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§1. Introduction

Let X be a locally compact Hausdorff space with countable basis.
We denote by

M(X) the topological vector space of all real Radon measures in X
with the vague topology,

M (X) the topological vector space of all real Radon measures in X
whose supports are compact with the usual inductive limit topology.

Their subsets of all non-negative Radon measures are denoted by
M*(X) and by M;(X), respectively.

In the paragraph 2, we shall prepare the terminology and the notation
which we shall use in the sequel.

A continuous linear operator T from M .(X) into M(X) is called a
diffusion kernel on X if T is positive, i.e., Ty e M*(X) whenever pe Mz (X).
A semi-group (T,),., of diffusion kernels on X is called a diffusion semi-
group if T, = I (the identity) and if, for any pe M (X), the mapping ¢ —
T,y is continuous in M(X).

We consider the infinitesimal generator A of a transient and regular
diffusion semi-group (7',),z, on X. A Radon measure pc M(X) is said to
be A-superharmonic (resp. A-harmonic) if it satisfies —Ape M*(X) (resp.
Ay = 0).

In the paragraph 3, we shall show that every positive A-superharmonic
Radon measure is written uniquely as the sum of a V-potential of a non-
negative Radon measure and a non-negative A-harmonic measure, where
V is the Hunt diffusion kernel for (7)., i.e.,

Received April 27, 1979.
53

https://doi.org/10.1017/50027763000019425 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019425

54 MASAYUKI ITO AND NORIAKI SUZUKI

L1 V= f : T,dt .

By generalizing the classical positive eigen equation with zero con-
ditions on the boundary and by defining that a Radon measure vanishes
V-n.e. on the boundary (Definition 21 in §2), we shall discuss, in the
paragraph 4, a positive eigen equation for A with zero conditions in the
following setting:

For a positive number ¢ > 0,

(1.2) {Aﬂ = —cu
¢ =0 V-n.e. on the boundary.

Denote by E(A;c) the set of all non-negative solutions of (1.2) and put
E(A) = .20 E(A;c). Under the assumption that A satisfies the condition
(&) (Definition 49 in §4), we shall show that Ey(A) is a Borel measurable
set in the metrizable space M*(X).

By generalizing the notion of the classical complete superharmonicity,
we define the complete A-superharmonicity of € M(X). A Radon measure
r € M(X) is said to be completely A-superharmonic if, for any integer
n=>1, (—A)"ue M*(X), where (—A)" denotes the n-th iterate of —A. Let
SC(A) be the set of all non-negative completely A-superharmonic measures
in X and put

SCy(A) = {£e€ SC(A); (—A)"x = 0 V-n.e. on the boundary

1.3
(1.8) for n=20,1,---}.

Under the condition (%) for A, SC(A) is a closed convex cone in M*(X)
and all extreme rays of SC(A) contained in SC(A) — SC,(A) are determined
whenever all extreme rays of SC(A) contained in H(A) are determined,
where H(A) is the convex cone formed by all non-negative A-harmonic
measures.

A main purpose of the paragraph 4 is to show that

SC(A) = { j vd@() € M*(X); 0 ¢ M;(EO(A))}
(1.4) i
—{[ mdo(® € M(X); 1 e Ex(A;1),0 € M3 (0, )}

0

where M; (E,(A)) and M, ((0, «0)) denote the set of all regular Borel non-
negative measures @ on E(A) with Jd@ < o and that of all Borel non-
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negative measures ¢ in (0, c0) with Ida < oo, respectively. Let A = d/dx

in (0, ). Then (1.4) implies the Bernstein theorem.

M. V. Novisgkil [16] discussed a similar formula as in (1.4) for the in-
finitesimal generator of a contraction semi-group in a Banach space.

In the paragraph 5, for a given elliptic differential operator L of second
order on a subdomain D of an orientable C~-manifold, we shall show that
the diffusion semi-group defined by the fundamental solution of 8/5¢ — L
is regular if it is transient. Applying our theorem to completely L-super-
harmonic functions in D, we shall obtain the integral representation of
a completely L-superharmonic function in D. This is a generalization of
Noviskii’s result (see [15]).

§2. Basic notation and preliminaries

We denote by

C(X) the Fréchet space of all real-valued continuous functions in X
with the topology of compact uniform convergence,

Cx(X) the topological vector space of all real-valued continuous func-
tions in X whose supports are compact with the usual inductive limit
topology.

