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SUMMARY

The study objective was to use Bayesian latent class analysis to evaluate the accuracy of
susceptibility test results obtained from disk diffusion and broth microdilution using bacteria
recovered from beef feedlot cattle. Isolates of Escherichia coli and Mannheimia haemolytica were
tested for susceptibility to ampicillin, ceftiofur, streptomycin, sulfisoxazole, tetracycline, and
trimethoprim-sulfamethoxazole. Results showed that neither testing method was always or even
generally superior to the other. Specificity (ability to correctly classify non-resistant isolates) was
extremely high for both testing methods, but sensitivity (ability to correctly classify resistant
isolates) was lower, variable in the drugs evaluated, and variable between the two bacterial
species. Predictive values estimated using Bayesian Markov chain Monte Carlo models showed
that the ability to predict true susceptibility status was equivalent for test results obtained with
the two testing methods for some drugs, but for others there were marked differences between
results obtained from disk diffusion and broth microdilution tests.

Key words: Antibiotic resistance, antimicrobial resistance in agricultural settings, Bayesian analysis,
cattle, diagnostic test accuracy.

INTRODUCTION

As with any diagnostic test, antimicrobial suscepti-
bility testing of bacterial isolates is subject to both
random and systematic errors which lead to mis-

classification of isolates when categorizing them
as ‘resistant’ or ‘non-resistant’ to different antimicro-
bial drugs. Procedural failures (e.g. sub-standard
laboratory or sampling procedures), unpredictable
responses due to biological variability in bacterial
isolates, or other unrecognized (non-systematic or
chance) sources of variability may all lead to diagnos-
tic test errors [1, 2]. Optimally, we would always
choose to employ a highly accurate test that minimizes
such errors, but other characteristics such as cost and
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availability can also influence the choice of testing
method. For example, a test method with a lower,
yet acceptable level of accuracy might be chosen for
surveillance monitoring if the cost of testing per iso-
late is substantially lower allowing more comprehen-
sive surveillance testing. Similarly, a test that is easy
to perform and requires lesser investment in infra-
structure may be chosen over testing methods that re-
quire the use of expensive automated laboratory
equipment, even if there were measurable differences
in test accuracy. This consideration may be of particu-
lar importance when conducting surveillance in
regions of the world where economics and the lack
of laboratory infrastructure can be impediments to de-
veloping comprehensive surveillance systems for anti-
microbial resistance. However, it is always critical to
objectively understand the differences in accuracy so
that observed results can be properly interpreted to
predict the unobserved true state of nature (e.g. true
resistance status of individual isolates or resistance
prevalence in populations).

Disk diffusion (DD) and broth microdilution (BM)
are antimicrobial susceptibility testing techniques that
both provide estimates of phenotypic susceptibility
to antimicrobial drugs based on bacterial growth in
the presence of varying concentrations of the anti-
microbial. Standardized methods for conducting these
tests have been established by several international
bodies, including the Clinical and Laboratory
Standards Institute (CLSI) [3]. When standardized
methods are rigorously adhered to, both of these test-
ing methods are considered to yield generally equi-
valent results regarding clinical breakpoints.
Breakpoints used for clinical susceptibility classifica-
tion [based upon minimum inhibitory concentration
(MIC) for BM and zone diameter for DD] are also
used in epidemiological surveillance. However, it has
also been suggested that lower breakpoints using
these same highly standardized methods may be better
suited for the detection of emerging resistance in dif-
ferent ecological settings [4, 5].

The potential for errors in antimicrobial suscepti-
bility testing is widely recognized. In fact, when con-
sidering testing by BM and DD, suspicious results
obtained from DD are often considered to be
confirmed, or refuted, by comparison to BM. While
agar dilution is sometimes considered a ‘gold stan-
dard’ in antimicrobial susceptibility testing, BM is
often used as an acceptable surrogate [6–8]. In fact,
BM is typically used as the reference when establish-
ing breakpoint values for DD results by evaluating

correlation of results and adjusting cut-offs using
error rate bounding [9, 10]. While national and inter-
national surveillance programmes have frequently
used automated BM methods, material costs for
these methods are greater than for DD testing, and
automated systems that are used to evaluate large
numbers of isolates in large surveillance programmes
can be cost-prohibitive for other applications [11, 12].

