, by corollary 4.2, it is globally conformally Kähler. By remark 2.4, this implies
the existence of a Kähler–Einstein metric on (M(4,n)(G, K), J), that is not possible
(see [9, remarques 8.14, (1)] and [10, remarks 9.126, (b)]). �

Remark 5.6. The projective space CPm is a standard cohomogeneity one manifold
with respect to the action of G = SU(m) given by a · [z0 : z] := [z0 : a · z] . Even if
it is not a Berard–Bérgéry manifold according to definition 3.7, all the formulas in
§ 3 and § 4 still apply to this specific case. In particular, all the G-invariant metrics
on CPm are of the form (3.10) with n = 1 and p = m, where f, h : [0, π

2 ] → R are
smooth, positive function satisfying:

• f is the restriction of a smooth odd function on R satisfying

f
(
r +

π

2

)
= −f

(
r − π

2

)
and f ′(0) = 1 = −f ′

(π

2

)
;

• h is the restriction of a smooth even function on R satisfying

h
(
r +

π

2

)
= −h

(
r − π

2

)
and h′

(π

2

)
= −1 .

Note that the Fubini–Study metric gFS with sectional curvature 1 � sec � 4
corresponds to the functions

f(r) :=
1
2

sin(2r), h(r) := cos(r).

As argued in the proof of proposition 5.5, all the G-invariant second-Chern–Einstein
metrics on CPm are necessarily conformal to the Fubini–Study metric gFS. For
example, the functions

f(r) :=
1
2

sin(2r), hk(r) := cos(r)
√

sin(r)2 + k2 cos(r)2, k > 0

define non-Kähler, second-Chern–Einstein metrics gk on CPm of the form

gk = ϕ2
k gFS, with ϕk(r) :=

k

cos(r)2 + k2 sin(r)2
.

5.3. Constant Chern-scalar curvature metrics in case of singular orbits

In this section, we construct complete constant Chern-scalar curvature metrics
g = g(f, h) on the complex manifolds (M(2,n)(G, K), J) and (M(4,n)(G, K), J) by
using again the technique exploited in [9, § 11].
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Fix a complex manifold (M(i,n)(G, K), J), with i ∈ {2, 4}, and set

fφ(r) :=
p

2mn
φ(r)φ′(r), hφ(r) := φ(r) (5.14)

for some smooth, increasing, positive, function φ : I → R. Note that, in this case,

hφ(r)h′
φ(r) +

mn

p
fφ(r) =

1
2
φ(r)φ′(r)

and so this metric is necessarily non-Kähler by equation (3.11). Let c ∈ R to be
fixed later. Then, the constant Chern-scalar curvature equation

scalCh(gφ) = c

for the metric gφ := g(fφ, hφ) becomes

φ(r)2
φ′′′(r)
φ′(r)

+ (m + 2)φ(r)φ′′(r) − m(m − 1)φ′(r)2 +
c

2
φ(r)2 − 2m(m − 1) = 0 .

(5.15)
We look for a solution of the form

φ′(r) =
√

u(φ(r)) (5.16)

for some smooth real function u = u(t). Then, we get the following ODE

t2u′′(t) + (m + 2)tu′(t) − 2m(m − 1)u(t) + ct2 − 4m(m − 1) = 0, (5.17)

which can be explicitly integrated. Indeed, the following cases occur.

• If m = 2, then the solutions to equation (5.17) are

ua,b,c(t) = at−4 − 2 + bt − c

6
t2, with a, b ∈ R. (5.18)

In this case, the base space of the fibration M(i,n)(G, K) → P is necessarily
P = CP1 and so p = 2.

• If m = 3, then the solutions to equation (5.17) are

ua,b,c(t) = at−6 − 2 + bt2 − c

8
log(t)t2, with a, b ∈ R. (5.19)

In this case, the only possibilities for the base space of the fibration
M(i,n)(G, K) → P are

P = CP2 = SU(3)/S(U(1)×U(2)), P = Gr(2,R5) = Sp(2)/U(2)

and so p = 3.

• If m > 3, then the solutions to equation (5.17) are given by

ua,b,c(t) = at−2m − 2 +
c

2(m + 1)(m − 3)
t2 + btm−1, with a, b ∈ R. (5.20)

https://doi.org/10.1017/prm.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.5


On cohomogeneity one Hermitian non-Kähler metrics 575

Then, by means of equations (5.14) and (5.16), we are able to construct
constant Chern-scalar curvature metrics on the manifolds (M(2,n)(G, K), J) and
(M(4,n)(G, K), J).

