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Abstract. In this paper, we mainly provide a categorical view on the braided
structures appearing in the Hom-quantum groups. Let C be a monoidal category on
which F' is a bimonad, G is a bicomonad, and ¢ is a distributive law, we discuss the
necessary and sufficient conditions for C¢(¢), the category of mixed bimodules to be
monoidal and braided. As applications, we discuss the Hom-type (co)quasitriangular
structures, the Hom—Yetter—Drinfeld modules, and the Hom-Long dimodules.
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1. Introduction. In 2006, Hartwig, Larsson, and Silvestrov introduced the Hom-—
Lie algebras when they concerned about the g-deformations of Witt and Virasoro
algebras (see [8]). Hom-associative algebras, the corresponding structure of associative
algebras, were introduced by Makhlouf and Silvestrov in [14]. The associativity of a
Hom-algebra is twisted by an endomorphism (here we call it the Hom-structure map).
The generalized notions, Hom-bialgebras, Hom—Hopf algebras were developed in
[13,15,16]. Further research on various Hom-Lie structures and Hom-type algebras
by many scholars could be found in [10, 11]. Quasitriangular Hom-bialgebras were
considered by Yau [21], which provided a solution of the quantum Hom-Yang—Baxter
euqation, a twisted version of the quantum Yang-Baxter equation [22,23].

An interesting question is to explain Hom-type algebras use the theory of monoidal
categories. In 2011, in order to provide a categorical approach to Hom-type algebras,
Caenepeel and Goyvaerts [6] introduced the notions of Hom-categories and monoidal
Hom-Hopf algebras. Ina Hom-category J7°(.#}), the associativity and unit constraints
are twisted by the Hom-structure maps. A (co)monoid in 5#(.#) isa Hom-(co)algebra,
and a bimonoid in J#(.#},) is a monoidal Hom-bialgebra (see Section 2, [6]). Note that
amonoidal Hom-bialgebra is a Hom-bialgebra if and only if the Hom-structure map «
satisfies > = id. Further, there is no monoidal category such that the Hom-bialgebra
is a bimonoid in it. That is the main difference between Hom-bialgebra and monoidal
Hom-bialgebra.

The aim of this paper is to provide a categorical view on the braided structures
appearing in the Hom-quantum groups.
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Let B be a bialgebra, g M the category of left B-modules. Obviously, the monoidal
structure on M is determined by the bialgebra structure on B. Furthermore, if 3 M is
a braided category with the braiding ¢, then there is an R-matrix R = 3 g(13 ® 15) on
B such that (B, R) is quasitriangular. But in the Hom case, recall from Remark 2.7 [6],
if (H, o) is a Hom-bialgebra (the monoidal Hom-bialgebra case can be discussed in the
same way), H is not a generator in its representation category. That means, if ;M is the
category of left H-Hom-modules, and if we define f,, : H — M by f,,(h) = h - mfor any
M € gM, m € M, then f,, is not H-linear. Thus, we cannot prove that tg y(1g ® 1)
is a quasitriangular structure in A as the same way in the usual bialgebras.

The natural question is to ask how we describe the braided structure on zM?
If y M is braided, is there any relation between the braiding in y M and the Hom-
bialgebra structure on H? This is the motivation of the present paper.

In 2015, Zhang and Wang (see [24]) showed that the tensor functor of a Hom-
bialgebra H is a bi(co)monad on a special monoidal category. Hence, we can use
the theory of monoidal (co)monads to interpret the braided structures obtained from
Hom-quantum groups.

In 2002, Moerdijk [17] used a comonoidal monad to define a bimonad. Although
Moerdijk called his bimonad “Hopf monad”, the antipode was not involved in his
definition. In 2007, Bruguieres and Virelizier [4] introduced the notion of Hopf monad
with antipode in another direction, which is different from Moderijk. Because of their
close connections with the monoidal structures, the theory of Bruguiéres and Virelizier
had developed rapidly and got many fundamental achievements (see [3, 5]).

Note that Beck [2] gave the notion of mixed distributive law which was the
compatible condition for monads and comonads to be an entwining structure. Hobst
and Pareigis [9] showed that the category of entwined modules over a field k could be
made into a braided monoidal category if and only if there exists a k-linear morphism
y : C® C — A® A which satisfies some axioms. Since the entwined module can be
seen as a mixed bimodule over a monad and a comonad, the braided structure over the
mixed structure also could be summarized. Inspired by this conclusion, we introduce
the notion of the braided mixed datum, which generalizes both quasitriangular
bimonads (Section 8, [4]) and double quantum groups (Section 5, [9]), and give the
examples and applications in Hom-quantum groups.

Further, one is prompted to answer several questions:

e Could a mixed sturcture admit the monoidal structure and the braided structure?

e Is it possible to characterize Hom-type braidings by mixed distributive laws?

e Does the mixed bimoduless can be view as the generalization of some Hom-
type modules such as Hom-(co)modules, Hom—Yetter—Drinfeld modules, Hom-Long
dimodules?

e What is the necessary and sufficient condition for the category of the Hom-
(co)modules becomes a braided category?

The propose of this paper is to investigate these questions. Indeed, we find
equivalent conditions to describe the braidings in the category of mixed bimodules. And
finally, we use the Hom-type (co)quasitriangular structures, the braided structures in
Hom-Yetter—Drinfeld modules and in the Hom-Long dimodules to verify our theory.

The paper is organized as follows. In Section 2, we first review some basic
definitions such as bi(co)monads,distributive laws, and Hom-type algebras. In Section
3, we discuss the monoidal structure on C(g), the category of mixed bimodules, and
give some necessary and sufficient conditions of the property that C&(¢) is a monoidal
category. In Section 4, we find equivalent conditions to describe the braidings in C¢(¢).

https://doi.org/10.1017/50017089517000088 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089517000088

BRAIDED MIXED DATUMS AND THEIR APPLICATIONS 233

As applications, in section 5, we discuss when the (co)representations category of a
Hom-bialgebra is a braided monoidal category, and discuss the Hom—Yetter—Drinfeld
modules and Hom-Long dimodules to verify our theory.