The inherent assumption when a test is considered
to be a ‘gold standard’ is that the test is perfectly ac-
curate and that true classification status (e.g. resist-
ance and non-resistance in susceptibility testing) is
always correctly identified by the test. However, all di-
agnostic tests, including agar dilution and BM, are
vulnerable to classification errors [13]. Reference-
based evaluations established on imperfect standards
will always yield results that are biased to the extent
that the reference test does not correctly identify the
true classification status of isolates. The estimates of
test accuracy of the new test can never exceed the mis-
classification probabilities inherent in the reference
test that it is benchmarked against.

Obtaining accurate antimicrobial susceptibility in-
formation for bacterial isolates is critical in both clini-
cal settings as well as in surveillance programmes
[14–16]. Identifying trends of reduced susceptibility
of bacterial populations to antimicrobial drugs is
necessary to facilitate an appropriate understanding
of the complexities of managing and reacting to anti-
microbial resistance [2, 17, 18]. While it is possible to
reduce the potential for errors through test selection
and rigorous standardization of protocols, it is im-
possible to eliminate all errors. In order to more ap-
propriately interpret results generated for either
clinical or surveillance purposes, the potential for
errors in detecting resistant and susceptible isolates
must be understood and considered when evaluating
test results [19, 20]. Traditional measures of accuracy
and predictive ability for diagnostic tests (epidemio-
logical estimates of sensitivity, specificity and pre-
dictive values) are not typically estimated for anti-
microbial susceptibility testing. Nevertheless, the par-
ameters that help us understand other diagnostic tests
can help in objective evaluation of test accuracy for
susceptibility testing methods.

In contrast to evaluating diagnostic test accuracy
using reference-based comparisons, newer methods
of evaluation have been developed which allow esti-
mation of the true, unbiased parameters related to
test accuracy (i.e. sensitivity and specificity) in ad-
dition to unbiased estimates of prevalence without
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presuming to know the true classification of
individual isolates. Because these methods attempt
to model classification probabilities that are hidden
from direct observation (i.e. true classification status
as opposed to positive and negative test results),
these are sometimes called ‘latent class’ analysis.
The objective of this study was to estimate and com-
pare the accuracy and predictive interpretation of
results obtained using DD and BM methods when
applied for surveillance of antimicrobial resistance
in Escherichia coli and Mannheimia haemolytica in
feedlot cattle.

METHODS

Study population

Bacterial isolates evaluated in this study were collected
as part of a pilot project intended to develop and
evaluate methods for surveillance of antimicrobial
resistance in feedlots of beef cattle [21]. Details re-
garding the complete study population, sampling
procedures, laboratory procedures, and interpretive
criteria for antimicrobial susceptibility have been de-
scribed elsewhere [21]. The isolates used in this study
were purposefully selected from the entire dataset for
the purpose of evaluating test sensitivity and specifi-
city for detecting antimicrobial resistance. As such,
this study was not intended to provide estimates of re-
sistance prevalence for the cattle enrolled in the study
or for other populations of cattle.

Cattle were enrolled from 17 September 2007 to
16 January 2010, and isolates included in this dataset
were a non-probability sample of the isolates that had
been evaluated for antimicrobial susceptibility using
both DD and BM methods between 23 July 2008
and 8 July 2009. To meet an important assumption
of the analysis method, isolates were stratified into
two sample sets that were likely to have different re-
sistance prevalences. Specifically, one population of
isolates were recovered from samples collected at the
time that cattle arrived at feedlots, and the second
population included isolates recovered from animals
later in the feeding period when cattle were handled
as part of standard production practices. The resist-
ance prevalences of these two sample sets were
expected to be different since the latter had been
recovered from cattle that had been at the feedlot
for an average of 95·5 days (range 33–202 days,
median 80 days) and were therefore more likely to
have been exposed to antimicrobial drugs than had
cattle that had only recently arrived at the feedlot

[21]. It is assumed that test accuracy (sensitivity and
specificity) was constant across different populations
and was not biased by the sampling scheme.