Their subsets of all non-negative functions are also denoted by C*(X)
and C#(X), respectively.

DerFINITION 1. (1) A continuous linear operator T from M (X) into
M(X) is called a diffusion kernel if T is positive, i.e., Ty € M*(X) when-
ever pe Mi(X).

(2) A linear operator T from Cr(X) into C(X) is called a continuous
kernel if T is positive, i.e., Tfe C*(X) whenever fe C#(X).

Remark 2. A continuous kernel T is a continuous mapping from
Cx(X) into C(X).
We see easily the following

Remark 3. (1) Let T be a diffusion kernel on X. For fe Cp(X), we
put

@.1) T*f(x) = [ faTe. ,

where ¢, denotes the Dirac measure at xeX. Then T*fe C(X) and
T*: Ce(X) s f— T*fe C(X) is a continuous kernel on X.
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(2) Let T be a continuous kernel on X. For pe My (X), there exists
one and only one T*ue M(X) such that, for any fe Cr(X),

@9 [rary = [ zrap,

and T*: M(X) s p— T*pe M(X) is a diffusion kernel on X.
In (1), T* is called the dual continuous kernel of T and in (2), T* is
the dual diffusion kernel of T.

Remark 4. Let T be a diffusion kernel or a continuous kernel on X.
Then (T*)* = T.

In the sequel, for a diffusion kernel or a continuous kernel T, its dual
kernel is always denoted by T*. For a diffusion kernel 7 on X, we put

2.3) 2(T) = {# e M(X); f T*fd| 4| < oo for all fe C;g(X)} ,

where |z| denotes the total variation of g, and put 2*(T) = 2(T) N M*(X).
Then 2(T) is a linear subspace of M(X) and T can be extended to a posi-
tive linear operator from 2(T) into M(X). For pe 2(T), Ty is called the
T-potential of p.

Let T be a continuous kernel on X. Put

2(T) = {fe CX); f IfldT*y < oo for all ye ME(X) and
2.4)
M (X))o p— J. fdT*y is continuous} .

Then, by the following lemma and Remark 4, we see that 2(T) is a linear
subspace of C(X) and that T can be extended to a positive linear operator

from 2(T) into C(X) by defining Tf(x) = jde*ez.

LEmmA 5. Let T and 2(T) be the same as above. If fe C(X) and
IfI< |gl for some ge D(T), then fe 2(T).
In fact, Lemma 5 follows from the lower semi-continuity of the func-

tion J-th*sI of x for all he C*(X).

Let T, (j = 1,2) be a diffusion kernel (resp. a continuous kernel) on
X. If, for any pe M(X) (resp. fe Cx(X)), Tipne 2(T,) (resp. T.fe 2(T))
and if the mapping p— T\(T,p) (resp. f— T(T.f)) defines a diffusion kernel
(resp. a continuous kernel), it is called the product of T, and T, and
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denoted by T,-T,.

Remark 6. Let T, (j = 1,2) be a diffusion kernel (resp. a continuous
kernel) on X. If T-T, is defined, then T3 T3 is defined and (ﬂ-T;)* =
Tk T,

In particular, for a diffusion kernel 7' (resp. a continuous kernel) on
X and a positive integer n = 2, we denote by 7" the diffusion kernel (resp.
the continuous kernel) defined inductively by T"-'- T provided that it is
defined, where T' = T. In the case of T+ 0, T° means the identity I.

DerFintTION 7. A family (7)), of diffusion kernels (resp. continuous
kernels) on X is called a diffusion semi-group (resp. continuous semi-group)
if it satisfies the following three conditions:

(2.5) To = I .
(2.6) T.-T,=T,,, for any t=0, s=0.

For each pe M (X) (resp. fe Cx(X)), the mapping ¢t — T, (resp.

@7 t—)ITJdﬂ) is continuous in M(X) (resp. continuous for each

# e Mx(X)).

Evidently, for a diffusion semi-group (resp. a continuous semi-group)
(T)s20s (T5)ez0 is a continuous semi-group (resp. a diffusion semi-group).

Let (T).» be a diffusion semi-group (resp. a continuous semi-group)
on X. Putting

28  D(T)w) = {,, € N 2(T); t —> T,y is continuous in M(X)}
t=0

(resp. D((T)20) = { fe Qo 2T,);t—> I T.fdy is continuous for

each pe MK(X)}) ,

we call it the domain of (7). We put also 2*((T)x) = 2((T.).s0) N
M*(X) (resp. = 2((T)):z0) N CH(X)).