2. Preliminaries. Let C be a category, F, G: C — C two functors. Recall from [20]
that if there exist natural transformations m: FF — F, and n: ide — F, satisfying

momF =mo Fm, and idp =monF =mo Fn,

then we call the triple (F, m, n) a monad on C. If there exist natural transformations §:
G — GG, and ¢: G — idc, such that the following identities hold:

GSo08=08Goé, and idg =Geod =¢eGo 4,

then we call the triple (G, 6, €) a comonad on C.
Let C be a category, A € C, and (F, m, n) a monad on C. If there exists a morphism
04: FA — A, such that

QA omy = 9,4 OF(QA), and 9,4 onyg = idA,

then we call the couple (A4, 64) an F-module in C.

A morphism between F-modules f: 4 — A’ is called F-linear in C, if f satisfies:
04 o Ff = f 0 0,4. The category of F-modules is denoted by Cp.

Let C be acategory, B € C,and (G, §, ¢) acomonad on C. If there exists a morphism
oB: B — GB, satisfying

G,oBosz(SBopB, and SBo,oBzidB,

then we call the couple (B, p?) a G-comodule.

A morphism between G-comodules g: B — B’ iscalled G-colinear in C, if g satisfies
Gg o p® = pP o g. The category of G-comodules is denoted by CC.

Let C be a category on which (F, m, n) is a monad and (G, §, ¢) is a comonad. A
natural transformation ¢: FG — GF is called a mixed distributive law or an entwining
map, if ¢ induces the following commutative diagrams:

m G
FFG G FG FG—2-FGG -2~ GFG
le i<ﬂ (ﬂl \LG(/)
FGF -~ GFF —%"~ GF, GF oF GGF.

GF, GF.

For simplicity, we call (F, G, ¢) a mixed structure on C.

EXAMPLE 2.1. Let 4 be an algebra, C a coalgebra over a commutative ring k. Then
it is easy to check that F = _® 4 is a monad, G = _® C is a comonad on ;M. If we
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define ¢ : FG — GF by
0oy : XQCQR®A—->XQRARC, xQcR®ar> xQ® ¢(c® a),

where ¢ : C® A —> A ® Cis a k-linear map, then (F, G, ¢) is a mixed structure if and
only if (4, C, ¢) is a right-right entwining structure over k.

Let C be a category, (F, G, ¢) a mixed structure, M € C, (M, 6)7) an F-module, and
(M, pM) a G-comodule. If the diagram

Om oM
FM —— M ——GM

FpM \L T GOy

(273

FGM —— GFM

is commutative, then we call the triple (M, 07, p™) a mixed bimodule or an entwined
module.

A morphism between two mixed bimodules is called a bimodule morphism if it is
both F-linear and G-colinear. The category of mixed bimodules is denoted by C%(p).

Let (C, ®, I, a, [, r) be a monoidal category, (F, m, n) a monad on C, and F also
an opmonoidal functor, which means that there exists a natural transformation F:
F® — FQ F (here, F ® F denotes ® o (F x F)) and a morphism Fy: F(I) - [ in C,
such that for any X, Y, Z € C, the following equalities hold:

(idrory ® F2(Y, 2)) o Fo(X, Y @ Z) o Flax,v.z)
=arxryrz o (F2(X, Y)®idpz)o (X ® Y, Z),
rex o (idpx) ® Fo) o Fa(X, 1) o F(ry')
= idrx) = lrx(Fo ® idpx) Fa(I, X) o F(I3).

Then recall from [4] (or “Hopf monad” in [17]) that F is called a bimonad (or an
opmonoidal monad) on C if the following identities hold:

(M1) (my @ my) o Fra(FX, FY) o F(Fy(X, Y)) = F»(X, Y) o mygy;

(M2) Fx(X, Y)onxey = nx ®ny;

(M3) F() o F(F()) = FO omy,

(M4) F() onr = id[.

Note that if Fis a bimonad on C, then Cr is a monoidal category with the monoidal
structure

F(M,N N
Oyan : FM@N) —MY _ prpro PN —2C My e N,

for any (M, By), (N, 6y) € Cr, and with monoidal unit (Z, Fy) € Cr.

Let (C, ®, I, a, l, r) be a monoidal category, (G, 8, €) a comonad on C, and G also
a monoidal functor, i.e., there exists a natural transformation G,: G ® G — G® and a
morphism Gy: I — G(I) in C, such that for any X, Y, Z € C, the following equations
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hold:

G(X, Y ® Z) o (idgxy ® Go(Y, Z)) o agx,cv.cz
=Glax,yz) o G(X ® Y, Z) o (G2(X, Y) ® idg(z)),
G(ry) o Ga(X, I) o (idgex) ® Go) o gy
= idxr) = G(lx) o Ga(I, X) o (Go ® idgex)) o I k.

Then recall from [4] that G is called a bicomonad (or a monoidal comonad) on C if the
following identities hold:

(C1) G(G2(X, Y) o Go(GX,GY) o (8y R dy) = dxey o Go(X, Y);

(C2) Ex®Y O GX,Y)=¢ex Qey;

(C3) G(Gy) o Gy = 81 o Gy;

(C4) &7 0 Gy = id.

Note that if G is a bicomonad on C, then CY is a monoidal category with the
monoidal structure

M

pMep" M

G» N
PMEN . ar e N oM @ GN —2MY G e N),

for any (M, pM), (N, p") € C%, and with monoidal unit (1, Gy) € C°.

3. The monoidal structure in C¢(p). Throughout this section, assume that
(C,®,1,a,l,r)is amonoidal category on which (F, m, n) is a bimonad and (G, 8, ¢) is
a bicomonad such that (F, G, ¢) is a mixed structure.

Notice that for any X € C, if we define

Orcy : FFGX —= > FGX
and

F(s

o Fox 2o poox — % - GFGX |

then it is easy to check that (FGX, 0rgyx, p7%Y) € CZ(p).

LEMMA 3.1. Let (M, 0y, p™) and (N, 0y, pV) be objects in CE(p). If the F-action
Oyen and G-coaction pM®N on M ® N are given by

F>(M,N ’
Ouon : FOM & N) 2 pyr g FN 2" M g N

and

pMep™

PN M@ N oM GN =2 G e N)
then (Cg(w), ®,1,a,l,r) is a monoidal category if and only if (F, G, ¢) satisfies the
following equations for any X, Y € C:
(a) GFy(X, Y) o gxey 0 FGy(X, Y) = G(FX, FY) o (ox ® ¢y) o F>(GX, GY);
(b) G(Fo) o @1 o F(Go) = Gy o Fy.
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Proof. =): By the assumption, we have (FGX ® FGY, Orgyercy, pf ¢X®F07)is a
mixed bimodule for any X, Y € C, i.e.

