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Abstract

The problem of determining a square integrable function from both its
modulus and the modulus of its Fourier transform is studied. It is shown
that for a large class of real functions the function is uniquely determined
from this data. We also construct fundamental subsets of functions that are
not uniquely determined. In quantum mechanical language, bound states are
uniquely determined by their position and momentum distributions but, in
general, scattering states are not.

1. Introduction

The Pauli problem

In a footnote to his Handbuch der Physik article on the general principles of wave
mechanics [4], Pauli raised the question of whether the wave function ijs(q) was
uniquely determined by the probability densities | ^{q)f and |^(p)|2 in configuration
and momentum space. In this article we show that there are fundamental subsets
where the answer is no and there is a large and interesting class of functions
<f>(q) eL2(R) for which the answer is yes.

The question was motivated by the fact that if the wave function was uniquely
determined by its position and momentum probability densities then we have, at
least in principle, a method of determining the wave function from experiment.
Nevertheless, we should point out that the mathematical problem is of interest in
other contexts, such as control theory and crystallography. We will comment
further on the physical meaning of this problem and our results in the final section.

The mathematical problem is that of determining the phase of a complex-valued
square integrable function given both the amplitude of the function and the
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amplitude of its Fourier transform. We are particularly interested in the uniqueness
of the solution to this problem. For example, assume that <f>(q)eL2(R) and let
<£(/>) eZ,2(R) be its Fourier transform, then given \<f>(g)\ and \$(j>)\ we have that
<f>(q) = \(f>(q)\emq) is a square integrable function with modulus \<f>(q)\ and with
\$(p)\ the modulus of its Fourier transform. The real-valued function 6(q) is the
phase of <f>(q). Is there any other square integrable function ifi(g) with | <fi(q) \ = \ ^>(q) |
and | ^ O ) | = | <£(/>) |? This function ^{q) will be of the form ifi(q) = Iftq^e**™ for
some real-valued function a(q). If we concentrate on the phase function a(q) it is
clear that the set of permissible phase functions is given by the solutions of the
following non-linear integral equation

(0)

with Kp(q,q') = \<f>(q)\ \<f>(q')\eipiq-^), where we have used the convention that

It is clear from equation (0) that if a(q) = 6(q)+fi for any real constant /3 then
cx(q) is a solution of this equation. In the following we will ignore this trivial
non-uniqueness and consider only the problem of non-uniqueness modulo an
arbitrary constant phase.

The problem of uniqueness of the phase <f>(q) depends strongly upon the given
function a(q) and it is not clear how general results can be obtained from the
equation (0). In fact we have had to forgo a direct attack on this non-linear integral
equation and have used elementary methods to construct examples in which the
Pauli data {|<£(#)|,|$(p)|} is sufficient to determine <f>{q) uniquely and examples in
which it is not sufficient to uniquely define the wave function (f>(q).

We adopt a terminology in which a square integrable function <f>(q) is said to
be Pauli unique if the Pauli data {| <K<?) |,| <£(/>) I} obtained from it is only satisfied
by the ray of functions that are constant multiples of <f>(q) with constant multiplier
of modulus one. If a function <f>(q) is not Pauli unique we call any function >p(q) that
satisfies the same Pauli data a Pauli partner of <j>(q). Furthermore, it is often useful
to think of the square summable function <f>(q) as a state, that is a normalized
positive linear functional over the vector space of operators spanned by the algebra
of operators ap and aq, where aq is the commutative algebra of functions of q
and ap is the commutative algebra of functions of p.

In Section 2 we give precise definitions of our terminology and obtain some
general characteristics of the problem. In Sections 3 and 4 we restrict attention to
the Hilbert space L2(R) and use elementary methods to construct examples of
unique states and of non-unique states. In Section 3 we construct a two parameter
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family of fundamental subsets of L?(R) every member of which is Pauli non-unique.
In Section 4 we show that there is a large class of real states that are Pauli unique
and prove amongst other things that every bound state of any self-adjoint semi-
bounded Hamiltonian of the form p2 + V(q) is Pauli unique. In Section 5 the results
of the previous two Sections are generalized to Hilbert spaces L?(Rn), and the
final Section discusses the physical significance of these results and their
generalization.

2. Notation and formulation of the problem

We will adopt the formulation of quantum mechanics in which to every physical
system there is associated a complex Hilbert space 24?. Every normalized vector <f>
of 24? represents a possible state of the system, and two vectors <f> and <p define the
same state if they belong to the same ray, that is, if there exists a real number
such that $ = eie ip. Furthermore, every physical quantity associated with the
system is represented by a self-adjoint operator A, usually unbounded.