DerFintTiON 8. Let (T).s, be a diffusion semi-group (resp. a continuous
semi-group) on X. We say that it is transient if the mapping V: M (X) > p

N r T.pdt € M(X) (resp. Cx(X) > f— fo T.fdte C(X)) is defined as a diffu-
0 []
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sion kernel (resp. a continuous kernel) on X, where, for any fe Cp(X),

j fd(j: T,pdt) - j - j fdT,pdt.

In this case, we denote by
2.9) V= J " Tds
0

and call it the Hunt diffusion kernel for (T)),., (resp. the Hunt continuous
kernel for (T).z0)-
Evidently we see the following

Remark 9. Let (T,),», be a diffusion semi-group (resp. a continuous
semi-group) on X. Then (7)., is transient if and only if (7)., is
transient.

Furthermore, in the case that (7)), is transient, we have

(2.10) (I: T,dt)* — f Trdt .

Let (T)).», be a transient diffusion semi-group (resp. a transient con-
tinuous semi-group) on X. For any p > 0, we put

@2.11) Vv, = r exp (—p)T.dt ,
0

and call (V,),., the resolvent for (7}),»,. In this case, V, is a diffusion
kernel (resp. a continuous kernel, because the Fatou lemma gives that,
for any fe C¥(X), V,f and Vf — V,f are lower semi-continuous).

In the usual way, we see the following

PropositioN 10. (1) Let (T)),z and (T}).s, be transient diffusion semi-
groups (resp. transient continuous semi-groups) on X. If r T.dt = r T,dt,
0 0

then T, = T, for any t = 0.

(2) Let (T,),s, be the same as above and V be the Hunt diffusion kernel
(resp. the Hunt continuous kernel) for (T,),,. If a family (V,),= of diffu-
sion kernels (resp. continuous kernels) satisfies the following

V,— V,=(q@— p)V,-V, for any p=0 and q >0, and
limV,=V,=V,

-0

(2.12)

then (V). is the resolvent for (T,),».
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We remark here that lim, ., V, = V, means that, for any pe M (X),
lim, , V,p = Vop in M(X) (resp. for any fe Cx(X), lim,, V,f= V,f in
C(X)). For a transient continuous semi-group (7)., the Dini theorem
gives that lim, ., V,f = V,f in C(X) if and only if lim,_, V,f(x) = V,f(x)
for each x e X. The first equality in (2.12) is called the resolvent equation.

Proof of Proposition 10. We shall show only Proposition 10 for
transient diffusion semi-groups, because the proof of the other case is
similar. Let (V;,,),s0 and (V,,),s0 be the resolvent for (7)., and that for
(T)).s0, respectively. Evidently we have lim,,V,,=V,, (j=1,2). For
each p > 0, we put H,(f) = exp(—pt) on [0, 0) and = 0 in (—c0,0). Then,
forany p=0and ¢ >0, H, — H, = (g — p)H, x H,. By the Fubini theorem
and (2.7), (V,,,),» satisfies the resolvent equation. Since, for any y e M (X),
the mappings t— T, and ¢t— T,p are continuous in M(X), the above
argument and the injectivity of the Laplace transformation show that (2)
implies (1). We shall show (2). It suffices to show that, for any p > 0 and
any integer n =1, (V,)* and (V, )" are defined and

@1 VioT= (14 56V)) = 1+ 5eV.r),

where (V) ,),s0 is the resolvent for (7)., because (I — pV,)-(pV + I)-
I—-pV)y=T—-pV,) (V+1I)-(I-pV,,). By using the resolvent equa-
tion, we see that (V,)" and (V,,)" are defined (n =1,2,---). We shall
show only the first equality in (2.13), because the other is similar. This
follows directly from

(2.14) vV, + 1 ;- 1 (I + 2 (- q)Vp)”)
pP—aq DpP—gq 1=1

for any q with 0 < ¢ < p, because, for any pe Mi(X), V.t Vu with ¢ | 0.
By the resolvent equation, we have

1

(1+ S@-av)

(2.15) =1 74v - lim(

p—q s

= 1 I+Vq,
b—q

1
b—gq

I+ V)'((p — V)"

because, for any pe 2*(V),
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(2.16) (- V(Vu < (p—;i)”vp :

This completes the proof.