G (FGX,FGY) o (pGx ® pgy) o (Féx ® Fdy)
o(mgy ® mgy) o FR(FGM, FGY)

= G(mgx ® mgy) o GF,(FGX, FGY) o grexercy o FGy(FGX, FGY)
oF (pox ® pgy) o F(Féx ® Fdy).

Multiplied by G(Fey ® Fey) left and by F(ngx) ® F(ngy) right on both sides of the
above identity, we immediately get the conclusion (a). Since (I, Fy, Gy) € Cg(go), one
can see that (b) holds.

«): First, assume that (M, 6y, pM), (N, 0y, p") € CE(9), it is easy to show that
(M ® N, 0ysy) € Crand (M @ N, pM®N) € CY. Then from the following commutative
diagram

Op @Oy

Fy(M,N) oM @p"
FIMON)——FMQFN ——MQ®N GM ® GN

F(pM®pN)i leM®FpN W
OMOPN
F(GM ® GN}Z(GM GN;’GM ® FGN —— GFM ® GFN G2(M,N)
F(Gz(M,N))i \LGZ(FM,FN)
¢w®~
FG(M ® N) == GF(M ® N) = G(FM ® FN) -—> G(M @ N).

we get that (M ® N, ey, pM®V) € CY(p) is also a mixed bimodule.

Second, from the assumption (b), one can easily get (I, Fy, Gy) € Cﬁ(go).

Third, since F is opmonoidal and G is monoidal, we immediately get that the
coherence morphisms «, /, r lift to morphisms in C%(¢). Then, (C¢(p), ®, 1, a,l,r)is a
monoidal category. O

Recall from [19] and [20], if C denotes any 2-category, then the following data
forms the 2-category of monads, which is denoted by Mnd(C):

e The O-cell contains an object X, a 1-cell S: X — X in C, together with the
multiplication m : SS — S, and the unit n : 1y — S, which satisfy the associative law
and the unit law, respectively.

e The 1-cell in Mnd(C) from (X, S, m, n) to (X, S',nm’,n')isa l-cell J : X — X’
in C together with a 2-cell j : §'J = JS in C, satisfying the following commutative

diagrams:
s'j jis nJ
S'S'J S'JS JSS J——=8J
m’]i i]m i_i
) Jn'
S'J ! JS, JS.

e The 2-cell in Mnd(C) from (/, j) to (K, k)is a 2-cell ¢ : J/ = K in C which satisfies
the equation

0Soj=koS.
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LetS = (X,S,m,n)and S" = (X', §', m', ') be O-cells in Mnd(C). We say a 1-cell
J: X - X' liftstoa l-cell J : Xs — X if the following diagram commutes:

XSL>X//

1T

x—1>x,
where U means the underlying functor.

Suppose both 1-cells J, K : X — X’ lifts to J', K’, respectively. We say a 2-cell
o0 : J = K lifts to a 2-cell g if the equation USg = o US holds.

Dually, we have the following 2-category Cmd(C) of comonads:

e The O-cell contains an object Y, a l-cell 7:Y — Y in C, together with
the comultiplication 8 : T — TT, and the counit € : T — 1y, which satisfies the
coassociative law and the counit law, respectively.

e The I-cell in Cmd(C) from (Y, T,8,¢)to (Y, T',8,€')isa l-cel W:Y — Y’
in C together with a 2-cell w : WT = T'W in C, satisfying

SWow=TwowToWs, and € Wow = We.

e The 2-cell in Cmd(C) from (W, w) to (V,v) is a 2-cell x : W = V in C which
satisfies

voxT =T xow.

Let T=(Y,7,8,¢e)and T' = (Y', T", &', €') be O-cells in Cmd(C). We say a 1-cell
W:Y — Y liftstoaI-cell W: Y' — Y’V if the following diagram commutes:

YT 4W> Y/T’

Ut l l ur
w

Yy ——Y,

where U means the underlying functor.

Suppose both 1-cells W, V : Y — Y’ lifts to W, V', respectively. We say a 2-cell
x : W = V lifts to a 2-cell  if the equation UT ¥ = x UT holds.

Similarly, the following data forms a 2-category Dist(C) of the distributive laws:

e The O-cell (X, T, D, v) consists of an object X of C, amonad 7 on X, a comonad
Don X,and a 2-cell v : TD = DT in C which is a distributive law.

e The 1-cell (J,j,,jq): (X, T,D,v) — (X', T', D',V') consists of a 1-cell J : X —
X’ in C, together with 2-cells j, : T'J = JT and j,; : JD = D'J, where j, is a monad
law and j; is a comonad law in C, and satisfies the following diagram:

" JiD Jv
T'JD JTD JDT

T'ju l ij}/ T
! D'ji

70— pTy—L DJT.
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e The 2-cell w : (J, ), ja) = (H, hy, hy), where @ : J = H is a 2-cell in C, and
satisfies

77 % 1H JD—"2~ HD

Ji l lh, Ja l l ha
oT Dw

JT ——HT, D'J——= D'H.

Use the definition of Mnd(C), Cmd(C), and Dist(C), we get the following theorem.
THEOREM 3.2. The following statements are equivalent:

(1) (Cg(go), ®, 1, a,l,r) is a monoidal category.

(2) The equations (a) and (b) in Lemma 3.1 hold.

() G2:(GRG, (p®¢) o F(G, G) = (G, GF0(p®))  and Gy : (I, Fy) =
(GI, GFy o @) are 2-cells in the 2-category Mnd(C).

4) G:GRG=G® :CxC— C lifts to a 2-cell G, : GR G = G® such that
Upyp oGy =Gyro Up and Gy : I = GI : T — C lifts to a 2-cell Gy : T = GI
such that Uig, o Go = Gy o Ur, where U is the forgetful functor.

S F2:(F®,(¢®) 0 (FG2) = (FRF,Gy(F, F)o(p®¢)) and Fy:(FI,¢r0
(FGy)) = (I, Gy) are 2-cells in the 2-category Cmd(C).

6) F, | FQ = FQF:CxC— C lifts to a 2-cell F, : FQ = F ® F such that
U CoF, =F,0U% and Fy: FI = I:3 — C lifts to a 2-cell Fy : FI =T
such that U o Fy = Fy o U°.

(7 (®, F», Gy) and (1, Fy, Gy) are 1-cells in Dist(C).