Theorem 5.7. Let c ∈ R, c � 0. Then, all the complex manifolds (M(2,n)(G, K), J)
have a complete, Hermitian, non-Kähler, cohomogeneity one metric g with
scalCh(g) = c.

Proof. Setting h(0) = 1, the smoothness conditions for f, h imply that

φ(0) = 1, φ′(0) = 0, φ′′(0) =
2mn

p
. (5.21)

Let us stress that, if there exists a smooth solution φ : [0, +∞) → R to equation
(5.15) satisfying the boundary conditions (5.21), then it can be extended to a
smooth even function on R.

Note that, by means of equation (5.16), conditions (5.21) imply that the solution
ua,b,c to the ODE (5.17) verifies

ua,b,c(1) = 0, u′
a,b,c(1) =

4mn

p
. (5.22)

Therefore, we obtain two values a(c), b(c), depending on c, by imposing conditions
(5.22):

• if m = 2, then by formula (5.18) we get

a(c) :=
2
5
− c

30
− 4

5
n, b(c) :=

8
5

+
c

5
+

4
5
n;

• if m = 3, then by formula (5.19) we get

a(c) :=
1
2
− c

64
− n

2
, b(c) :=

3
2

+
c

64
+

n

2
;

• if m > 3, then by formula (5.20) we get

a(c) := − (m + 1)(4m(2n − p) + 4p) + cp

2p(m + 1)(3m − 1)
,

b(c) :=
4m(m − 3)(n + p) − cp

p(3m − 1)(m − 3)
.

In all of these three cases it can be directly checked that, for any c � 0, the func-
tion uc := ua(c),b(c),c is positive and increasing for t ∈ (1, +∞). Indeed, by means
of conditions (5.22), there exists εo > 0 such that uc(t) > 0 and u′

c(t) > 0 for any
t ∈ (1, 1 + εo). Assume by contradiction that there exists to > 1 such that u′

c(t) > 0
for any t ∈ [1, to) and u′

c(to) = 0. Then, to is a local maximum point or a stationary
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point of inflection for u(t), but equation (5.17) implies that

u′′
c (to) = 2m(m − 1)

uc(to)
t2o

− c +
4m(m − 1)

t2o
> 0, (5.23)

which is not possible. Hence

ϕc : [1,+∞) → R, ϕc(r) :=
∫ r

1

dt√
uc(t)

is smooth, increasing and, by construction, its inverse φc := ϕ−1
c solves equation

(5.15) with the initial conditions (5.21). �

Constant Chern-scalar curvature metrics on Hirzebruch surfaces have been con-
structed by Koca and Lejmi by using the Bérard-Bergery ansatz in [33, theorem 1].
Since in complex dimension m = 2 the complex manifolds (M(4,n)(G, K), J) reduces
to the Hirzebruch surfaces (see example 3.8), the next theorem extends their result
to m > 2.

Theorem 5.8. Let c ∈ R, c > 0. Then, all the complex manifolds (M(4,n)(G, K), J)
have a Hermitian, non-Kähler, cohomogeneity one metric g with scalCh(g) = c.

Proof. Setting h(0) = 1 and h(π) = k > 1, the smoothness conditions for f, h imply
that

φ(0) = 1, φ′(0) = 0, φ′′(0) =
2mn

p
,

φ(π) = k, φ′(π) = 0, φ′′(π) = −2mn

kp
.

(5.24)

Let us stress that, if there exists a smooth solution φ : [0, π] → R to equation (5.15)
satisfying the boundary conditions (5.24), then it can be extended to a smooth even
function on R satisfying φ(π + r) = φ(π − r). Since the case m = 2 has already been
addressed in [33], we limit ourselves to prove the statement for m � 3.

Assume m = 3. Then, by means of equation (5.16), conditions (5.24) imply that
the solution ua,b,c given in formula (5.19) verifies

ua,b,c(1) = 0, ua,b,c(k) = 0, u′
a,b,c(1) = 4n, u′

a,b,c(k) = −4n

k
.