The sampling and microbiological methods have
been described elsewhere [21]. Briefly, individual cattle
were restrained in chutes for routine management pro-
cedures when samples were collected for this project.
Samples of faeces were recovered per rectum, and
swab samples were collected from deep in the naso-
pharynx using 22-cm guarded swabs (no. J273,
Jorgensen Laboratories Inc., USA). Swabs were cul-
tured to recover M. haemolytica [22], and faecal sam-
ples collected from cattle that were culture-positive for
M. haemolytica were then cultured to recover isolates
of non-type-specific E. coli (NTSEC) [23]. Three to
five isolates of M. haemolytica and 1–3 isolates of
NTSEC were selected from each animal and tested
for antimicrobial susceptibility by BM and DD meth-
ods using protocols that adhered to standards stipu-
lated by CLSI [21]. The population and sampling
structure was not accounted for in analyses since the
study was not designed to produce generalizable esti-
mates of resistance prevalence. The primary goal of
the study was to evaluate test accuracy and factors
affecting the correct classification of resistance are
not systematically related to our sampling scheme.
There were six drugs used to test both bacterial species
using BM and DD [ampicillin, ceftiofur, strepto-
mycin, sulfisoxazole, tetracycline, trimethoprim-
sulfamethoxazole (TMP-SMX)], and two drugs were
included on both drug panels used to test M. haemo-
lytica (ampicillin and tetracycline) [21]. Breakpoints
used to categorize susceptibility of isolates were
obtained from interpretive criteria published by
CLSI and have been described in detail elsewhere
[21]. When possible, interpretive criteria that were
specific for cattle and the test method/drug/bacteria
combination were used (e.g. breakpoints for BM
evaluating ceftiofur susceptibility in M. haemolytica).
When these were not available, breakpoints for cattle
regarding the drug and other bacterial species were
used. If these were not available, then interpretive cri-
teria published for humans regarding bacteria–drug
combinations were used.

Data analysis

Data were evaluated graphically and by calculating
descriptive statistics. For analysis purposes, isolate
susceptibility was dichotomized as resistant or non-
resistant (which included both intermediate and
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susceptible classifications). Resistance classification
obtained from both testing methods was used to
cross-classify isolates (i.e. resistant by both methods,
non-resistant by both methods, and both discor-
dant classifications). Stochastic latent class analysis
(Markov chain Monte Carlo simulation using a
Gibbs sampler; WinBUGS 1·4, 1996–2003, Imperial
College and Medical Research Council, UK; freely
available at http://www.mrc-bsu.cam.ac.uk/bugs/)
was used to estimate the proportion of isolates cor-
rectly classified as being resistant to drugs (sensitivity)
and the proportion of isolates correctly classified for
non-resistance (specificity) by each testing method,
as previously described [24, 25]. Data were stratified
into two sample sets based on time of sample collec-
tion as described. These models assumed that resist-
ance classification using the two testing methods
was conditionally dependent, which was accounted
for in the models using code that was adapted from
previously published information (http://www.epi.
ucdavis.edu/diagnostictests/2dept2p.html; code avail-
able upon request). Convergence of each model was
assessed by running six simultaneous chains with
widely different starting values while monitoring his-
tory (time-series) plots, autocorrelation plots, and
Brooks–Gelman–Rubin plots [25]. Additionally, sen-
sitivity analysis was performed by running models
with both informative and non-informative prior
probability distributions to evaluate posterior prob-
ability dependency. In all models, the initial 5000
iterations were discarded and the next 50000 itera-
tions were used to generate posterior probability dis-
tributions [13, 26]. The median estimates and the
95% probability intervals were reported from these
posterior distributions. To evaluate whether the sensi-
tivities or specificities were greater for one testing
method vs. the other, a step function was used to gene-
rate one-sided probabilities. These probabilities were
generated based upon the difference between iterates
sampled from the joint posterior distributions. Ad-
ditionally, an approximate method based on compari-
son of point estimates and probability intervals was
used to help evaluate these comparisons of interest
[27]. Specifically, probability intervals which over-
lapped with the point estimate (median) of the other
susceptibility test were used as an indication that the
antimicrobial susceptibility tests were not different
from one another in their ability to correctly classify
true resistance or true non-resistance. Conversely,
probability intervals which did not encompass the
point estimate (median) of the other test were