DerinITION 11. A continuous kernel V on X is said to satisfy the
domination principle if, for any f,ge C#(X), an inequality Vf(x) < Vg(x)
on the support of f, supp (f), implies the same inequality on X.

ProposiTioN 12. Let (T),),,, be a transient continuous semi-group and
V be the Hunt continuous kernel for (T.),z,. Then V satisfies the domina-
tion principle.

If X has a structure of an abelian group with which the topology of
X is compatible and if, for any ¢ =0, T, is defined by a positive Radon
measure «, as follows;

(2.17) T.f(x) = acxf(x) ,

then (T).» and V are said to be of convolution type. The assertion of
Proposition 12 is well-known in the case that (7)., is of convolution type
(see, for example, [8]). Its proof is also valid in general case.

Proof of Proposition 12. Let (V,),s, be the resolvent for (7)), and
suppose that, for f,ge Ci(X), Vf(x) < Vg(x) on supp(f). Let he Ci(X)
such that A(x) >0 on supp(f). Then, for any x,e supp(f), there exists
t, > 0 such that T h(x;) > 0 for all £ with 0 <t < ¢,. Hence Vh(x,) >0, i.e.,
Vh(x) >0 on supp(f). For any integer n > 1, there exists p, >0 such
that, for any p > p,,

2.18) (V ¥ %I)f(x) < ( V4 %I)(g n %h)(x) on supp (f) .
Put u = inf((V + (A/p)Df, (V 4+ @/p)I)g + (1/n)h)). Then we have
a-pv((v+ % )f—u) =pV,(u— (V+ %I)f) <0

on supp (f) .

Since (I — pV XV + (/p)D)f = (A/p)f and (I — pV,)u =0 on X, we have
(I — pV,)(V + Q/p)D)f — u) <0, which gives that (V + (1/p)])f < u on X,
ie., u= (V4 (1/p)D)f on X. Hence the inequality in (2.18) holds on X.
Letting p— o and n— oo, we obtain that Vf(x) < Vg(x) on X. Thus
Proposition 12 is shown.

(2.19)

https://doi.org/10.1017/50027763000019425 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019425

COMPLETELY SUPERHARMONIC MEASURES 61

Remark 13. Let V be the same as above. If, for f,ge 2+(V), Vf< Vg
on supp (f), then the same inequality holds on X.

In fact, for any f’ e C#(X) with f” <, there exists h € C#(X) such that
Vh(x) >0 on supp(f). Hence, for any integer n>1, there exists
8. € C#(X) such that g, < g and Vf' < Vg, + (1/n) VA on supp(f’). Pro-
position 12 gives that Vf' < Vg, + (1/n)VA < Vg + (1/n)Vh on X. Letting
f'1fand nt oo, we have Vf< Vg on X.

Similarly as in Definition 11, we define the domination principle for
a diffusion kernel.

DeriniTiON 14. A diffusion kernel V on X is said to satisfy the
domination principle if, for any g,ve Mi(X), Vu < Vv in a certain neigh-
borhood of supp (¢) implies that the same inequality holds on XV.

ProrostTioN 15. Let (T)).., be a transient diffusion semi-group on X
and V be the Hunt diffusion kernel for (T,),.,. Then V satisfies the domi-
nation principle.

Proof. Assume that, for p,ve Mi(X), Vu< Vv in a certain open
neighborhood o of supp(y). Choose a relatively compact open set w, in
X such that supp(¥) Co, C @, Cw. Let (V,),s be the resolvent for
(T)i20 and put g, =pV,x in o, and p,=0 on Co, (p >0). Since
lim,..pV,u =g, lim, .. s, = pin M(X). Hence lim, ... Vy, = Vuin M(X).
By p(V + (1/p)I)- V, = V, we have (V + (1/p)D)y, £ Vv in 0. Put

1= -;}):(Vu + (V+ %I),up v (V+ %1)#,,

(= int (Vo (v + %I)/J,,)) .

Since (V + (1/p))g, = pV,2 and Vv = pV, A, we have

(2.20) 1=pV,2 and 2 = p(V ¥ %I)(x —pV,2).
Since

@ V(1= (V+ 1))
(2.21)
=pv,,((v+ %I)yp _ 1) <0 ino,

1) We denote also by supp (¢) the support of p.
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we have 1= (V + (1/p) )y, on X, ie., 2 =(V + (1/p)I)y,, so that

(2.22) (V + -:—)I)#p <Vvon X.