By imposing the first three conditions

ua,b,c(1) = 0, ua,b,c(k) = 0, u′
a,b,c(1) = 4n,

we obtain three values a(k), b(k), c(k) depending on k, that are

a(k) := −2k6(6(n − 1) log(k)k2 + 3(k2 − 1))
(8 log(k) − 1)k8 + 1

,

b(k) :=
32((n + 3)k8 − 4k6 − n + 1)

(8 log(k) − 1)k8 + 1
,

c(k) :=
32((n + 3)k8 − 4k6 − n + 1)

(8 log(k) − 1)k8 + 1
.
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Set uk := ua(k),b(k),c(k) and observe that

u′
k(k) +

4n

k
=

α(k)
k(8 log(k) − 1)k8 + 1)

,

with

α(k) := −4(n + 3)k10 + 32(n + 1)k8 log(k) − 4(n − 3)k8

+ 32(n − 1)k2 log(k) + 4(n + 3)k2 + 4(n − 3).

Note that

α(1) = α′(1) = α′′(1) = 0, α′′′(1) = 512n > 0,

lim
k→+∞

α(k) = −∞

and so there exists k̃ > 1 such that α(k) > 0 for any 1 < k < k̃ and α(k̃) = 0. Then,
we set u := uk̃, so that the function

ϕ : [1, k̃] → [0, π], ϕ(r) :=
∫ r

1

dt√
u(t)

is smooth, increasing and its inverse φ := ϕ−1 solves the ODE (5.15) with the
boundary conditions (5.24).

Assume m > 3. Then, by means of equation (5.16), conditions (5.24) imply that
the solution ua,b,c given in formula (5.19) verifies

ua,b,c(1) = 0, ua,b,c(k) = 0, u′
a,b,c(1) =

4mn

p
, u′

a,b,c(k) = −4mn

kp
.

By imposing the first three conditions

ua,b,c(1) = 0, ua,b,c(k) = 0, u′
a,b,c(1) =

4mn

p
,

we obtain three values a(k), b(k), c(k) depending on k, that are

a(k) :=
2
(
2(mn − p)km−1 + (mp − 2mn − p)k2 − p(m − 3)

)
p
(
2(m + 1)km−1 − (3m − 1)k2 + (m − 3)k−2m

) ,

b(k) :=
4
(
− m(n + p)k2 + (mn − p)k−2m + (m + 1)p

)
p
(
2(m + 1)km−1 − (3m − 1)k2 + (m − 3)k−2m

) ,

c(k) :=
4c̃(k)

p(2(m + 1)km−1 − (3m − 1)k2 + (m − 3)k−2m)
,

with

c̃(k) := 2m(m + 1)(m − 3)(n + p)km−1 − (3m − 1)(m + 1)(m − 3)p

+ (m3(p − 2n) + m2(4n − 3p) + m(6mn − p) + 3p)k−2m.
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Set uk := ua(k),b(k),c(k) and observe that

u′
k(k) +

4mn

kp
=

α(k)
pk2β(k)

,

where α(k), β(k) are the polynomials in k defined by

α(k) := −4m(m − 3)(n + p)k3m+2 + 4(m + 1)((m − 1)p + 2mn)k3m

− 4(3m − 1)(mn + p)k2m+3 + 4(3m − 1)(mn − p)km

+ 4(m + 1)((m − 1)p − 2mn)k3 − 4m(m − 3)(p − n)k,

β(k) := 2(m + 1)k3m−1 − (3m − 1)k2(m+1) + (m − 3).

Note that β(1) = 0 and

β′(k) = 2(m + 1)(3m − 1)(km−3 − 1)k2m+1 > 0 for any k > 1,

hence β(k) > 0 for any k > 1. Moreover

α(1) = α′(1) = α′′(1) = 0,

α′′′(1) = 8mn(3m − 1)(m − 3)(m − 1)(m + 1) > 0,

lim
k→+∞

α(k) = −∞

and so there exists k̃ > 1 such that α(k) > 0 for any 1 < k < k̃ and α(k̃) = 0. Then,
we set u := uk̃, so that the function

ϕ : [1, k̃] → [0, π], ϕ(r) :=
∫ r

1

dt√
u(t)

is smooth, increasing and its inverse φ := ϕ−1 solves the ODE (5.15) with
conditions (5.24).

Finally, by means of an argument similar to the one used in the proof of
theorem 5.7 (see equation (5.23)), it holds necessarily that c > 0 in all the cases.
This concludes the proof. �
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Appendix A.