considered indicative of a statistically detectable dif-
ference between the tests (assumed probability of
Type I error <0·05). The median estimates and their
95% probability intervals were also determined from
posterior distributions regarding the positive and
negative predictive values across a range of true pre-
valence values and then plotted to allow further as-
sessment of information [28]. The predictive values
of resistance (predictive value of a positive test) and
the predictive values of non-resistance (predictive
value of a negative test) were determined using code
adapted for Monte Carlo simulated predictive values
(http://www.epi.ucdavis.edu/diagnostictests/mcpvlr.
html; code available upon request). In general, the es-
timates of sensitivity and specificity determined in the
stochastic modelling were used with highly informa-
tive prior probability distributions for 14 prevalence
values between 0% and 100% to generate posterior
probability distributions for the predictive values.

Prior probability estimates

Beta distributions of probabilities were created with
freely available software to represent the possible
values for the prior antimicrobial resistance preva-
lences of sample sets 1 and 2 (BetaBuster; Table 1).
For the DD susceptibility test, prior probability beta
distributions (priors) for sensitivity and specificity
were also established. Due to the assumed dependence
between the susceptibility tests, the priors for sensi-
tivity and specificity of the DD test were conditional
on the BM priors. All priors, except for those regard-
ing prevalences used to generate predictive values,
were weakly informative with effective sample sizes
(a+b; Table 1) under n=10. Priors for resistance pre-
valences of NTSEC isolates in sample sets 1 and 2
were taken from a previous study [29]. For M. haemo-
lytica isolates, relevant priors were only available for
the sample set with higher prevalence of resistance
(sample set 2). Therefore, the priors for resistance pre-
valences in sample set 2 were taken from a previous
study and the estimates for sample set 1 were extra-
polated as 5% lower than these estimates [30]. Since
estimates of the sensitivity and specificity of DD
or BM susceptibility tests have not been published,
the authors arrived at a consensus opinion for reason-
able estimates and a lower limit with 95% confidence.
The DD sensitivity and specificity priors were as-
sumed to be equivalent, and the conditional sensitivity
and specificity priors of the BM test were assumed
to be only slightly higher, but also equivalent. These
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prior estimates were the same for all antimicrobials
assessed in the analysis.

Sensitivity analysis

The influence of the priors used in Bayesian analyses
was assessed by running the model with highly in-
formative priors based on the same mode as the
weakly informative priors that were used [31].
Additionally, widely varying distributions were cre-
ated to assess the limits of model convergence.
Without varying the original priors, starting values
for the models were assessed by widely varying pre-
valence as well as sensitivities/specificities separately.
The outcomes of the DD and the BM antimicrobial
susceptibility tests were assumed to be dependent.

Correlation between tests was monitored based on
the calculated correlation value for each model.
Additionally, a sensitivity analysis of the dependent
models was run by assuming complete independence
between tests in separate models [31].

RESULTS

Isolates

A total of 2316 NTSEC isolates from individual an-
imal rectal samples and 783M. haemolytica nasophar-
yngeal isolates were evaluated for susceptibility
by both tests. Apparent prevalences for resistance
were greater in NTSEC than M. haemolytica, and
were greatest for tetracycline, sulfisoxazole and strep-
tomycin (Table 2). Isolates in sample set 1 had widely

Table 1. Prior probability distributions for prevalence of antimicrobial resistance and for sensitivities and specificities
of susceptibility tests

Beta distribution
parameters (a, b)* Mode (%) 95% PI

Resistance prevalence
Sample set 1

E. coli
Ampicillin (1·3, 6·0) 6·5 1·2–50·9
Ceftiofur (1·0, 7·0) 0·4 0·4–41·3
Streptomycin (2·2, 4·0) 27·8 6·2–72·8
Sulfisoxazole (2·2, 2·1) 52·9 11·3–90·5
Tetracycline (2·9, 3·0) 48·7 13·8–85·0

TMP-SMX (1·1, 4·5) 2·8 0·8–57·3

M. haemolytica
Ampicillin (1·8, 2·4) 37·5 6·7–85·7
Tetracycline (1·7, 2·0) 40·1 6·6–88·9

Sample set 2
E. coli

Ampicillin (1·2, 6·0) 3·5 0·1–48·7
Ceftiofur (1·0, 7·0) 0·7 0·4–41·6
Streptomycin (2·2, 4·0) 29·3 6·8–73·4
Sulfisoxazole (1·8, 1·9) 47·1 7·9–90·7
Tetracycline (3·1, 2·6) 56·4 16·8–88·7