Proof. From Lemma 3.1, (1) and (2) are equivalent. Further, it is a direct
computation to check that the conditions (3) (resp. (5), resp. (7)) hold if and only
if (2) holds. Finally, by Corollary 3.11, [19], (3) is equivalent to (4). Similarly, by
Corollary 5.11, [19], (5) is equivalent to (6). O

DEFINITION 3.3. We call (F, G, ¢) a monoidal mixed datum if (F, G, ¢) is a mixed
structure and the properties in Theorem 3.2 hold.

EXAMPLE 3.4. In the setting of Example 2.1, if 4 and C are both bialgebras over
k, then (F, G, ¢) is a monoidal mixed structure if and only if (4, C, ¢) is a monoidal
entwining structure (see Section 4, [9]).

4. The braided structure in CZ(¢).

4.1. Convolution product. Given a category C and a positive integer n, we denote
C"=CxC x---xC the n-tuple cartesian product of C. If F is a monad, G is a
comonad on C, then F*" (the n-tuple cartesian product of F) is a monad, and G*" is a
comonad on C", and we have C., = (Cr)", C"¢" = (€Y. Furthermore, if ¢ : FG —
GF is a mixed distributive law, then C"g::(q)x”) = Cg(w)".

Assume that (F, m, ) is a monad, (G, 8, €) is a comonad on C, (F, G, ¢) is a mixed
structure, and U : C¥(¢) — C is the forgetful functor. Let P, Q : C" — D be functors.
Then we have the following result which generalizes Lemma 1.3 [4].
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PROPOSITION 4.1. There is a canonical bijection:

Nat(PU*", QU*") = Nat(PG*", QF*").

Proof. Define  : Nat(PU*", QU*") — Nat(PG*", QF*"), f + f” by

.....

f(le x,) = OWFex,, ..., Fey,) o firox,,...rax,) © P(ex, - - .. nex,)
and 7 : Nat(PG*", QF*") — Nat(PU*", QU*"), a ot by
rrrnny = QO -+, 0) 0 @,y 0 P(p™M, ., p™)

for any f € Nat(PU*", QU*"), a« € Nat(PG*", QF*"), and X; € C, (M;, O, pM) €
CE(g). It is easy to check that ?” and ? are well defined.
Then from the following diagram

P(F$

) Plocy
P(FGX)) — %) p(FGGX;) — ¥

M) pGGxy)
| |
P(nx;) P(Gnex;) AFGX;

/

P(GX)) — = P(GGX) Q(FFGX;)

ay; \L \“GXI' l O(mgyx;)
\

O(FX) e O(FGX,),

? and ?* are inverse to each other. O

Let P,Q,R:C" — D be functors. For any « € Nat(PG™", QF*") and B €
Nat(QG*", RF*"), define their convolution product B *a € Nat(PG*", RF*") by
setting, for any objects Xi, ..., X, inC,

= R(my,,...,my,) o Brx, ..rx, © Q@x,, .., ¢x,) ©AGx,...cx, © P(Bx,, ..., 8x,).

We say that o € Nat(PG*", QF*") is s-invertible if there exists 8 € Nat(QG*", PF*")
such that B xa = Pno Pe and a % B = On o Qe. We denote B by a*~!.

PROPOSITION 4.2. The x-invertible elements in Nat(PG*", QF*") are in
corresponding with the natural isomorphisms in Nat(PU*", GU*").

Proof. Suppose that f € Nat(PU*", GU*") is a natural isomorphism. Then we
immediately get that /” has a -inverse (f~').

Conversely, if « € Nat(PG*", QF*") is s-invertible, then (a*~')? is the inverse
element of . O

4.2. The braidings. Throughout this section, assume that (C,®, I, a,[,r) is a
monoidal category in which (F, G, ¢) is a monoidal mixed datum.
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Recall that a braiding in C is a natural isomorphism 7: ® = ®% : C x C — C such
that the following diagrams

U VeW —""" _veWew) —" e w)eU

mwwl l (B1)
Ve ew —"" L yeuew) — L yewe ),
Ueraw)— " L wenew —""" . weWer)

idy®ty w J{ law‘. vy (B2)
UeWe V) — _wew eV —"""" _(weuye

are commutative for any U, V, W € C.

We suppose that there is a natural transformation 0: G® G = F ®” F : C** —
C. From Proposition 4.1, for any objects M, N in Cg(go), o can induce a natural
transformation

oM @p" OMN ON®OM

GM ® GN FNQFM —NQM .
4.1
Conversely, if there is a natural transformation 7: ® = ®% : C x C — C, then
from Proposition 4.1, for any X, Y € C, ¢ can induce a natural transformation

Z‘M,N:GL’NZ MRN

nex®ngy lFGX,FGY Fey®Fey

oxy=1lyy: GX®GY S FGX @ FGY £ FGY ® FGX ——=FY @ FX .
4.2)
Next, we will discuss when ¢ is a braiding in C%(g).

DEFINITION 4.3. Let (F, m, n) be a bimonad, (G, 8, €) a bicomonad on a monoidal
category C, and (F, G, ¢) a monoidal mixed datum. If there is a *-invertible natural
transformation o € Nat(G ® G, F % F), satisfying the following identities for any

X, Y, ZeC
(my ® my) o orx,ry © (¢x ® ¢y) o Fo(GX, GY) = (my ® my) o Fo(FY, FX)
OF(O’X. y), (43)
G(oy,y) 0 G2(GX,GY) o (8x ® 8y) = Go(FY, FX) o (py ® px) 0 0Gx.6Y
o8y ® 8y); (4.4)

(idry ® idrz ® my) o (idpy ® oFrx.7) © ary.crx.cz © (idry ® ¢x ® idGz)

o(oGy,y ® idcz) o 0x ® idgy ® idgz)

=aryrzrx o (F2(Y, Z) ® idrx) o 0x,yez o (idex ® Go(Y, Z)) 0 agx.6v.cz: (4.5)
(mz @ idpy ® idry) o (ox,rz ® idry) o (idgy ® ¢z & idpy) o aE;;l(ﬁmz,py

o(idy ® 0y.Gz) o (idgx ® idgy ® 87)

= dpy py.py © (idpx @ F(X, Y)) 0 0xgyz 0 (Go(X, Y)®idez) 0 agy gy oz (4.6)
then the quadruple (F, G, ¢, o) is called a braided mixed datum.