In this appendix, we provide the details for the proofs of proposition 3.15 com-
puting the Chern–Ricci tensors of Bérard-Bergery manifolds (M(i,n)(G, K), J, g),
proposition 3.17 computing their torsion and the Lee form and equation (4.3)
concerning the pluriclosed condition ddcω = 0.

https://doi.org/10.1017/prm.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.5


On cohomogeneity one Hermitian non-Kähler metrics 579

Appendix A.1. Proof of proposition 3.15

Let X, Y ∈ p be such that Q(X, X) = Q(Y, Y ) = 1 and (eα, Jeα) a (Qp, J)-
unitary basis for p. Set F := 2mn

λp f . Then, by using formulas (2.4), (3.1), (3.2),
(3.3), (3.4), (3.5), (3.8), (3.9), (3.10), proposition 3.3 and corollary 3.4, we get

g(RCh(g)(N,T ∗)N,T ∗)γ(r)

= g(∇[N,T∗]N,T ∗)γ(r) − g(∇N∇T∗N,T ∗)γ(r) + g(∇T∗∇NN,T ∗)γ(r)

= −LN

(
g(∇T∗N,T ∗)

)
γ(r)

+ g(∇T∗N,∇NT ∗)γ(r)

+ LT∗
(
g(∇NN,T ∗)

)
γ(r)

− g(∇NN,∇T∗T ∗)γ(r)

= −F (r)
∂

∂r
(F ′(r)F (r)2) + 2F ′(r)2F (r)2

= −F (r)3F ′′(r),

g(RCh(g)(X∗, (JX)∗)N,T ∗)γ(r)

= −g(∇[X,JX]∗N,T ∗)γ(r) − g(∇X∗∇(JX)∗N,T ∗)γ(r) + g(∇(JX)∗∇X∗N,T ∗)γ(r)

= −g(∇[X,JX]∗N,T ∗)γ(r) − LX∗
(
g(∇(JX)∗N,T ∗)

)
γ(r)

+ g(∇(JX)∗N,∇X∗T ∗)γ(r)

+ L(JX)∗

(
g(∇X∗N,T ∗)

)
γ(r)

− g(∇X∗N,∇(JX)∗T
∗)γ(r)

= −λF (r)2F ′(r) +
1
2
λ2F (r)2 + λF (r)2F ′(r) +

1
2
λ2F (r)2 + λF (r)2F ′(r)

− 1
4
λ2F (r)2

(
2 − F (r)2

h(r)2

)
− 1

4
λ2F (r)2

(
2 − F (r)2

h(r)2

)

= λF (r)2F ′(r) +
1
2
λ2 F (r)4

h(r)2
,

g(RCh(g)(N,T ∗)X∗, (JX)∗)γ(r)

= g(∇[N,T∗]X
∗, (JX)∗)γ(r) − g(∇N∇T∗X∗, (JX)∗)γ(r)

+ g(∇T∗∇NX∗, (JX)∗)γ(r)

= −LN

(
g(∇T∗X∗, (JX)∗)

)
γ(r)

+ g(∇T∗X∗,∇N (JX)∗)γ(r)

+ LT∗
(
g(∇NX∗, (JX)∗)

)
γ(r)

− g(∇NX∗,∇T∗(JX)∗)γ(r)

= −F (r)
∂

∂r
(F (r)h(r)h′(r)) + 2F (r)2h′(r)2

= −F (r)2h(r)2
(

h′′(r)
h(r)

− h′(r)2

h(r)2
+

F ′(r)
F (r)

h′(r)
h(r)

)
.
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Hence, we obtain

RicCh[1](g)(N,N)γ(r)

= F (r)−2g
(
RCh(g)(N,T ∗)N,T ∗

)
γ(r)

+ h(r)−2
∑
eα∈p

g
(
RCh(g)(N,T ∗)e∗α, (Jeα)∗

)
γ(r)

= −F (r)F ′′(r) − (m − 1)F (r)2
(

h′′(r)
h(r)

− h′(r)2

h(r)2
+

F ′(r)
F (r)

h′(r)
h(r)

)
= F (r)2

(
−F ′′(r)

F (r)
− (m − 1)

h′′(r)
h(r)

+ (m − 1)
h′(r)
h(r)

(
h′(r)
h(r)

− F ′(r)
F (r)

))
=

2m(m − 1)n2

p2
f(r)2

(
−f ′′(r)

f(r)
+ (m − 1)