TMP-SMX (1·0, 2·2) 0·8 1·2–80·9

M. haemolytica
Ampicillin (1·8, 2·2) 39·5 6·7–87·8
Tetracycline (1·6, 1·9) 43·0 6·5–90·5

Disk
diffusion

Sensitivity (2·0, 1·1) 67·9 14·8–98·2
Specificity (2·0, 1·1) 67·9 14·8–98·2

Broth
microdilution

Conditional sensitivity (4·8, 1·2) 83·3 43·1–99·0
Conditional specificity (4·8, 1·2) 83·3 43·1–99·0

PI, Probability interval; TMP-SMX, trimethoprim-sulfamethoxazole.
* Parameters for the beta distributions were truncated to one significant digit for presentation in this table.
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different apparent prevalences of resistance to tetra-
cycline, sulfisoxazole, and streptomycin than in sam-
ple set 2. However, the apparent prevalences for
resistance were quite low for ceftiofur and TMP-SMX
and not as disparate between the two sample sets for
ampicillin, ceftiofur, and TMP-SMX.

Test accuracy

Models for all combinations of organisms and anti-
microbial drugs indicated that both antimicrobial sus-
ceptibility testing methods had high specificity and
thus correctly classified a high proportion of non-
resistant isolates (Table 3). However, probabilities
for classification of true resistance (sensitivity) varied.
Estimates regarding the ability to detect ceftiofur re-
sistance were not well predicted in these analyses, as
indicated by extremely wide probability intervals for
classification of true resistance (sensitivity).

For NTSEC isolates, DD generally had higher
estimates than BM for correctly classifying non-
resistance, but the tests had extremely high probabil-
ities (>96%) for correct classification in all six drugs
tested (i.e. both had high specificity; Table 3). Even
though the differences between estimates for the two
test methods were statistically detectable, the differ-
ences were small and may not have much biological
relevance in many circumstances. The ability to cor-
rectly classify resistant isolates (i.e. estimates of sensi-
tivity) was generally greater for BM and the
magnitude of the differences between estimates may
be practically meaningful in some applications
(Table 3). However, one-sided probabilities regarding
the likelihood that sensitivity estimates for the two
susceptibility testing methods were truly different
were generally lower than the corresponding specifi-
city estimates for the same drugs. Further, the prob-
ability intervals for many of the drugs were quite
wide suggesting sensitivity estimates for the two sus-
ceptibility tests cannot be detected statistically.

The same trends were found regarding correct clas-
sification of true resistance and true non-resistance to
the two antimicrobials tested in isolates of M. haemo-
lytica, although differences between estimates for the
two tests were statistically detectable.

Predictive values for test results to correctly predict
resistance and non-resistance

Depending on the antimicrobial drug being evaluated
and the true prevalence of resistance, these resultsT
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Table 3. Probability of detecting true resistance and true non-resistance in bacterial isolates using broth microdilution and disk diffusion susceptibility testing

Non-type-specific E. coli M. haemolytica

Ampicillin
(n=2279)

Ceftiofur
(n=2295)

Streptomycin
(n=2302)

Sulfisoxazole
(n=2316)

Tetracycline
(n=2238)

TMP-SMX
(n=2308)

Ampicillin
(n=783)

Tetracycline
(n=783)

Probability of detecting true resistance (sensitivity)*
Disk diffusion (95% PI) 84·3% 37·1% 70·6% 93·9% 94·9% 81·9% 34·9% 59·9%

(59·4–98·9) (4·8–94·1) (52·1–79·7) (84·5–98·5) (89·7–96·9) (49·1–98·7) (9·6–88·0) (34·1–91·4)
Broth microdilution (95% PI) 94·7% 79·4% 87·3% 96·1% 92·6% 81·5% 79·4% 89·6%

(76·7–99·1) (45·7–96·4) (65·5–93·8) (88·1–98·7) (87·8–94·7) (58·8–95·9) (39·4–96·1) (57·8–98·3)
Probability that sensitivity A>B‡ 0·90 0·88 0·99 0·83 0·97 0·49 0·64 0·15