Assume that the system is a collection of n scalar particles with masses mt,
i = 1,...,«, that are interacting in some way. Let the n position coordinates be
qx, ...,qn and the n momenta be Px, ...,pn. Let us further assume that the system
is represented by the standard irreducible representation of the Heisenberg
commutation relations,

[qi,q,]= [Pi,Pj-]cO )
and (1)

'IP/. ?*]<=%• I

The standard irreducible representation is, in fact, an equivalence class of repre-
sentations characterized by the fact that the Heisenberg commutation relations are
derived from an irreducible unitary representation of the Weyl group [5]. The two
realizations of this representation that interest us here both have .Sf = L?(R3n) and
in the first, the ̂ -representation, the vectors in 3? are equivalence classes of functions
(j,(q) = <f>(qx,..., qn) in L?(R3n) while in the second, the ̂ -representation the vectors
are equivalence classes of functions $(p) = <£(pl5 •••,pn) belonging to L2(R3n). The
equivalence class alluded to above is given by the relation that two functions are
equivalent if they only differ on a set of Lebesgue measure zero. These q- and
/^-realizations of the Heisenberg commutation relations are related by Fourier
transformations,

$(p) = F4> = (V)-*"2 \e+i™ 4>{q) dq, (2)

where the argument q stands for (qj,..., qn), dq = d3qy...d3qn and pq = SjLj P* • q<-
It is a well-known fact that, in the obvious notation, <f>(q) is the inverse Fourier
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transform of <f>(p):

$ [ $ (3)[

In the ^-representation, the/th position operator q3- is represented by multiplication
by q,-, while they'th momentum operator p}- is represented by (l/i)(d/dqj) on their
natural domains. The /^-representation has the momentum p3- represented by
multiplication by p3- and the position q,- represented by — (l/i)(d/dpj). If </> is a
vector in L2(R) the ray to which it belongs will be denoted by «£, and keeping in
mind the fact that vectors are equivalence classes of functions in L2(R3n) we will
usually write a vector </> as a function <f>(q). Also it is profitable for our work to
denote a state of the system as a pair [<j>(g), <$>(/>)] even though this notation involves
a redundancy.

In this notation the Pauli problem is the following: Does an exact determination
of both the probability distribution | <f>(q) |2 = | <$>(q) |2 in the position coordinates
and the probability distribution | <j>(p) |2 = | $(j>) \2 in the momentum coordinate
define the state [<fr(q), <|>(/0] unequivocally ? Notice that the Pauli data involves a
pair of functions [|<1)(^)|.|^(/')|] from which we wish to determine the ray
[<$>(q), 4>(/0]- There is no loss of generality in determining a function [<f>(q), <£(/>)]
in the equivalence class defined by the vector, and we will always look for a
functional representative of the state that is as smooth as possible. Also the term
wave function will be used to denote a Lebesgue square integrable function.

In this sense the Pauli data can be thought of as the pair of functions
[ I <£(?) |> I $(j>) I ]• However, there is another way of presenting the Pauli data that is
sometimes useful. Let u(q) and w(p) be any pair of complex-valued functions of
q and/? respectively. u(q) and w(p) can then be considered as multiplicative operators
in the q- and /^-representations respectively. Let us denote by EX(A) the expectation
value of observable A in the state x,

Then we have the following result:

PROPOSITION 1. The state [ij/,v}i] satisfies the Pauli data [\ (j>{q) | , | $O) | ] if and
only if both

(4)
j

and
r

(5)

for all functions u and w. The equations (4) and (5) are to be understood in the
extended sense that if the right side is undefined then so is the left side.
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PROOF. The only if direction is obvious. The argument in the if direction follows
by taking u(q) to be the characteristic function of an arbitrary Borel set of R.
Then the measures \<f>(q)\zdq and \t[>(q)\2dq assign the same measure to any Borel
set. Hence by possibly adjusting the values of ifi(q) on a set of measure zero, we
get \if/(q)\ = \<Kq)\. The same argument works for \ft(p)\ = \<j>(p)\.

The result means that any state satisfying a given set of Pauli data must have the
same expectation values for any operators of the form ocu(q)+fiw(p)+8I, a, /} and
S are complex numbers, u(q) and w(p) are operator-valued functions of the seif-
adjoint operators q and p.

This leads to the following characterization of non unique Pauli states.

PROPOSITION 2. The state [<|>, $>] is Pauli non-unique if and only if there exists a
pair of non-trivial self-adjoint operators F and G, with

(6)
and

(G<t>T{p) = g(p)$(p), V4>eJ%G) (7)
such that

or equivalently

v JO trot = to). (9)

REMARKS. Equation (8) can be written in terms of rays

that is

but by absorbing the real constants A and (i into either F or G we observe that we
have suffered no loss of generality in using vectors instead of rays.

The adjective non-trivial removes the possibility that both F and G are merely
constant multiples of the identity operator.

PROOF

Sufficiency: Iftp = e~ip</> = eia<f> then the expression of the Pauli data in equations
(4) and (5) can be used to show that [tprf] and [<f>, <j>] satisfy the same Pauli data.