(
−h′′(r)

h(r)
+

h′(r)2

h(r)2
− f ′(r)

f(r)
h′(r)
h(r)

))
and

RicCh[2](g)(N,N)γ(r)

= F (r)−2g
(
RCh(g)(N,T ∗)N,T ∗

)
γ(r)

+ h(r)−2
∑
eα∈p

g
(
RCh(g)(e∗α, (Jeα)∗)N,T ∗

)
γ(r)

= −F (r)F ′′(r) + (m − 1)h(r)−2

(
λF (r)2F ′(r) +

1
2
λ2 F (r)4

h(r)2

)

= F (r)2
(
−F ′′(r)

F (r)
+ (m − 1)λ

F ′(r)
h(r)2

+
1
2
(m − 1)λ2 F (r)2

h(r)4

)
=

2m(m − 1)n2

p2
f(r)2

(
−f ′′(r)

f(r)
+

2m(m − 1)n
p

f ′(r)
h(r)2

+
2m2(m − 1)n2

p2

f(r)2

h(r)4

)
.

By the symmetries of the tensors RicCh[i](g), it holds that

RicCh[i](g)(T ∗, T ∗)γ(r) = RicCh[i](g)(N,N)γ(r) and RicCh[i](g)(N,T ∗)γ(r) = 0.

Moreover, by a direct computation, we get

g(RCh(g)(N, (JX)∗)N,T ∗)γ(r) = g(RCh(g)(N,T ∗)N, (JX)∗)γ(r) = 0,

g(RCh(g)(N, (JX)∗)Y ∗, (JY )∗)γ(r) = g(RCh(g)(Y ∗, (JY )∗)N, (JX)∗)γ(r) = 0

and hence

RicCh[i](g)(N,X∗)γ(r) = RicCh[i](g)(T,X∗)γ(r) = 0.
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Finally, we have

g(RCh(g)(N,T ∗)X∗, (JX)∗)γ(r)

= g(∇[N,T∗]X
∗, (JX)∗)γ(r) − g(∇N∇T∗X∗, (JX)∗)γ(r)

+ g(∇T∗∇NX∗, (JX)∗)γ(r)

= −LN

(
g(∇T∗X∗, (JX)∗)

)
γ(r)

+ g(∇T∗X∗,∇N (JX)∗)γ(r)

+ LT∗
(
g(∇NX∗, (JX)∗)

)
γ(r)

− g(∇NX∗,∇T∗(JX)∗)γ(r)

= −F (r)
∂

∂r
(F (r)h(r)h′(r)) + 2F (r)2h′(r)2

= −F (r)2h(r)2
(

h′′(r)
h(r)

− h′(r)2

h(r)2
+

F ′(r)
F (r)

h′(r)
h(r)

)
,

g(RCh(g)(X∗, (JX)∗)Y ∗, (JY )∗)γ(r)

= −g(∇[X,JX]∗Y
∗, (JY )∗)γ(r) − g(∇X∗∇(JX)∗Y

∗, (JY )∗)γ(r)

+ g(∇(JX)∗∇X∗Y ∗, (JY )∗)γ(r)

= −λg(∇T∗Y ∗, (JY )∗)γ(r) − LX∗
(
g(∇(JX)∗Y

∗, (JY )∗)
)

γ(r)

+ g(∇(JX)∗Y
∗,∇X∗(JY )∗)γ(r)

+ L(JX)∗

(
g(∇X∗Y ∗, (JY )∗)

)
γ(r)

− g(∇X∗Y ∗,∇(JX)∗(JY )∗)γ(r)

= −λg(∇T∗Y ∗, (JY )∗)γ(r) + 2g(∇(JX)∗Y
∗,∇X∗(JY )∗)γ(r)

− LX∗
(
g(∇(JX)∗Y

∗, (JY )∗)
)

γ(r)
+ L(JX)∗

(
g(∇X∗Y ∗, (JY )∗)

)
γ(r)

= −λF (r)h(r)h′(r)

+
1
2
h(r)2

(
|[X,Y ]|2Q + |[X,JY ]|2Q + |[JX, Y ]|2Q + |[JX, JY ]|2Q

)
+ 2λF (r)h(r)h′(r) − 1

2
F (r)2

(
Q([T,X], Y )2 + Q([T,X], JY )2

)
= h(r)2

(
λF (r)

h′(r)
h(r)

− 1
2
λ2 F (r)2

h(r)2

(
Q(X,Y )2 + Q(JX, Y )2

)

+
1
2

(
|[X,Y ]|2Q + |[X,JY ]|2Q + |[JX, Y ]|2Q + |[JX, JY ]|2Q

))
.