THEOREM 4.4. Let (F, m, n) be a bimonad, (G, 8, ¢) a bicomonad on a monoidal
category C, and (F, G, ¢) a monoidal mixed datum. Then, C£(¢) is a braided monoidal
category if and only if there exists a natural transformation o : G Q G — F Q% F such
that (F, G, ¢, 0) is a braided mixed datum. Moreover, the braiding in Cg(go) ist=o".
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To prove Theorem 4.4, we need the following lemmas.
LEMMA 4.5. t is F-linear if and only if o satisfies equation (4.3) for any X, Y € C.

Proof. <): Since the following diagram

Fy(M,N M@0y
FiM @ N) MY pyvre EN &0y M®N
F(pM@p") leM@F/JN pMep"
5(GM,GN Pu®py
F(GM ® GN) —— GM®FGN4>GFM®GF]\67@>NGM®GN
oM ®Gp
F(om.n) OFM,FN OM N
FN.FM
FFN @ FMY e pn @ FEM FN® FM
FON®FOy
my@my
\
F(ON®0y) FON®FO FNQ®FM ON®Oy
W
Fy(N,.M /@0,
F(Ve M) 2y g FM et N®M

is commutative for any M, N € Cg((p), ty.n 18 F-linear.
=): Notice that trgx rey 1S F-linear for any X, Y € C, then it follows

(mgy @ mgx) o Fo(FGY, FGX) o F(mgy ® mgx) o F(orGx.FGy)
o F(pox ® pgy) o F(Féy ® Féy)

= (mgy ® mgx) © 0rGx.rGy © (P6x ® PGy) o (Féx ® Fdy)
o(mgy @ mgy) o Fro(FGX, FGY).

On the one hand, by constructing the suitable commutative diagram, we have

F(FGX ® FGY) — ") p(FGGX @ FGGY) F(GFGX ® GFGY)

A F(Gnax®Gn \
F(’IGX‘®’76Y) Rt F(UFGJ,FGY)

F(bx®d8y)

F(pex®¢pcy)

F(GX®GY)——"" s F(GGX ® GGY) F(FFGY @ FFGX)
F(U‘X.Y) F(Gey®Gey) F(””GY‘@I”GX)
¢ Fo F(ogx,6y) ¢
F(FY ® FX) -7 F(GX ® GY) F(FGY ® FGX)
.
F(F ‘y FX) i F(Fey®Fsy)————""_ Fy(FG l’,FGX)
FFY ® FFX S FY®FX NS PFGY @ FFGX.
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On the other hand, we compute

FH(FGXQFGY m m
FIFGX ® FGY) 2LYN) prGx @ FFGY —292"" . FGX ® FGY
F(nx®ncy) Fnax®anyT FSy®FS8y

K (GXQGY
F(GX ® GY) — 2N | pox o Fay — 2 | FGGY ® FGGX

‘/’X®¢’Yl ch%woy

FFYQFFX ~—— " GFX ® GFY %" GFGX ® GFGY

my®mxi OFGX,FGY

ey®ex mgy ®@mey

FYQFX FGYQ FGX <— FFGY @ FFGX.

Comparing the two diagrams, we get the conclusion.

LEMMA 4.6. t is G-colinear if and only if o satisfies equation (4.4) forany X, Y € C.

Proof. The proof is similar to Lemma 4.5.

LEMMA 4.7. With the above notations, Diagram (BI) is commutative in CZ(¢) if

and only if o satisfies equation (4.5) for any X, Y, Z € C.

Proof. ). Take X =M, Y =N, Z =K for any mixed bimodules M, N, K.
Multiplied by 6 ® 6 ® Oy left and by pX ® pM ® p™ right on both sides of equation

(4.5), we immediately get that Diagram (B1) is commutative.
=): Obviously, FGX, FGY, FGZ satisty

AFGY,FGZ,FGX © lFGX . FGY®FGZ © AFGX,FGY,FGZ

= (idrcy ® trox,FGz) © ArGY,cx,FGz © (trGx Foy ® idpGz)

for any X, Y, Z € C. Multiplied by Fey ® Fez ® Fey left and by ngy ® ngy ® ngz

right on both sides of the above equation, we get equation (4.5).

LEMMA 4.8. With the above notations, Diagram ( B2) holds if and only if o satisfies

equation (4.6) forany X, Y, Z € C.
Proof. The proof is similar to Lemma 4.7.
LEMMA 4.9. t is a natural isomorphism if and only if o is *-invertible.
Proof. Straightforward from Proposition 4.2.
By Lemmas 4.5-4.9, we immediately get Theorem 4.4.

EXAMPLE 4.10. If G = id;, ¢ = idp, then a braided mixed datum (F, G, ¢, 0) is
exactly a quasitriangular bimonad defined in Section 8.2 [4], and o is an R-matrix

for F.

ExAaMPLE 4.11. In the setting of Example 2.1, if 4 and C are both bialgebras over
k, then (F, G, ¢) is a braided mixed datum in ;M if and only if (4, C, ¢) is a double

quantum group (see Section 5, [9]).

DEFINITION 4.12. If F = ide, ¢ = idg, then a braided mixed datum (F, G, ¢, o) on

C is called a coquasitriangular bicomonad (G, o).
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5. Applications in Hom-quantum groups. In this section, we will give some
applications on Hom-type algebras to verify our theories. First, let us review several
definitions and notations related to Hom-bialgebras. Note that when we say a “Hom-
algebra” or a “Hom-coalgebra”, we mean the unital Hom-algebra and counital Hom-
coalgebra.

Let k£ be a commutative ring. Recall from [1] that a Hom-algebra over k is a
quadruple (4, i, 14, @), in which 4 is a k-module, « : 4 —> A, u: A A — A are
k-linear maps, with notation ab = u(a ® b), and 14 € A, satisfying the following
conditions, for all a, b, ¢ € A4:

a(a)(bc) = (ab)a(c), a(ly) =14, lya=aly=a(a).

Let (4, o, u, 14) and (4', &/, ', 1 4) be two Hom-algebras. A linear map f : 4 —
A’ is said to be a morphism of Hom-algebras if

fou=po(f®f), f)=1ly, and foa=d'of.

Recall from [1] that a Hom-coalgebra over k is a quadruple (C, a, A, €), in which
Cisakmodule, a:C—> C, A:C—> CQ®C and ¢ : C — k are linear maps, with
notation A(c) = ¢; ® ¢y, satisfying the following conditions for all ¢ € C:

coa=¢, alc)®Al)=A(c1)®a(cr), elc1)er = cre(cr) = a(c).