Probability of detecting true non-resistance (specificity)†
Disk diffusion (95% PI) 99·9% 99·9% 99·7% 99·7% 98·0% 99·9% 99·7% 99·8%

(99·5–99·9) (99·8–99·9) (98·7–99·9) (98·8–99·9) (94·8–99·4) (99·7–100·0) (98·9–99·9) (98·8–99·9)
Broth microdilution (95% PI) 99·1% 99·6% 97·9% 98·7% 96·3% 99·8% 98·5% 98·3%

(98·3–99·8) (99·3–99·9) (96·4–99·3) (97·6–99·4) (93·5–97·7) (99·5–99·9) (96·7–99·8) (95·5–99·8)
Probability that specificity A>B‡ 0·98 0·97 0·99 0·99 0·97 0·83 0·51 0·79

TMP-SMX, Trimethoprim-sulfamethoxazole; PI, probability interval.
* The probability of classifying isolates as resistant among isolates that are truly resistant.
†The probability of classifying isolates as non-resistant (susceptible or intermediate) among isolates that are truly non-resistant.
‡One-sided probability comparing values for disk diffusion and broth microdilution: A=value that is numerically greater; B=value that is numerically lower.
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suggest that there would be some substantial differ-
ences in the confidence that users could have regarding
how well these susceptibility tests were correctly classi-
fying the true state of resistance and non-resistance in
isolates (Fig. 1; Supplementary Figs S1–2, available
online). For ampicillin, streptomycin, and sulfisoxa-
zole resistance, the results indicated that the DD
assay was better able to predict true resistance in iso-
lates than BM when the prevalence of resistance in
E. coli isolates was low. Conversely, when isolates
were classified by susceptibility testing as non-resistant
for these same three drugs, there was greater confi-
dence that test results of BM correctly predicted true
non-resistance when compared to DD if the true
prevalence of resistance was high. For example,
these estimates suggest that in a population of
E. coli isolates where the true prevalence of resistance
to streptomycin was 5%, the DD test would accurately
predict true resistance status 93·1% of the time
whereas the BM test would only correctly predict
true resistance 68·6% of the time (Fig. 1). However,

if the true prevalence of resistance to streptomycin
was 70%, the DD test would correctly predict true
non-resistance status 59·2% of the time, while the
BM test would accurately predict non-resistance
76·8% of the time (Fig. 1).

In contrast, the susceptibility tests for ceftiofur,
tetracycline, and TMP-SMX in E. coli isolates and
for ampicillin and tetracycline in M. haemolytica
had comparable predictive abilities across a wide
range of true prevalence values (Fig. 2; Supplemen-
tary Figs S3–6). Although the predictive abilities of
the two tests were not identical, differences were not
large for these drugs. For example, the difference be-
tween the predictive abilities of DD (71·6%) and
BM (69·0%) when the true prevalence of resistance
to tetracycline was 5% was much smaller than this dif-
ference for streptomycin (Figs 1 and 2). Similarly,
there was only a small difference in the predictive abil-
ity for non-resistant test results when the true pre-
valence of resistance to tetracycline was 70% (89·2%
for DD vs. 84·8% for BM; Fig. 2).
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Fig. 1 [colour online]. Predictive values and 95% probability intervals for resistance (positive predictive value) and non-
resistance (negative predictive value) to streptomycin by disk diffusion (diamond with solid lines) and broth microdilution
(circle with dashed lines) in E. coli isolated from individual samples (n=2302). Vertical lines denote the true prevalence of
streptomycin resistance at low (5%) and high (70%) levels to illustrate large differences in predictive values between the
two antimicrobial susceptibility tests. Lines without markers indicate the 95% probability intervals. (Colour online: blue
solid lines for disk diffusion and red dashed lines for broth microdilution.)
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Model convergence and sensitivity analysis

For each model, evidence for convergence was pro-
vided by the overlapping history (time-series) plots
for six simultaneous chains, a relatively immediate
drop to zero in autocorrelation plots, and overlapp-
ing lines with values of approximately 1 in Brooks–
Gelman–Rubin plots [32]. Widely varied prior
probability distributions and starting values had little
influence on results obtained from all of the models.
Correlation values obtained from the latent class mod-
els for the two tests were low (<0·3) for all models
suggesting that there was a low or small amount of
conditional dependence between the sensitivities and
specificities of the tests. Additionally, this conclusion
was supported by the fact that parameter estimates
obtained from models which assumed conditional in-
dependence for the classification of true resistance
and true non-resistance between the two susceptibility
tests were generally similar to the estimates obtained
from models which included parameters for con-
ditional dependence (results not shown).