Necessity: If ifi and <f> satisfy the same Pauli data then the pair
equals the pair [|^(?)|>|^Q>)|]. Therefore there exist real functions / and g such
that

#7 ) = *-*><«> #7) (10)
and

fifa (11)
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but

(12)

where in the last expression p = (\li)(d/dq). Thus e~illQ)<f>(q) = (eiBlp)<f>)(q), or,
in abstract notation,

where F and G are self-adjoint operators which are multiplicative in the q- and
p-representations respectively. This proposition has two immediate corollaries
that we will use in the construction of examples of non-unique Pauli states.

COROLLARY 1. If A is a self-adjoint operator such that eiA = eiFeia, where F is
a self-adjoint operator function of q and G is a self-adjoint operator function of p,
then any eigenfunction of A is a Pauli non-unique state.

COROLLARY 2. Let Abe a self-adjoint operator such that eiA is unitarily equivalent
to the unitary operator eiFeiG, with F and G given in Corollary 1, that is

for some unitary operator U. If <£A is an eigenfunction of A, A$x = A</>A, then

ifix = U<f>x is a Pauli non-unique state,

The central problem in constructing Pauli non-unique states is to sum the
Campbell-Baker-Hausdorff formula for eiF ei0. In the next section we will give
one example that uses the structure of the non-compact Lie group SL(2, R) to
sum this formula and one example that does not depend upon this formula.

The constructions developed in the next two sections will be restricted to the
case of one degree of freedom, namely 3fP = L2(R). We will take up the general
case again in Section 5.

One further consequence of our notation should be noted. We say that a state
) , 4>(/>)] is a real state or real-valued state, if there exists a representative of
), 4>(p)] as a vector pair [<j)(q), <j>(p)] in which either <f>(q) or <j>(p), or both, are

real-valued functions. If no such representative exists then the state is strictly
complex-valued or non-real valued. An analogous statement holds for parity and
the complex representative of that state in which <j>(—q) = ±$(q) (and hence

In fact, whenever we assert that a state [<J>(̂ ), 4>(/>)] has a certain functional
property we always mean that there is a representative of it that has this property.
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3. The construction of Pauli non-unique states

This section is concerned with the construction of examples of states that are
Pauli non-unique. We restrict ourselves to the Hilbert space £2(R); the extension
of these constructions to L2(Rn), n > 1, is immediate but will not be discussed here.

We present two sets of examples of non-unique states; these sets are not disjoint.
The first set contains states of definite parity that are not real-valued. For these
states the complex conjugate state is the Pauli partner state.

In the second set of examples we construct a two-parameter family of subsets
of Pauli non-unique states that are parameterized in the following way. Let
H(m, K) = (j>2/2m) + (Kq2/2) be the Hamiltonian for the one-dimensional
harmonic oscillator with mass m and constant K, that are both positive real numbers.
We define constants fi = (Km)* and a = (K/m)* and assume that a = 2ir/b for some
integer b^3. For any such integer b^3 and integer c, O^c^b—l, let ^ > c be
the subspace of L?(R) spanned by the states {&i&+c}n=o> where

In this expression, s = 2/3(1 - cos a)/sin a and <j>nb+c(q) is the (nb + c)th harmonic
oscillator eigenfunction for the harmonic oscillator Hamiltonian H(m,K).

The closed subspaces £Fbfi will be shown to be subspaces of Pauli non-unique
states if b^-3.

For fixed b^3, that is a fixed ratio K/m, there is a one parameter family of
harmonic oscillator Hamiltonians H(m, K) that can be used to develop the J^)C.
Different choices of the Hamiltonian in this family give different values to a
parameter y in the eigenfunctions {(f>n(q)}. With a, /? fixed and y = (/J/2)*, the
nth eigenfunction of H(K, m) satisfying

n\i\,mj(pn = \n + \)OL<pn, n = v, i,z,...

is

Furthermore, for each fixed pair m, K with

m b* ^ 9 '

the set theroretic union of the subspaces {^>c}, c = 0,1, ...,b-1, is a fundamental
subset of L2(R). Hence we have a two-parameter family of fundamental subsets of
Pauli non-unique states.

On the other hand, although every state in L?(R) can be approximated arbitrarily
well by Pauli non-unique states, not every state is Pauli non-unique. For example,
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any eigenfunction <j>n(q) can be obtained as the limit of a sum of non-unique states,
but this method gives <f>n(q) as its own Pauli partner.

We will now present these two sets of examples in more detail.

EXAMPLE 1. Any state of definite parity satisfies Pauli data that is also satisfied
by its complex conjugate. Therefore any state of definite parity that is not real-
valued is a Pauli non-unique state.

Let J be the conjugation operator; / : Z,2(R)-»L2(R), (J<f>) (q) = 4>(g) for all
<f>(q)eL?(R), and let F denote, as before, the Fourier transform map. Then <f>(q)
and (J<f>) (q) satisfy the same Pauli data if

(14)

This equation is satisfied if <f>(-q) = ± <f>(q). Therefore if <f>(q) has definite parity
and <}>(<7) is not real-valued, then the states [4>(q), <£(/>)] and [<j>(̂ ), <{>(/?)] a r e

distinct states that satisfy the same Pauli data and are Pauli partner states.