Let (C,a, A,¢)and (C', o/, A’, €') be two Hom-coalgebras. A linear map f/ : C —
C’ is said to be a morphism of Hom-coalgebras if

fRf)oA=ANof, €of=¢€ and foa=0a of.

Note that in the earlier definition of Hom-(co)algebras by Makhlouf and Silvestrov
(see [13] or [14]), an axiom was redundant as shown in [1]. The reader will easily check
that the definition above is equivalent to the one in those papers.

Recall from [14] that a Hom-bialgebra H over k is a sextuple H =
(H,o, u, 1y, A, €), in which (H, o, u, 1g) is a Hom-algebra, (H, «, A, €) is a Hom-
coalgebra, and A, € are morphisms of Hom-algebras preserving unit.

EXAMPLE 5.1. Let k be a commutative ring. Suppose (B, m, n, A, €) is a k-bialgebra
endowed with a bialgebra isomorphism « : B — B. Then, (B,x,x om,n, Aoa,¢€) is
a Hom-bialgebra over k. We denote this Hom-bialgebra by B“.

Conversely, if (H,a, m,n, A, €) is a Hom-bialgebra and « is invertible, then
(H,a " om,n, Aoa™!,€)is a bialgebra over k. We denote this bialgebra by H,,.

Thus, we immediately get a bijective map B — B* between the collection of all
bialgebras over £ endowed with an invertible endomorphism on it, and the collection
of all Hom-bialgebras with invertible Hom-structure maps.

Let (H, @) be a Hom-algebra. A left (H, a)-Hom-module is a triple (M, oy, Op),
where M isa k-module, 6y, : H @ M — M isak-linear map with notation 6y,(h @ m) =
h-m,and ay : M — M is also a k-linear map defined by 14 - m = ay,(m), satisfying
the following condition:

alh)-(h' -m) = hl) - ay(m), forallh,h € H, me M.
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A morphismf : M — N of H-Hom-modules is a k-linear map such that 6y o (idy ®
f)=fobu.

Let C be a Hom-coalgebra. Recall that a right C-comodule is a triple (M, apr, p™),
where M is a k-module, p™ : M — M ® C is a k-linear map with notation p™(m) =
my @ my, and ay; : M — M is also a k-linear map defined by e(m)my = ap(m),
satisfying the following conditions:

an(mo) ® A(my) = p™(mo) ® a(my), forallme M.

Amorphism f : M — N of C-Hom-comodules is a k-linear map such that p" o f =
(ide ® f) o p™.
Recall that in the earlier definition of Hom-(co)modules by Makhlouf and
Silvestrov, there is also a redundant axiom (see [1] for details).
Let (H, @) be a Hom-bialgebra over k. Recall from [24] that if there exists an
invertible element R € H ® H, satisfying
(q1) (@ ®@)R=R;
(42) RA(x) = AP(X)R;
(q3) Z R(ll) ® Rg) ® a(R(Z)) — a(r(l)) ® Ol(R(l)) ® r(Z)R(2);
(g4 Y a(RV) @ RY @ RY = WRD @ a(R®) @ a(r?),
for any x € H, where R=Y RV @ R® = > vV @ ¥ then R is called an R-matrix
of H, (H, «, R) is called a quasitriangular Hom-bialgebra.
Under the condition of Example 5.1, the following theorem can be seen as the
corollary of Proposition 1.14 [6] and Example 2.3 [21].

THEOREM 5.2. Suppose that (B, m, n, A, €) is a k-bialgebra endowed with a bialgebra
isomorphism o : B — B. Then there exists an element R € B ® B, such that (B*, o, R)
is a quasitriangular Hom-bialgebra if and only if R € BQ® B is an R-matrix of B and
satisfies (@ ® )R = R.

Proof. Straightforward. O

5.1. Quasitriangular Hom-bialgebras. Let & be a commutative ring, ;M =
(xM, ®, k) be the category of k-modules. Now from this category, we can construct a
new monoidal category H"/ (M) for any i, j € Z as follows:

e The objects of H"/(; M) are pairs (U, ay), where U € (M and ay € Auti(U).

o The morphism f : (U, ay) — (V, ay)in H¥ (M) is a k-linear map from U to V'
such that oy o f = foay.

e The monoidal structure is given by

U, a) @ (V,ay) =(U V,ay @ ay),

and the unit is (k, idy).
e The associativity constraint « is given by

avyp (UMW > UV OW), ®v)@wr ay (1) ® (v e d) (w).
e Forany M € ;1 M, m € M and X € k, the unit constraints / and r are given by

Iy ®@u) = ray '), ru® i) =rag~ ().
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It is a direct computation to check that H¥ (M) = (H¥ (M), ®, k, a, 1, r) is a
monoidal category.

PRrOPOSITION 5.3 [24, Corollary 4.2]. If (H, u, 1y, A, €, &) is a Hom-bialgebra over

k,then F = (H ® _,m, n, F>, Fy) is a bimonad on ﬁi’j(k/\/l) with the following structures:
em : FF — F is given by

my  HOQ(HQX)—> H®X, h®(g®x)— a '(hHg® ax(x).

o idgmy — Fisgivenbyny : X > H® X, x — 1H®a;(l(x).
oI : F® — F ® F is given by

FEX,Y):HRI(XQRY) > (HRIX)QR(H®Y),
h®(x®yp) > (@'(h)®x) () y),

forany X, Y € H¥(M).
e Fy: F(k) > kisgivenby Fo: HQ®k — k, h® X — e(h)A.

Note that M = H¥ (M), as monoidal categories, where F = H @ _. Thus,
monoidal structure in M is given by

h-u®v)=a'(h) - u®o(h)-v, YueU, veV, heH,
where (U, ay) and (V, ay) are all H-Hom-modules.
THEOREM 5.4. If (H, ) is a Hom-bialgebra, then the category of H-Hom-modules
y M is a braided monoidal category if and only if F is a quasitriangular bimonad on
HY (x M).
Proof. Directly induced by Theorem 4.4, ]

_ PROPOSITION 5.5. For the fixed elements R, R' € H ® H, defineo : ® = F % F :
HY (M) —> HY (M) by
oxy(x®y) = @ (R?) @ oy’ (1) ® (@/(RV) @ o (x)).

and define o' - P = F ® F : HY(:M)*> — HY (M) by
ory (0 ®x) = @R @y () ® @R @y (),

for any (X, ax), (Y, ay) € HYGM), x € X, y € Y. Then, (F, o) is a quasitriangular
bimonad with the x-inverse o' if and only if R is the R-matrix of H with the inverse R’
such that (H, o, R) is a quasitriangular Hom-bialgebra. Moreover, the braiding in g M is

given by 1y y(u® v) = &/(R?) - o’ () ® #/(RV) - oy~ (u), for any U. V € yM.
Proof. =: Suppose (F,o) is a quasitriangular bimonad. First, since oy x is

a morphism in HY(3 M), we have oy o (idy ® idy) = (@ ® idy) ® (¢ ® idy)) o oy 1
which implies (¢ @ )R = R.