DISCUSSION

Results of this study indicate that DD and BM suscep-
tibility tests generally had similar ability to correctly
classify susceptibility status of the bacterial isolates
evaluated in this study, although test sensitivities (abil-
ity to classify isolates as resistant when they were truly
resistant) varied between tests more than the test spe-
cificities. Therefore, non-resistance (susceptible and
intermediate classifications) results obtained by either
method probably represents true non-resistance status
of isolates, but isolates classified as resistant using
these susceptibility tests have a greater likelihood of
being incorrectly classified. Additionally, this ability
to correctly classify resistance varied among the differ-
ent antimicrobial drugs and between the two target
bacteria. These findings add to the complexity of
decisions that must be made when designing new
surveillance programmes for antimicrobial resistance,
and even when altering the panels of drugs that are
used in these efforts. However, given that neither sus-
ceptibility testing method was generally superior
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Fig. 2 [colour online]. Predictive values and 95% probability intervals for resistance (positive predictive value) and non-
resistance (negative predictive value) to tetracycline by disk diffusion (diamond with solid lines) and broth microdilution
(circle with dashed lines) in E. coli isolated from individual samples (n=2238). Vertical lines denote the true prevalence of
streptomycin resistance at low (5%) and high (70%) levels to illustrate large differences in predictive values between the
two antimicrobial susceptibility tests. Lines without markers indicate the 95% probability intervals. (Colour online: blue
solid lines for disk diffusion and red dashed lines for broth microdilution.)
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to the other in providing accurate test results for all
drugs and neither was superior in predicting true sus-
ceptibility status across all prevalences of resistance
that might be encountered, other factors such as cost
and availability may be valid reasons for choosing
one test over the other, particularly in resource-
constrained circumstances.

It is important to note that results of this study
were heavily dependent upon the breakpoints that
were used for classification of resistance and non-
resistance. Established clinical breakpoints established
by the CSLI for cattle were used whenever possible.
However, there are not established breakpoints for
all of the drugs included in the panel for this host spe-
cies, and thus it was necessary to use breakpoints es-
tablished for humans. This limitation is encountered
whenever susceptibility is evaluated for drugs that
are not commonly used in a particular host species,
and would seem to be inevitable when performing sur-
veillance in animals regarding drugs that are important
in humans. The BM panel used in this study is widely
used for surveillance purposes in North America, and
this limitation is therefore not unique to this study.

Latent class methods are increasingly acknowl-
edged as being superior to traditional reference-based
evaluation of diagnostic tests, and are accepted as a
valid approach by the OIE for estimation of sensitivity
and specificity tests that are used in restricting inter-
national trade and movement of animals [33]. These
models are particularly valuable because they do not
require use of a reference test (i.e. a ‘gold standard’),
but prior knowledge about the test accuracy can be
readily incorporated into Bayesian analysis through
the use of informative priors and Monte Carlo simu-
lation to estimate joint posterior probabilities [13].
These methods allow for estimation of theoretically
unbiased estimates of test sensitivity, specificity, pre-
valences, and predictive values.

Typically, error rate bounding is used when com-
paring results of DD and BM especially when evalu-
ating breakpoints for the DD assay, although there
is not universal consensus about which specific
method should be used [9, 10]. Error rate bounding
is a reference-based approach that is analogous to tra-
ditional methods of diagnostic test evaluation, and is
susceptible to the same biases encountered whenever
one test is considered a perfect standard. This study
shows that new methods that are reliant upon
reference-based comparison could provide an alterna-
tive approach for refining breakpoints that does not
rely on assuming that one test is a perfect standard,

albeit with the limitation that results would be clas-
sified dichotomously as in this study.