EXAMPLE 2. In our earlier discussion of necessary conditions for the existence of
Pauli non-unique states, we observed, in Corollary 2, that if a state <j>eL2(R)
satisfies an eigenvalue equation A(p,q)<f> = \<f> for some self-adjoint operator A
and if there exists a unitary operator U such that

where F = F(q), G = G(p) are self-adjoint operators, then U<f> is Pauli non-unique.
We will use U = eiF/2 to obtain a class of non-unique states in this way.

For our purpose the self-adjoint operator A is the Hamiltonian for the harmonic
oscillator,

There is a Hamiltonian H(m,K) for each pair of positive real numbers (m,K);
we will also need the real numbers a = (K/m)* and /? = (Km)*. In Appendix 1
we prove that if a = (K/m^^mr for any integer n then

exp(isq2/4)expiH(m,K)exp(-isq2l4) = exp(isq2/2)cxp(-itp2/2) (15)

with the real numbers s and t given by

s = 2/?(l — cos a)/sin a,

t = Sin a/a.

Therefore, taking U = exp (isq2/4) in the above equation, we have that the wave
functions

<£„(<?) = exp0V/4)^n(<7), « = 0,1,2,. . . (17)
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are representatives of Pauli non-unique states, because

exp(isq2/2)txp(-itp2/2)tn(q) = exp (iXn) $n(q),

where An is the «th eigenvalue of the operator H(m,K), Xn = (« + $)a. In fact the
Pauli partner state of <pn has a representative

fflg) = exp ( - isq*!2) tn(q) = exp ( - isq*/4) <f>M = TM-

Since the {0n}$JLo are real states and have definite parity, this construction appears
to achieve nothing more than is obtained in Example 1, except that we have
explicitly displayed a two-parameter family of complete orthonormal bases for
L2(R) in which each member of each basis in the family is Pauli non-unique.

However, this construction can be extended to give L2(R) as a direct sum of
subspaces of Pauli non-unique states in a countable infinity of ways. The non-
unique states in these subspaces are not necessarily of definite parity and do not, in
general, take their complex conjugate as a Pauli partner.

For any integer 6^3 , and integer c, 0^c^b—l, let JffbiC be the subspace of
L2(R) spanned by the states {</<n6+c}£L0. Again we use the notation of equation (17),

•Pnb+M = exp 0V/4) tnb+cti), (18)

where the harmonic oscillator Hamiltonian H{K, m) has coefficients m and K such
that a = (K/m)* = 2n/b. Then

s = 47Tm(l-cos(27T/b))/bsm(27T/b) and t = bsin(27r/b)/27T (19)

are finite for integers b^3. For fixed values of m and K satisfying a. = 2irlb, the
subspaces ^fbtC and ^ j C , are orthogonal if c^c', because ipk is orthogonal to
ipt if kj^ I. Furthermore, since the {̂ fc}jj?=o form a basis for L2(R) we have the direct
sum decomposition,

z.2(R) = V
c=0

THEOREM 1. The subspaces Jt?bc defined above are subspaces o/L2(R) all of whose
members are Pauli non-unique states provided that

PROOF. We will show that any state %e#iPbfi satisfies

exp 0V/2) exp ( - itp*/2) £ = exp ((2c+1) n/b) f,

where s and t are given in equation (19) for b>3. Then Corollary 2 of Section 2
proves that each £ is Pauli non-unique.
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Any i{g)eJ^biC is of the form

= lim £N(q),
JV->oo

where €N(q) = SJLo an fnt-Ui) a n d t h e complex number an = (£,<An()+c). But by
construction

exp (isq*/2) exp ( - itf/2) tN(q) = exp (/(2c +1) n/b) £N(q)

because the (nb + c)th eigenvalue of H(K, rri) with a = 2TT/6 is

Kb+c = (nb + c + l) 2n/b = n2n + (2c +1) ir/b (20)

and hence exp (iXnb+c) is independent of n.
However, exp (isq2j2) exp (— itp2/2) is a unitary operator and hence by a standard

argument we can take the limit and get the desired result.

REMARKS. It should be noted that when we change b, that is, we pass from one
family of subspaces {^.JJrJ t 0 another with different integer b^ 3, we change the
parameters m, K of the harmonic oscillator Hamiltonian H(K, m). Nevertheless,
for a fixed b, there is a one-parameter family of harmonic oscillator Hamiltonians,
namely, those with (K/m)* = 2n/b, that can be used to develop the J^btC. Different
choices of the Hamiltonian in this family will give different parameters y in the
harmonic oscillator eigenfunctions (13) and therefore for fixed b we have a one-
parameter, y or /3, family of different subspaces J ^ c of non-unique states.