Second, since o satisfies equation (4.3), we have

(my ® my) o oy pi o Falk, k) = (my @ my) o Fo(Fk, Fk) o F(oy ).
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For one thing, we compute

((mye @ my) o oFk i 0 Falk, k))(x @ (1 @ 1))
= (my ® m)((@'(R?) @ (/7 71(x2) ® 10) ® (/(RM) @ (@7 (x1) ® 1x)))
= (@ "R (x2) ® 1) ® (& (RM)e/ ! (1) ® ).

For another thing, we have

((my ® my) o F2(Fk, Fk) o F(o7,1))(x ® (1x ® 1x))
= (my @ mi)((@'(x1) ® (@' (R?) @ 11)) ® (¢/(x2) ® (¢/(RD) ® 11)))
= (@' (R?) @ 1) @ (/' (x2)ed (RP) @ 11).

Comparing the above two equations, since (¢ ® «)R = R, we immediately get equation
(q2).

Third, take X = Y = Z = kin equations (4.5) and (4.6), it is a direct computation
to prove equations (q3) and (q4).

At last, since o' is the x-inverse of o, we have oy x * oy, = nx ®” 1 and oy ;. *
Ok = Nk @ Nk, which implies R and R’ are inverse to each other.

= Straightforward. O

EXAMPLE 5.6 (the Sweedler’s 4-dimensional Hom-bialgebra). Let k be a field and
H, the Sweedler’s 4-dimensional bialgebra Hy = k{ly, g, x,y|g> =1y, x> =0,y =
gx = —xg} with the following structures:

Al =g®g AX)=x®@1ly+g®@x, A)=y®g+1u®y,
e(@)=1, e(x)=¢€(y)=0.

Note that Hy is a quasitriangular Hopf algebra with the R-matrix
1 by
Ri=70n®@ln+1y®g+e®1ly—g®g+ (x®X—x@®y+y@x+y®Y)

where A € k (see Example 10.1.17 [18]).
By (Example 3.5 [7]), any bialgebra isomorphism « : H4 — H, takes the form

0

e e
oo~ O
QU OO

0
d P
c

where ¢, d € k satisfying ¢* # d*. Thus, we immediately get a Hom-bialgebra Hy* =
(Hy, o, o, 1y, A o« €) (usually called Sweedler’s 4-dimensional Hom-bialgebra).

Moreover, from Theorem 5.2, through a direct computation, we obtain that H;*
is a quasitriangular Hom-bialgebra, and the R-matrix of H;* is given by

pelpy+1p®g+g®1ly—g®y)
+%(x®x—x®y+y®x+y®y), when ¢2=1,d=0, A #0,
orc=0,d> =1, »#0;
p®ly+1p®g+g®1y —g®g), otherwise,

where A € k.

https://doi.org/10.1017/50017089517000088 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089517000088

BRAIDED MIXED DATUMS AND THEIR APPLICATIONS 247

5.2. Coquasitriangular Hom-bialgebras. Dual to the above property, we have the
following results.
Assume that k is a commutative ring. For any 7/,j € Z, a monoidal category

H' Y (M) is defined as follows: N
e The objects, morphisms, and tensor products are the same as in H' (;M).
o The associativity constraint « is given by

avyw (UQV)QW - UQ(VeW), Uv)@wH— oz’;’](u) R (v ®oe;Vle(w)).
e Forany U € ;1 M, u € U, and X € k, the unit constraints / and r are given by
lv(h @ u) = )\a’;rl(u), ro(u® M) = )»a’;fl(u).

Note that if 7/ = =0, then ﬂi,‘//(k/\/l) is the monoidal Hom-category defined
in [6].
PROPOSITION 5.7 [24, Theorem 4.3]. Let 7', j be two integers. If (H, u, 1y, A€, a)

is a Hom-bialgebra over k, then G = (_® H, 8, €, G2, Gy) is a bicomonad on HY &M)
with the following structures:
e : G — GG is given by

Sy XQH > (XQH)®H, xQht> (ax(x)®h)Qa ().

oc:G— idﬁ"/'/l(k/\/t) isgivenbyexy : XQH — X, x®h— e(h)ag,l(x)‘

e G : GR G — GQ is given by

GX.Y):(XH)®(Y®H) - (XQY)®H,
x@a)®(®b) — (x®y) ®a (@) (b),

forany X, Y € ﬁil’j,(k/\/l).
e Gy k— Glk)isgivenby Gy : k> kQ@ H, .\ —> A® lp.

L G
Notice that M7 =H"’ (xM) as monoidal categories, where G = _® H. Thus,
monoidal structure in M# is given by

u® v)(o) RuU® v)(l) = u(0) ® V) ® a"’(u(l))oej/(v(l)), Yue U, vel,

where (U, ay) and (V, ay) are all H-Hom-comodules.

THEOREM 5.8. The category of Hom-comodules of a Hom-bialgebra (H, «) is a
braided monoidal category if and only if _® H is a coquasitriangular bicomonad on

H 7 (M.