Note that

∑
eα∈p

(
Q(X, eα)2 + Q(X,Jeα)2

)
= 1.
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Moreover, setting (ẽα) := (eα, Jeα), since [p, p] ⊂ k and |X|Q = 1, by the Schur
lemma we obtain∑

eα∈p

(
|[X, eα]|2Q + |[X,Jeα]|2Q + |[JX, eα]|2Q + |[JX, Jeα]|2Q

)
=

1
m − 1

∑
ẽα,ẽβ∈p

|[ẽa, ẽβ ]k|2Q = 4m.

Hence, we get

RicCh[1](g)(X∗,X∗)γ(r)

= F (r)−2g
(
RCh(g)(X∗, (JX)∗)N,T ∗

)
γ(r)

+ h(r)−2
∑
eα∈p

g
(
RCh(g)(X∗, (JX)∗)e∗α, (Jeα)∗

)
γ(r)

= λF ′(r) +
1
2
λ2 F (r)2

h(r)2
+ (m − 1)λF (r)

h′(r)
h(r)

− 1
2
λ2 F (r)2

h(r)2
+ 2m

= h(r)2
(

λ
F (r)
h(r)2

(
F ′(r)
F (r)

+ (m − 1)
h′(r)
h(r)

)
+

2m

h(r)2

)
= h(r)2

(
2mn

p

f(r)
h(r)2

(
f ′(r)
f(r)

+ (m − 1)
h′(r)
h(r)

)
+

2m

h(r)2

)
and

RicCh[2](g)(X∗,X∗)γ(r)

= F (r)−2g
(
RCh(N,T ∗)X∗, (JX)∗

)
γ(r)

+ h(r)−2
∑
eα∈p

g
(
RCh(e∗α, (Jeα)∗)X∗, (JX)∗

)
γ(r)

= −h(r)2
(

h′′(r)
h(r)

− h′(r)2

h(r)2
+

F ′(r)
F (r)

h′(r)
h(r)

)
+ (m − 1)λF (r)

h′(r)
h(r)

− 1
2
λ2 F (r)2

h(r)2
+ 2m

= h(r)2
(
−h′′(r)

h(r)
+

h′(r)2

h(r)2
− F ′(r)

F (r)
h′(r)
h(r)

+ (m − 1)λF (r)
h′(r)
h(r)3

− 1
2
λ2 F (r)2

h(r)4
+

2m

h(r)2

)
= h(r)2

(
−h′′(r)

h(r)
+

h′(r)2

h(r)2
− f ′(r)

f(r)
h′(r)
h(r)

+
2m(m − 1)n

p
f(r)

h′(r)
h(r)3

− 2
(

mn

p

)2
f(r)2

h(r)4
+

2m

h(r)2

)
,
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which concludes the proof of equations (3.12), (3.13) and (3.14).
For what concerns the scalar curvature, we have

scalCh(g)(r) = 2F (r)−2 RicCh[2](g)(T ∗, T ∗)γ(r)

+ 2h(r)−2
∑
eα∈p

RicCh[2](g)(e∗α, e∗α)γ(r)

= −2
f ′′(r)
f(r)

− 2(m − 1)
h′′(r)
h(r)

+ 2(m − 1)
(

h′(r)
h(r)

− f ′(r)
f(r)

)
h′(r)
h(r)

+ 4m(m − 1)
1

h(r)2

+
4m(m − 1)n

p

(
f ′(r) + (m − 1)f(r)

h′(r)
h(r)

)
1

h(r)2

which proves equation (3.15).