Furthermore, for each fixed pair m, K with a = 27r/b and jS fixed, we have a
fundamental subset of Pauli non-unique states, namely the set theoretical union
of the subspaces 3Vb>c, c = 0,...,b — l. Therefore we have constructed a two-
parameter family of fundamental subsets, D(a = 2TT/£, JS), of Pauli non-unique
states.

4. The construction of Pauli unique states

In the previous section all the Pauli non-unique states that we found were non-
real, so it is not surprising that our main results here involve real states. We have
not been able to prove that all real states are Pauli unique, but have found a large
class of real states that are unique. The limits of this class of unique states are
prescribed more by our methods of proof than by any natural conditions.

We begin by proving that a large class of real states are Pauli unique. This class
contains the bound states of time-reversal invariant Hamiltonian operators
p2/2m+ V(g). A different method is then used to obtain the result that any complex
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Gaussian wave function

is Pauli unique.
In order to obtain examples of Pauli unique states we formulate the Pauli data

in terms of expectation values of arbitrary functions of q and of arbitrary functions
of p, that we call bits of Pauli data. Given a set of Pauli data [\<f>(q)\, \$(p)\] in
the form of a set of extended complex numbers {E<f>(f), E<f>(g)} for arbitrary
functions/(g) and g(p), it turns out to be useful to examine the relations between
the various bits. If a subset of the bits obeys relations amongst its members that can
only be satisfied by a single ray of vectors then that Pauli data uniquely defines a
state.

We will construct Pauli unique states using only a finite number of bits of Pauli
data. What we have in mind are collections of equations and inequalities of the
form

E<f>(f)E<j>(g)>E<f>(h),

E<f>(l) = 1, } (21)

or

E<j>{\) = 1, } (22)

where/, g and h are given functions of either p or q alone or a sum of such functions
and a and /? are fixed complex numbers. In general the inequalities are assumed to
hold for some class of states <f>. Examples of (21) include the uncertainty relations
and examples of (22) include the semi-boundedness of the energy. If it is known
that the inequalities in (21) become equalities for a single ray fixed by the other
equations, then the Pauli data that satisfies all the equations in (21) determines
that state uniquely. On the other hand, if it is known that the inequality in (22)
is satisfied by a particular state then it may be possible to show that the Pauli data
uniquely determines that state.

A typical system in the form of (22) is associated with operators A that are
semi-bounded and of the form

A =f(p)+g(q)

with/and g real measurable functions and h is the zero operator. In particular if
we takef(p) = p2, g{q) — 0 or f(p) = 0, g(q) = q2 we get a large class of real states
that are Pauli unique.
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THEOREM 2. Let {$(q), 4>(p)} be a real state, then it is a Pauli unique if, either
(a) it has a real representative <f>(q) and E^{p2) < oo

or (b) it has a real representative <j>(p) and E^(q2) < oo.

PROOF. We will assume that the state {<J>(#), $(/>)} has a real representative <f>(q)
and E4,(p

2)<°o, that is case (a) holds, the other case can be handled in a like
manner.

Let {\\i(q), $(/»)} be a Pauli partner of the given state. It follows that | <f>(q) | = | if,(q) \
almost everywhere in R, for any representative >fi(q) of {ty(q), ty(p)}- Therefore
ifi(q) = eigla) <f>(q) almost everywhere in R where g(q) is a real-valued function. On
the other hand, (<f>,p2 <f>) = (ifi,p2 </0 < oo. A direct calculation of the real part of this
equation yields (<f>, (g1)2 <f>) = 0, hence g(q) is constant almost everywhere and iji(q)
is a representative of {<J>(<7), *£(/>)}•

In physical terms this result says that for a spinless one-dimensional particle
every motion reversal invariant state with a finite mean kinetic energy is Pauli
unique. Mathematically, any real function in the domain of the self-adjoint
differential operator/) = (l/i)(d/dq) is a Pauli unique.

This class of Pauli unique real states can be enlarged to include states that are
not in the domain ofp by the following method.

THEOREM 3. Let A = p2+w(q) be a real operator. Then any real state {$(q), $(j>)}
with real representative <f>{q) is Pauli unique if E^,(A)< oo.

REMARK. A similar theorem holds if A is of the form A = q2 4- u(p), and the
state has real representative $(p) with E^A) < oo.

PROOF. The proof follows the lines of the previous theorem, the main difference
is that EQ(J>2) need not be finite.

As before, let {<fy(q), <$(/>)} be a Pauli partner of the given state {<}>(#),
Now we must have (0,^4^) = (ifi,A>p), for any representative ifj(q) of («J»(#
A direct calculation yields, for tfi(q) = eia(Q) <f>(q) a.e., that g'(q) = 0 a.e. and hence
ifi(q) is a representative of {<fr(q), <f>(/>)}.

While this theorem does extend the class of real states that are Pauli unique,
for example any continuous function with a piecewise continuous first derivative
is Pauli unique, it is not strong enough to encompass all real states. Its most
important consequence is that it shows that bound states in quantum mechanics
are Pauli unique.