Letting p — oo, we have Vu < Vv on X. This completes the proof.
Propositions 12, 15 and the Choquet-Deny theorem® implies the fol-
lowing

ProposrtioN 16. Let (T,),», be a transient diffusion semi-group on X
and V be the Hunt diffusion kernel for (T),z. For any pe2*(V) and
any relatively compact open set o in X, there exists one and only one
v e Mi(X) such that:

(2.23) supp(u) C @ .
(2.24) Vu, < Vpon X
(2.25) Vy,=Vpin 0.

(2.26) If ve MZ(X) satisfies Vv= Vy in o, then Vv = Vy, on X.

Proof. First we assume that pe M#(X). Choose an exhaustion (,);-;
of w®. The Choquet-Deny theorem® (see [4]) and Proposition 12 give that
there exists g, e M#(X) such that supp(e) C @, Vu, < Vp on X and
Vu, = Vp in o, By Proposition 15, (Vu))s., is increasing. Since, for
any compact K in X, there exists h e C#(X) such that V*h(x) >0 on K,
(1)z., is vaguely bounded, and hence we may assume that it converges
vaguely to y, e M#(X) as n— oo. We shall show that g, is a required
measure. Evidently u/ satisfies (2.23), (2.24) and (2.25), because Vp =
lim,_., V.. Let ve M#(X) satisfy Vv = Vy in w. Then, for any n =1,
Proposition 15 gives that Vy, < Vv on X, so that Vy, < Vv on X, ie,
£, 1s a required measure.

In general, we assume that pe 2*(V). We can write g = 37, ft,,
where p, € Mz(X). Let p,, the non-negative Radon measure obtained
above for p,. Then 3,4, converges vaguely. Putting g, = >3, ¢ .,
we see easily that g is a required measure.

2) This shows that V* satisfies the domination principle if and only if, for any
peMi(X) and any relatively compact open set o in X, there exists o’ ¢ MH(X) satisfying
(2.23), (2.24) and (2.25) in Proposition 16.

3) For an open set o in X, (o,);_, is called an exhaustion of w if, for eachn =1,
o, is a relatively compact open set in o, &, C @z (n=1,2,-++) and U, ., 0 =0.
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Finally we show the unicity of x,. Let x be another non-negative
Radon measure satisfying the required four conditions. Then V|, = V.
By virtue of the resolvent equation, we have, for any p > 0, V,u, = V4.
By remarking that mappings ¢t — T,x, and t— T,y are vaguely continuous
and that the Laplace transformation is injective, we obtain that, for any
t=0, T, = Ty, ie, p, = p). Thus the unicity of y, is shown. This
completes the proof.

The above non-negative Radon measure p is called the V-balayaged
measure of ¢ on w. In general, the above assertion does not hold if o
is not relatively compact. Proposition 16 gives the following

CoroLLARY 17. Let (T,),s, and V be the same as above. The mapping
V:2(V)s u— Vue M(X) is injective.

Proof. Assume that, for ¢, € 2*(V) (j =1,2), Viyy = V. Let (0,)5-1
be an exhaustion of X. Put y,, =g, in 0, and g,, =0 on Co, (j = 1,2,;
n=12-.-). We denote by 4}, the V-balayaged measure of x, — g, , on
®,. Then p,, + ¢/, is the V-balayaged measure of g, on o, (j =1,2;
n=12-..). Evidently we have V(y, , + ¢’.) = V(o,n» + pia,) foralln > 1.
In the same manner as above, we have

(227) e ﬂ;:n = fh,n + /l;:n (n =12,-. ) .

Since Vi, < V(g — py,.) and lim, .., V(g; — p,,) = 0, we have lim, ... Vi,
= 0 (vaguely), and hence lim,_. 4/, = 0 (vaguely) for j =1,2. Letting
n— oo in (2.27), we obtain that yg = g, This completes the proof.

By generalizing the notion of associated families (see [7]), we define
the following

DEeFINITION 18. Let (7)., be a transient continuous semi-group on X
and V be the Hunt continuous kernel for (T),),»,. We say that (7).,
satisfies the condition (D) if, for any fe Ci(X), there exists an associated
family of f with respect to (7).