Appendix A.2. Proof of proposition 3.17

By equation (3.16) and corollary 3.16, the only non-vanishing components of τ are

g(τ(X∗, T ∗), Z∗)γ(r) = −2mn

λp
f(r)

(
h(r)h′(r) +

mn

p
f(r)

)
Qp(JX,Z),

g(τ(X∗, N), Z∗)γ(r) = −2mn

λp
f(r)

(
h(r)h′(r) +

mn

p
f(r)

)
Qp(X,Z),

and so τ(N, T ∗)γ(r) = τ(X∗, Y ∗)γ(r) = 0. Moreover, letting (eα, Jea) be a (Qp, J)-
unitary basis for p, we get

τ(N,X∗)γ(r) = −
(

2mn

λp
f(r)

)−2

×
(
g(τ(X∗, N), N)γ(r)Nγ(r) + g(τ(X∗, N), T ∗)γ(r)T

∗
γ(r)

)
− h(r)−2

∑
eα∈p

(
g(τ(X∗, N), e∗α)γ(r)(e∗α)γ(r)

+ g(τ(X∗, N), (Jeα)∗)γ(r)(Jeα)∗γ(r)

)
=

2mn

λp

f(r)
h(r)2

(
h(r)h′(r) +

mn

p
f(r)

)
X∗

γ(r).

Therefore, by equations (3.2) and (3.4), it follows that

τ(T ∗,X∗)γ(r) =
2mn

λp

f(r)
h(r)2

(
h(r)h′(r) +

mn

p
f(r)

)
(JX)∗γ(r).
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Finally

ϑ(N)γ(r) =
(

2mn

λp
f(r)

)−2 (
g(τ(N,N), N)γ(r) + g(τ(N,T ∗), T ∗)γ(r)

)
+ h(r)−2

∑
eα∈p

(
g(τ(N, e∗α), e∗α)γ(r) + g(τ(N, (Jeα)∗), (Jeα)∗)γ(r)

)
=

4m(m − 1)n
λp

f(r)
h(r)2

(
h(r)h′(r) +

mn

p
f(r)

)
,

and analogously one can show that ϑ(T ∗)γ(r) = ϑ(X∗)γ(r) = 0, which concludes the
proof.

Appendix A.3. Proof of equation (4.3)

Let us compute ddcω. Since Jω = ω, it follows that

dcω(A,B,C) = dω(JA,JB,JC)

and so

ddcω(A,B,C,D)

= LA dω(JB,JC,JD) − LB dω(JA,JC,JD)

+ LC dω(JA,JB,JD) − LD dω(JA,JB,JC)

− dω(J[A,B],JC,JD) + dω(J[A,C],JB,JD) − dω(J[A,D],JB,JC)

− dω(J[B,C],JA,JD) + dω(J[B,D],JA,JC) − dω(J[C,D],JA,JB).

If A is a holomorphic Killing vector field, then LA dω = dLAω = 0 and so

LA dω(JB,JC,JD) = dω(J[A,B],JC,JD)

+ dω(JB,J[A,C],JD) + dω(JB,JC,J[A,D]).

Therefore, if A, B, C, D are holomorphic Killing, we get

ddcω(A,B,C,D) = + dω(J[A,B],JC,JD) − dω(J[A,C],JB,JD)

+ dω(J[A,D],JB,JC) + dω(J[B,C],JA,JD)

− dω(J[B,D],JA,JC) + dω(J[C,D],JA,JB).

Letting ρ(X, Y ) = Qp(JX, Y ), we have

(ρ∧ρ)(X,Y,Z,W )

= 2
(
Q(JX, Y )Q(JZ,W ) − Q(JX,Z)Q(JY,W ) + Q(JX,W )Q(JY,Z)

)

https://doi.org/10.1017/prm.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.5


On cohomogeneity one Hermitian non-Kähler metrics 585

and so, by using proposition 3.2 and equations (3.8), (3.10) we get

ddcω(X∗, Y ∗, Z∗,W ∗)γ(r)

= λQ(JX, Y ) dω(Z∗,W ∗, N)γ(r) − λQ(JX,Z) dω(Y ∗,W ∗, N)γ(r)

+ λQ(JX,W ) dω(Y ∗, Z∗, N)γ(r) + λQ(JY,Z) dω(X∗,W ∗, N)γ(r)

− λQ(JY,W ) dω(X∗, Z∗, N)γ(r) + λQ(JZ,W ) dω(X∗Y ∗, N)γ(r)

= 4
mn

p
f(r)(h(r)h′(r) +

mn

p
f(r))(ρ∧ρ)(X,Y,Z,W ),

which concludes the proof.
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18 A. Derdziński and G. Maschler. Local classification of conformally-Einstein Kähler metrics
in higher dimensions. Proc. London Math. Soc. 87 (2003), 779–819.

19 S. Dragomir and L. Ornea, Locally conformal Kähler geometry, Progress in Mathematics,
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