COROLLARY. IfH = p2/2m + V(q) is a motion-reversal invariant (real) Hamiltonian
operator, then every bound state of H is Pauli unique.
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PROOF. We have only to note that any bound state of H has a real representative
<j>{q) and then use Theorem 3.

Systems of the form of equation (21) are typically of a form associated with the
Heisenberg uncertainty relations. Recall that for all <j> e D(p) n D(q), the commu-
tation relation i[p,q\<=-I, implies that the uncertainty relations ||.P<£||2||#||2^i||<£||2

hold. Equality is attained in this expression for the unique normalized state
<f>(q) = (27r)~*e~a!!/2 which satisfies (p—iq)(f> = 0. The proof of this well-known
fact is given, for example, in [5] and [1]. We will need a slight generalization of this
which we will now prove.

PROPOSITION 3. Let A , B and C be real linear operators with non-trivial domains
D(A), D(B) and D(C), subsets of a separable Hilbert space Stf and which are not
necessarily dense in 34?. Let Cl be a non-trivial subset of D(A) n D(B) such that for
all <f>eQ. we have

(A<f>, B<f>) - (B<j>, A$) = i(</>, C<f>) (23)
then for all <f>eQ,

(24)

Furthermore, \\A<j>\\2\\B<f>\\2 = \(<f>, C<£)2<oo with || J f y | | ^ 0 , if and only if <j> satisfies

A<j> + XB(f> = 0 (25)
where

PROOF. We observe that (<f>,C<t>) = 2lm(B$,A<f>) for all <f>e£l, and therefore

< || B(f> || || A<f> || by Schwarz' inequality.

It follows from Schwarz' inequality that equality is obtained only for those vectors
<f> that satisfy A<f>+\B(f> = 0 for some complex number A. Moreover, equality is
obtained in the first step if and only if Re (B<f>, A<f>) = 0. Therefore for equality to
hold we require Re A||5^||2 = 0, and if BfaO, this means that Re A = 0. Putting
this together we get that ||A<£|| | |£^ | | = $\(<f>,C<f>)\, with | | 5^ | | ^0 if and only
i f A4> = - XB<j>, w h e r e A = - i(<j>, C<j>)/21| B<j> ||2.

This result will be useful when A and B are real operator-valued functions of p
or of q, and C is an operator-valued function of/? and q of the form f(q)+g(p)-
For example, if we take A =p — <xl, B = q—fil, where a and /? are real numbers,
and C = I the identity operator, then for all <f> e D(j>) n D(q) we have that

(26)
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This becomes an equality for states ifi that satisfy

^ »

where y = || (q—/J/) ip ||2. If if* is assumed to be normalized, || tp || = 1, for fixed a and £
we get a one-parameter family of states {<f>7} that satisfy equation (27).

This argument leads to a class of Pauli unique states, the set of states {<J>ayj7}
parameterized by the three real numbers a,j8,y, where

and (28)

ll(/>-")^J2=l/4y.
For given oc,f},y, <J>ay?r has a representative

These states are Pauli unique because the equations (3) can be presented as
expectations. E<f>afiy((q—pi)2) = y, for example, that make up part of the Pauli
data and that can only be satisfied by states that are solutions of equation (27).
In fact the function <j>apy(q) has an even real part and an odd imaginary part and
therefore <f>apy(q) is the inverse Fourier transform of a real function <f>apy(j>).
Therefore the states {<j>a£y(<7)> $a/}y(p) are examples of real states that are Pauli
unique through the arguments of Theorem 2 because they all belong to the domain
of?2.

There are still two questions to be answered. Are all real states Pauli unique?
Are the real states the only states that are Pauli unique ? The above work points to
an answer of yes for both these questions, but they do not seem capable of being
answered within the framework we have used.

5. Extension to L2(R"), n> 1

The extension of the results of the two previous sections to Hilbert spaces
Z.2(Rn) for n > 1 is achieved by writing L2Rn) as a tensor product of the spaces L2(R),

where J ^ = L2(R) for eachy = 1,...,«. We shall use the notation that a vector
tax ^2(^2)x ... x <f>n(qj that belongs toL2(R") will be written as

We will discuss the various examples of uniqueness and non-uniqueness in turn.
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Pauli non-unique states in L2(R")

It is easier to construct non-unique states in L?(Rn) because if <j>j{q}) is non-
unique inL2(R) with Pauli partner ^3(^) then the state <f>x(q^ ^ f e ) • • • fate)) • • • 4>n(in)
is non-unique in L?(Rn) with Pauli partner <£i(?i) ̂ f e ) ••• 'f'Mi) ••• &»(?»)• This is
true no matter what choice is made for <t>Mi)> 'W- We now list the specific examples.