Our ability to understand the true susceptibility
status of bacterial isolates is completely dependent
on the ability of susceptibility testing methods to cor-
rectly identify resistance or non-resistance. Clinically,
an accurate understanding of true resistance and true
non-resistance is important for appropriately selecting
antimicrobial drugs to control or prevent disease,
while also adhering to principles of prudent use.
Both BM and DD susceptibility tests have limitations
in their methodology for adequately representing
in vivo factors which contribute to therapeutic failures,
such as stage of infection or physiological barriers.
Information obtained from BM is often considered
more clinically relevant than that obtained from DD
because the MIC information can aid therapeutic
decisions on drug selection, dose, and route of admin-
istration. However, this study has shown that misclas-
sification of resistance (and non-resistance) in many of
the antimicrobial drugs was equally likely with either
BM or DD. A limited number of antimicrobial drugs
were analysed in this study, but similar results in
untested antimicrobial drugs may also be found.

On a larger scale, surveillance for antimicrobial
resistance on a regional, national or even international
level sometimes requires large numbers of isolates
to be evaluated to meet surveillance objectives and
ensure representative results. Depending on the scale
of surveillance and the resources available to the rel-
evant authority, the cost per test can become a key
concern. High accuracy in surveillance is also necess-
ary to confidently and efficiently respond to poten-
tial population-level antimicrobial resistance health
threats [34]. Although economic analysis was beyond
the scope of the current study, our results suggest
that DD may represent an acceptable alternative to
BM for surveillance programmes, especially consider-
ing costs differences and limited dilution ranges that
are typically evaluated when using BM for surveil-
lance efforts. Costs are generally much lower for
DD testing than for BM, and there is more flexibility
in switching antimicrobials in the test panel with DD.
Additionally, the range of dilutions that can be evalu-
ated with BM is often restricted by the number of
wells on plates especially when attempting to perform
surveillance using a large number of drugs. The epi-
demiological thresholds that are useful in describing
emerging resistances are often much lower than the
clinical breakpoints between resistance and non-
resistance [4, 5, 35]. In cases where lower prevalences
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of resistance need to be detected and large numbers
of isolates tested for surveillance purposes, cost per
test can be a limiting factor particularly in under-
resourced countries.

The predictive values estimated in this study illus-
trate the importance of considering the expected
prevalence of resistance when designing surveillance
programmes. There were also some notable differ-
ences between the predictive values obtained using
these testing methods, and this could be an important
factor to consider when selecting a testing method
for surveillance. In general, at very low prevalences,
the predictive value for resistance (positive predictive
value) will always be low while the predictive value
for non-resistance (negative predictive value) is high
[36]. Conversely, at very high prevalences, the predic-
tive value for resistance will always be high while the
predictive value for non-resistance is low. This prin-
ciple applies generally to all diagnostic tests and has
been previously noted relative to the interpretation
of DD susceptibility tests [37].

One of the assumptions of latent class analysis for
two tests in two populations is that the two popula-
tions have different prevalences [25]. This was a limi-
tation in our study for results regarding ampicillin,
ceftiofur, and TMP-SMX resistance since the pre-
valences of these antimicrobial drugs in sample set 1
were similar to their counterparts in sample set 2.
Therefore, the parameter estimates for these anti-
microbial drugs should not be considered as reliable
as the other antimicrobial drugs with smaller prob-
ability intervals [38]. Similar to reference-based
evaluations of diagnostic tests, other general assump-
tions of latent class evaluations are the independence
of observations and the conditional independence of
the diagnostic tests [25, 31]. We believe it was un-
reasonable to assume that these antimicrobial suscep-
tibility testing methods were independent processes,
and therefore modelled an additional parameter to ac-
count for the correlation in test results as previously
described [25, 35]. However, relative to the indepen-
dence of observations, more than one isolate was
recovered per animal and included in these analyses
but it was presumed that this did not violate this as-
sumption as the ability to correctly classify resistance
status was not systematically related to the sampling
scheme; i.e. the probability of correctly classifying iso-
lates was considered to be unrelated to the source of
isolates. It is true that the resistance status of isolates
obtained from the same animal may have been corre-
lated and this would have affected prevalence

estimates, but the likelihood that the susceptibility
tests correctly classified the resistance status of an iso-
late was independent of source and therefore the esti-
mates of sensitivity and specificity were unaffected;
i.e., the propensity of a test to correctly classify an iso-
late’s susceptibility was not affected by whether
another isolate was tested from the same animal.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0950268813003300.
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