Here, an associated family (f,):., of f with respect to (T}).s, is, by
definition, a sequence in 2*((T)).;») N 2*(V) satisfying the following two
conditions:

(2.28) Vf— Vf,eCi(X) (n=1,2,--+).

(2.29) (Vf,)z-, converges decreasingly to 0 as n % oo,
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By the Dini theorem, the convergence in (2.29) is that in the sense
of C(X).

DerintTION 19. Let (T)).»0 be a transient diffusion semi-group on X.
We say that (7)., satisfies the condition (D*) if (T}¥),., satisfies the con-
dition (D).

We denote by Ji(x) the totality of compact neighborhoods of x ¢ X.

ProrosiTioN 20. Let (T)).., be a transient diffusion semi-group on X
and V be the Hunt diffusion kernel for (T),5,. Assume that (T,)., satisfies
the condition (D*). Then, for any pe 2*(V) and any xc X,

(2.30) NQZ) Pon(V; V) = {0},

where Pyy(V; Vy) denotes the vague closure of the set
(2.31) {Vv;ve M#(X), supp(y) € CN, Vv < Vu in CN}.

Proof. Let Ne9(x) and choose an exhaustion (@,);.; of CN. Let
be the V-balayaged measure of g on w,. Since (Vyl);., is increasing and
V#:zé V# on X (n= 1’2, "')9
(2.32) ox = lim Vyl (vaguely)
exists. Proposition 15 gives that 7,y does not depend on the choice of
(0,)7-1 and that, for any 5 € Pey(V; V), » <5y on X. Choose a sequence
(V,)z-, € N(x) such that N, C N,,, and Uz, N, = X, where N,,, denotes
the interior of N,,,. Proposition 15 gives that (y.y,);-, is also decreasing.
Put

(2.33) Mo = }‘];IE Nea »

Then 7 € (Myerw Pon(V; V) and, for any 3’ € Nyenw Pen(V; V), 7' < 1o
on X. Let (0,);-: be an exhaustion of CN, and g, be the V-balayaged
measure of g on w,, (n=1,2,---;k=1,2,---). For any fe C#(X) and
any associated family (f,,);., of f with respect to (77),», we have, for any

mz1,
0= J.fd% = E_{B f(f - fm)d%wn + E_P:ffmd?mvn
(2.34) < limlim | (f = £)dVid. + j fod Ve
n—so0 f—rco
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= lim lim [ (V¥ — V*.)dpe + [V¥adp < [ Vifada.

n—o0 k-0

Since V*f, < V*f, (2.29) gives that lim | V*f,dy = 0, which implies that

m—ro0

Ifd% = 0. Thus 5, = 0, and hence our required equality (2.30) holds. This

completes the proof..

Let (T.).», be a transient diffusion semi-group on X and V be the
Hunt diffusion kernel for (7)..,. For 1€ M(X) and an open set v in X,
we put

(2.35) P(V;2) = {Vv;ve Mi(X), supp(v) C 0, Vv < 2] in o},
where the closure is in the sense of vague topology.

DeFiNiTION 21. Let (T)),s, be a transient diffusion semi-group on X
and V be the Hunt diffusion kernel for (T)).... We say that 1e M(X)
vanishes V-n.e. on the boundary of X if, for any x e X,

(2.36) wlalo Per(V32) = {0}
and if there exists p€ 2*(V) such that || < V.

Evidently, for any xe X, (2.36) holds if and only if there exists an
x ¢ X satisfying (2.36).

DEFINITION 22, A transient diffusion semi-group (7%).s, on X is said
to be weakly regular if, for each xe M7#(X), Vp vanishes V-n.e. on the
boundary of X, where V is the Hunt diffusion kernel for (7).,

PropositioN 23. Let (T),., be a transient diffusion semi-group on X
and V be the Hunt diffusion kernel for (T),.,. Then the following two
statements are equivalent:

(1) (T2 is weakly regular.