(i) If $(?! , . . . , qn) is strictly complex-valued and O(- f t , . . . , -qj = ± <P(qlt ...,qn)

then [*(?i,...,9n).*(Pi»-•./»»)] a n d [*(?i» •••»?»), *0>i, •••»/>»)] are distinct
states that satisfy the same Pauli data.
(ii) Let b = (b1,...,b^) and c = (clt ...,cn) be multi-indices, and define for
bt>3, OZc^bf-l.j = 1,...,«, JT6c = ® 7 = 1 ^ . c , where

Here ^n 6 i + c .(^) = exp(^^/4)^ n 6 i + C j (^ ) , ^ + C ) ( ^ ) is the («£>, +c,)th eigen-
function of the harmonic oscillator Hamiltonian /f(/?^, A}) with

Sj = 2/^(1 — cos ay)/sin as, where/?y = (ntjK^. By the argument of Proposition
3 the subspaces J^bc with b^3 for each j = 1 n, are subspaces all of whose
members are Pauli non-unique. It also follows that we have thereby constructed
a 2« parameter family of fundamental subsets of Pauli non-unique states.

Pauli unique states

In so far that it is easier to construct non-unique states it is more difficult to
construct unique states in L2(Rn). However, the construction in L?(R) of Pauli
unique states has an immediate generalization to L2(Rn). Moreover, this generali-
zation does not depend upon the tensor product decomposition of L2(R").

THEOREM 6. Let {<t>(?i» •••>^r)> $(Pi>--->Pn)} be a real state, then it is Pauli unique
if, either

(a) it has a real representative <f>(qx, ...,qn) andE^Q)2)<co

or (b) it has a real representative <p(j>i,. • -,pn) and E^q2) < co where p2 = 2?_i Pi

PROOF. The proof follows exactly the same line as the proof of Theorem 2.
A direct calculation of (ifi,p2ifi) = (<f>,p2<f>) yields, for

-* v idg ? n a A...,<7_), 2J I TT~ I = 0 a.e.,
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therefore g is a constant a.e. and {<j>, <f>} is Pauli unique. In a similar manner we
can prove

THEOREM 7. Let A = p2+w(q1,...,qn), p2 = 2"=i/>i> be a real operator. Then any
real state {<j>(tfi> •••,$*)>$(j>\, •••,Pt$ witn re£>l representative <$>(qx, ...,q^ is Pauli
unique if E^(A) < oo.

PROOF. The proof is the same as for Theorem 3. A similar theorem holds if
A = q2+u(j>1, ...,/>„), and the state has real representative $(p) with EJiA)<oo.

Again we get the important corollary,

COROLLARY. IfH = p2j2m + V{q) is a motion-reversal invariant (real) Hamiltonian
operator, then every bound state of H is Pauli unique.

PROOF. We again note that any bound state of H has a real representative
<f>(q) and use Theorem 7.

The complex Gaussian wave functions,

ft (2wy,)-*exp{-fa,-ftIflAyi + ioLM}

are Pauli unique. The proof of this needs the tensor product decomposition of
L2(Rn).

6. Conclusions and general remarks

A physical meaning for the Pauli problem is obtained if we accept that a quantum
mechanical state results from the application of a certain state preparation
procedure to a certain physical system [5], [2]. In the Pauli problem we try to
determine the particular state that was prepared by that procedure by determining
the momentum and position probability distributions of the prepared state. This
is possible if we assume that the preparation procedure can be repeated an unlimited
number of times so that we obtain the same state on each occasion and thereby
can select subsets of identically prepared states on which the different determinative
measurements can be carried out to any desired degree of accuracy.

With this interpretation our results show that in general it is not possible to
determine uniquely the prepared state by merely determining the momentum and
position probability distributions. In fact there are famines of dense subsets of
states that are not Pauli unique and hence any state can be arbitrarily well
approximated, in norm, by a non-unique state. On the other hand, there are states
that are uniquely determined once the expectation values of a finite number of
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observables {/<(/>)+£i(?)}£Li a r e known. In particular it is interesting that the
bound states of any semi-bounded Hamiltonian of the form (p2/2m) + V(q) are
uniquely determined by the Pauli data. More specifically the energy eigenstates of
atomic systems are uniquely determined by their momentum and position distri-
butions, if we ignore any effects of spin. Of course this is somewhat artificial
because the eigenstates of an atomic system will not be uniquely determined, in
general, from their momentum and position probability distributions. This raises
a difficulty in those theories of non-relativistic scattering in which the in and out
scattering states are assumed to be determined by their energy and momentum
probability distributions (see, for example [5]).

If we take the state of a quantum mechanical system to be defined by the position
and momentum probability distributions, by analogy with the definition of state
in classical mechanics in which the state is determined by the position and momen-
tum of every particle in the classical system, then we have that the von Neumann
definition of pure state coincides with the classical definition of state for bound
states but not, in general, for scattering states. Expressed more precisely, if we
define a pure PQ-state as the family of rays which satisfy the Pauli data then the
pure Pg-state is equivalent to the pure von Neumann state for all bound states of a
quantum mechanical system but they are not necessarily equivalent for scattering
states.