Recall from Definition 6.5 [24] that a Hom-bialgebra (H,«) is called
coquasitriangular if there exists a convolution invertible bilinear form & : H @ H — k,
such that the following conditions hold:

(cql) &(a(a), a(b)) = &(a, b);

(cq2) &(ar, br)axby = biai&(az, by);

(cq3) &(a(a), be) = &(ar, a(0)é (a2, a(b));
(cq4) &(ab, a(c)) = &(a(a), c1)§(a(D), c2),

foranya, b, c € H.
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PRQRQSITION 5.9. For the fixed linear forms €, &' € (H® H)*, defineo : GQ G =
® :H ' (M)? - H'(:M) by
oxy(x®a) @ (y®b) =y M ®ay’ (Wi (@), o (b)),
ando’ G G= @ H ' (M2 = H (M) by

i (D@ (x®a) =y ) @ayT T (E @ (b), (@),

for any (X,ay), (Y,ay) e H M), xe X, yeY, abe H. Then, (G,0) is a
coquasitriangular bicomonad with the x-inverse o' if and only if (H,a, &) is a
coquasitriangular Hom-bialgebra and &' is the convolution inverse of &. Moreover, the
braiding in M* is given by ty y(u ® v) = 0[’1/,7”71(11(0)) ® alllfj/fl(u(o))é(ai’(u(1))a/’(v(1))),
where Uy Ve M ue U veV.

5.3. Hom-Yetter—Drinfeld modules. Note that for any i,j € Z, we immediately
get Hi(GM)=H 7 (M). Suppose that H = (H, a, u, 17, A, €, S) is a Hom—

Hopf algebra over £. ~
Let F = H® _be the bimonad in H"/(xM), and G = _® H be the bicomonad in
H 72 (LM). For any p € Z and (X, ay) € HY (M), define ¢ : FG — GF by

ox  FGX =H®(X® H) — (H® X)® H = GFX,
h®(x®g) > (o' (h) ® x) ® (& *(hn)a ™' (9)S™ (@ *(h)),

it is a direct computation to check that (F, G, ¢) is a monoidal mixed datum on
HY (1 M). Moreover, H (. M)E(p), the category of mixed bimodules is a monoidal
category satisfying

o the tensor product, the associativity constraint, and the unity constraints are the
same as in HY(xM); _

e the objects in HY(xM)E(p) are pairs (U, ay), where (U, ay) is both a left H-
Hom-module and a right H-Hom-comodule, satisfying

o(h-u) =a (ha) - ue) ® (@ *(hn)a " (uay)S (@’ 2(h1)), ue U, he H.

We call such~eA1Amixed bimodule a pth Hom—Yetter—Drinfeld module, and we write
wHYD (p) for HY (M) ().

For example, if we take i = j = 0 and p = 2, then the mixed bimodule becomes
the Makhlouf’s left-right Yetter—Drinfeld module which is defined in [12] (see Remark
5.4,12)).

Furthermore, ;HY D (p) is a braided category with the following braiding:

wy UV —->1VeU, u®uv— ail/_j_l(v(o))@ofp(v(l)) ~o/;[_1(u).

Thus, from Theorem 4.4, there is a natural transformation o : G ® G — F ®” F such
that (F, G, ¢, o) is a braided mixed datum on H* (;M). Actually, o is defined as follows:

oy (UH®VO®H) — (HRV)®(H® U)
WM ® g — (ly®ah’ *(v0)) ® (a?(g) ® &y *(w)e(h)).
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5.4. Generalized Hom-Long dimodules. Suppose that H = (H,ay, uy,
ly, Ay, ey) and B = (B, ap, g, 1g, Ap, €p) are two Hom-bialgebras over k. Since

F = H ® _is a bimonad in (M), and G = _® Ba bicomonadin H 7 (M),
for any (X, ay) € H"(, M), one can define ¢ : FG — GF by
ox : FGX =H® (X ®B) > (H® X)® B = GFX,
h®(x®a)— (ag(h) ® x) @ ap(a).

It is a direct computation to check that (F, G, ¢) is a monoidal mixed datum on
HY(xM). Moreover, HY (. M)E(p), the category of mixed bimodules is a monoidal
category satisfying

o the tensor product, the associativity constraint, and the unity constraints are the
same as in HY(xM); _

e the objects in HY (1 M)~E(¢p) are pairs (U, ay), where (U, ay) is both a left H-
Hom-module and a right B-Hom-comodule, satisfying

p(h-u)=oay(h)-ugp @ ap(uyy), uelU, he H, acB.

We call such a mixed bimodule a generalized Hom-Long dimodule, and we write
wHLE for HY (. M)E(9).

Now suppose that (H, R) is a quasitriangular Hom-bialgebra where R = " RV ®
R® is the R-matrix, and (B, £) is a coquasitriangular Hom-bialgebra, ;HL? denotes
the category of generalized Hom-Long dimodules. Define the following maps t by

‘L'UYVIU®V—> Ve u
u@v— Y Blajun)), apv)ay (R?) - o (v0) ® &)y (RV) - (o)),

then it is straightforward to show that 7 is a braiding in aHLE. Indeed, 7 is induced
by the following natural transformation in H%(xM)%(p) through Theorem 4.4:

ovr: (U®B (VB — (HRV)®(H® U)
U®a)® (v®b) — Blak(a), dy(D) ey (R?) ® a7 (1) ® () (RV)
®a), ().

It is easy to check that (F, G, ¢, o) is a braided mixed datum on H%(;,M).

DEFINITION 5.10. Let U be a vector space over k and R € Endi (U @ U). We say
that R is a solution of the D-equation if

RIZR23 — R23R12
in Endi(U® U ® U).

If we set B = H, then we have the following property.

PROPOSITION 5.11. Let (H, ay) be a Hom-bialgebra over k, yHL™ denote the
category of Hom-Long dimodules of H. For any integer n € Z, if we define the following
k-linear map

Burv: UV —URQV

u® v — af(v) - oy (@) @ ay' (v)).
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where (U, ay), (V,ay) € aHLY then B satisfies the following generalized Hom-type
D-equation in HY (. M):

av,y.w idy®Bv,w agly.w
U)W ‘ Ue(Vew) — " S UgVeW) ——— S (Ul V)W
Bu.y ®idw Bu.yQidw
UenNew Ue(VeW) —————>U(VelW) ——— > (U ) W.

av.w.y idy W -
v®Bv.w ag'yw

Proof. Foranyu € U,v € V, w € W, since the following identities

((Bu,y ® idw) o GE}W,V o (idy ® By.w) o ay,v,w)(u® u) ® w)

= ((Bu.y ® idw) o dgly g™ W) ® (@) (wa)) - a7 (1) ® &y (w))))
= (X (vy) - ot @) ® o (way) - 3P (00) © @ (o))
= (ag'y y o (idy ® Br.w)ely ™ () - a2 () ® (a7 (v0) ® &y (w)))

= (ay'y.y o (idy ® By.w) o avw,v o (Bu.y ® idw))(u® u) ® w),

the conclusion holds. O
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