(2) Forany pec2*(V) and any open set o in X, there exists one and
only one V-balayaged measure y, of ¢ on o*. Furthermore we have, for
any xe X,

.37 lim Vygy = 0 (vaguely) .
NtX

1
Nen(z)

4) This means also a positive Radon measure satisfying the analogous conditions
to (2.23)-(2.26).
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Proof. It suffices to show that (1) = (2), because the domination prin-
ciple for V implies that, for any Ne %i(x) and any € Poy(V; Vo), 1 < Vyby
on X, and (2.37) gives that Myeme Pon(V; Vi) = {0}

Let xe X and choose a suquence (NV,)r.; < (x) such that N, C ZV,H,

and |;.; N, = X. Then (pcy,)y-: is decreasing. Since 7qy, € Pey, (V; V),
the weak regularity of V gives that lim,_. 7.y, = 0 (vaguely). Similarly
as in Proposition 16, it suffices to assume that ge MZ(X). Let (w,);-; be
an exhaustion of w and g, be the V-balayaged measure of ¢ on @,. Then
(V). is increasing and Vy, < Vpon X (n=1,2,---). Put
(2.38) Yo = }lun Vi, .
Then 7, € P,(V; Vi) and 75, does not depend on the choice of (»,);-,. Since
(12)z., is vaguely bounded, we may assume that it converges vaguely to
e M*(X) as n—>co. Evidently 5, = Vi, on X. We shall show the
inverse inequality. Let ¢, e Ci(X) such-that 0L ¢, <1, ¢ =1 on N,
and supp (p) C N... (k=1,2,---). Then, for any n=>1, V(1 — ¢u.1)1)
€Pey(V; V) (k=1,2,.--), and hence V(1 — ¢, )1) < nen, o0 X. There-
fore, for any fe C¥(X),

[ favi 2 [ Vi) = lim [ faVigr.e) 2 [ fdn. — [ fdron,
k=12--).

(2.39)

Letting £— oo, we obtain that Vi, =, on X. Thusy, = V. Similarly
as in Proposition 16, y, is a required measure. Its unicity follows directly
from Corollary 17.

Let (T).s, be a transient diffusion semi-group on X and V be a Hunt
diffusion kernel for (T}),,- Put

(2.40) R(V*) = {V*;fe 2(TF)z0) N 2(V¥)},

R+(V*) = R(V*) N C*(X), R(V*) = R(V*) N Cx(X) and RE(V*) = R(V*)
N C#(X). Then R (V*) is a linear subspace of Cx(X) and RH(V*) is a
convex cone. Put

(2.41) 2 = {#e M(X); j If1d| ] < o for any V*fe RK(V*)}
and, for each pe 2° define the linear functional Ag on R, (V*) by

(2.42) Ap(V*f) = —j fdp for any V*fe Ry(V*).
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Precisely we write 2°(4) = 2°. Then we have easily the following

Remark 24. Let (T,),», and V be the same as above. Assume that
Ri(V*) is total in Cg(X)”. Then, for pe 2°, a continuous extension of
Ap to Ci(X) is uniquely determined if it exists. Furthermore if, for z ¢ 2°,
— Ay is non-negative, i.e., —Au(g) = 0 if g€ Rz(V*), then a positive linear
extension of — Ay to Cy(X) exists.

DerFiNITION 25. Let (T,).5 be a transient diffusion semi-group on X
and V be the Hunt diffusion kernel for (T),5,. If RE(V*) is total in Cy(X),
then (T),),s, is said to satisfy the condition (C*).

For a transient diffusion semi-group on X satisfying the condition
(C*), we denote by 2(A) the set of all ue 2°(A) such that a continuous
linear extension to Cg(X) exists. For pe 2(A), we can write again Ap
its continuous linear extension to Ck(X) without confusion (see Remark
24). Evidently 2(A) is a linear subspace of M(X) and the linear operator
A:D(A)> p— Ape M(X) is defined.

DEerFintTION 26. The above linear operator A is called the infinitesimal
generator of (7).

DeriniTION 27. Let (7)), be a transient diffusion semi-group on X.
If (T,).s, satisfies the conditions (D*) and (C*), it is said to be regular.

If a transient diffusion semi-group (7)., is of convolution type, it is
always regular (see, for example, [7] and [8]).

Remark 28. Let (T)).s be a transient diffusion semi-group on X and
(V,)pz0 be the resolvent for (T}),.,. Let p >0 and put

©243) T, = exp(— pt)(I + 3 %(pv,,)') (¢>0) and T,,=1I.

Then (T,,).s0 is a transient diffusion semi-group on X and V + (1/p)I =
r T, .dt, where V, = V. Furthermore, if (T)),», is regular (resp. weakly
0

regular), then so is (7Y ).», for any p > 0.