If we enlarge the class of observables whose expectation values can be used to
determine the state, it is reasonable that the class of states that can be uniquely
determined will be enlarged. In many of the examples of non-uniqueness that we
have produced it is easy to construct functions of p and q that distinguish between
the Pauli partners. Moreover, there is a general method of determining the phase
of a wave function. Letp(q)Aq be the conditional expectation of the momentum p
given that q lies in [q,q+Aq], then it has been shown by Moyal [3] that

dq '

where a(q) is the phase of the wave function <f>(q). Therefore by carrying out a
sequence of single slit experiments in which the location of the centre of the slit is
varied, but everything else held fixed, we can in principle determine the phase
a(q) to within an additive constant, at least to any desired degree of approximation.

This interpretation of the Pauli problem leads to the following, more general,
analysis. Suppose that we have prepared a state of a given system in the way
described above and we now wish to determine the state by performing a series
of determinative measurements of certain physical observables. Then there are
two questions that naturally arise:

(1) What is the smallest collection of physical observables the determinative
measurement of which determines the experimentally prepared state uniquely ?
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(2) Given a subset of physical observables, which states are uniquely determined
by the determinative measurements of these subsets ?

The answers to these questions depends upon what are taken to be physical
observables. In this work we have implicitly assumed that the physical observables
are the kinematical observables, position, momentum, angular momentum
including spin, as well as the energy and any superselected observables that may
appear in the description of the system. For the system of a single one-dimensional
particle the physical observables are p,q but there is no angular momentum. In
higher dimensions we would have to consider also angular momentum.

Finally, we have not discussed the multiplicity question; how many Pauli
partners can a state have ? In order to answer this question we would need to know
what <f>eL2(R) can be simultaneously an eigenfunction for two self-adjoint
operators A(p,q) and B(p,q) that are functionally independent. This question
requires more structure on the class of permissible self-adjoint operators than we
have given here. What we can say is that if <f> is an eigenfunction of a semi-bounded
self-adjoint operator of the form A{p,q) =f(p)+g(q), then it cannot be an eigen-
function of a self-adjoint operator B(p,q) such that eimp-q) = eiFlp) eiG{a) for
some pair of real measurable functions F and G. It should be noted that this is a
question specifically dependent on the fact that we are using differential operators,
as simple examples in finite matrices will easily show.
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Appendix

The results that are needed to construct the non-unique states of Example 2,
Section 3, can be readily obtained from a consideration of the faithful representation
of SL(2, R) as uni-modular 2x2 matrices. It is sufficient to give the representation
of the generators J+, J_, J3 of the Lie algebra of SL(2, R). These generators satisfy

[J3, J+] = J+, [J3, / _ ] = - J_, [ J+, J_] = 2J3

and all other commutators vanish. We take

0 1 \ / 0 0 \ / * 0
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For any real numbers a, b, c, d the following members of the group SL(2, R) are
singled out,

(Al)

g3(c • d) = exp (c J+ + dJ_). j

The following facts can be verified by direct calculations using the given faithful
representation.

LEMMA Al . For strictly positive real numbers K and m the equation

(A2)

holds only when there exists an integer n such that K = 4TT2 nin2, and in this case
s = t = 0.

In other words, the equation (A2) only has the trivial solution in the group
SL(2, R), e.e = e, where e is the identity element of SL(2, R), because for all
integers n, g3(47T2mn2, — l/m) = e.

Let ^Tand m be strictly positive real numbers as before and consider the constants
a. = )KJm)i, j3 = (Km)*; if a^nn for any integer n, we define

s = 2/3(1 —cos a)/sin a,l

t = sin a/a. J

By direct calculation we get

LEMMA A2. Let s, t be defined as in (A3), <x^mr, then the following identity holds
inSL(2,K),

^ , - i ) & ( - f r ) = gl(s)g2(-1). (A4)

As a consequence of these relations in SL(2, R) we have that for any faithful
representation tr of SL(2, R),

unless a — 0, b = 0 and K = 4ir2mn2, that is a = 2irn, for some integer n; and

0) (A6)
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holds for arbitrary real positive K and m, with a = (K/mf^n for any integer n,
and s and t given by equations (A3).

In particular, consider the faithful unitary representation U(g) of SL(2, R) on
L2(R) in which the generators of the Lie algebra

are unbounded skew-adjoint operators with dense common domain 5(R). The
equation (A6) takes the form

exp UjjL+*tf\ j e-isa*,i = eisaV2 e-uP^ (A7)

But (p2/2m) + (Kj2)q2 = H{m,K), the harmonic oscillator Hamiltonian for mass m
and constant K, and hence we have shown that for given K,m with (K.
and s and * given by (A3)

that is

and eimm-K) is unitarily equivalent to eiF(«' eiG(P> with F{q) = sq2/2, G(p) = - tp2/2.
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