In fact, (2.13) gives directly the first part. Assume that (7)., is re-
gular. Since p(V* + (1/p)I)-(I — pVy) = I, C(X) = Rx(V* + (1/p)I), and
hence (T',,.)., satisfies the condition (C*). Let fe Ci(X) and (f,);-: be an

5) This means that R}(V*) c Cx(X) and, for any x ¢ X and any neighborhood U
of x, there exists an f =+ 0e RE(V*) such that supp(f) c U.
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associated family of f with respect to (T*),5,. Then pVi#f, € D(T#).20) N
2(V*¥ + (A/p)I) and (V* + AUp))(pV}if.) = V*f,. Thus we see that
(@ VifJr-: is an associated family of f with respect to (7})..,. Hence
(T,,.):0 is regular for any p > 0. Next we assume that V is weakly re-
gular. Let p > 0 be fixed and ye€ M (X). For any xe X and any N € R(x)
with N D supp (#), we have, in the same manner as in Proposition 15,

(2.44) (V+ lI)» < Viow on X
p

whenever (V + (/p))ve Po(V + (Up)I; (V 4+ (U/p)])p), where gy is the
V-balayaged measure of g on CN. By Proposition 23 and (2.44), V + (1/p)]
is weakly regular.

Remark 29. Let (T).., be a transient diffusion semi-group on X satis-
fying the condition (C*), V be the Hunt diffusion kernel for (7)), and
A be the infinitesimal generator of (T)).5,. Then, for any pe 2(V), Vue
2(A) and A(Vp) = —p.

In fact, we may assume that x is non-negative. For any V*fe Ri(V*),

(2.45) lim %(I — T*(V*f) = lim % f " T*fds = f (pointwise).
t—0 t—0 0

Since supp (f*) C supp (V*f),

(2.47) Jlf}dV,aéZIf*de< o,

which gives that Vye 2°(A), because, for any V*fe R (V*), there exists
V*ge RZ(V*) such that V*g=|V*f|. Since, for any V*fe R (V?*),
I V*fdy = I fdVy, our assertion holds.

§3. The Riesz decomposition theorem

We begin by the following two lemmas:

LEmMA 30. Let (T).s, be a transient diffusion semi-group on X and
V be the Hunt diffusion kernel for (T,),»,. For a given positive Radon
measure p in X, there exists he 2" (T}),z0) N 2*(V*) such that V*h(x) >0

on X and Ihdy< o,

Proof. Let (0,)7.: be an exhaustion of X. Then, for any n, there

https://doi.org/10.1017/50027763000019425 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019425

COMPLETELY SUPERHARMONIC MEASURES 69

exists h, € C#(X) such that V*h, >0 in w,. We choose also g, e Ci(X)
satisfying V*g, = h, on X. Since, for any ¢ > 0,

(3.1) 0< T¢h, < THV*g,) = r T¥g,ds< V*g, on X,
t
there exists a constant ¢, > 0 such that

¢, V*h, < —217c71*h < 2i on @, (0<t< o)
3.2

1

and cnjhndﬂ <5

Then h = Y 3., ¢,h, is a required function.

LemMmA 31. Let (T,),5, be o transient diffusion semi-group on X satis-
fyving the condition (D¥) and V be the Hunt diffusion kernel for (T).z-
For any fe 27 (T#).2) N 2*(V*), there exists also an associated family of
f with respect to (TF),%.

Proof. Choose a sequence (f,);., C C£(X) such that f= > 7., f, and
an exhaustion (0,)7.; of X. Let (f,,.)5-1 be an associated family of f,
with respect to (77),z,. We may assume that, for any m > 1 and any %
with 1<k<m, V¥, ,<1/m* on @,. Put

(3°3) gn=§fk,n+ i fk (n=1’2""),

k=n+1

then g, € D(T*).20) N 2(V*). We see easily that (g,)7., is a required as-
sociated family of f with respect to (T7*),z.

DerinrTioN 32. Let (7)),s, be a transient diffusion semi-group on X
satisfying the condition (C*) and A be the infinitesimal generator of
(T.):2. A real Radon measure g in X is said to be A-superharmonic (resp.
A-harmonic) if ge 2(A) and —Ape M*(X) (resp. Ay = 0).

Clearly this is equivalent to x € 2°(4) and I fdu=0 (resp. j fdu = o)

for all V*fe RE(V*), because RE(V*) is total in Cr(X) and forms a convex
cone.

DerintTioN 33. Let (7)., be a diffusion semi-group on X. A real
Radon measure g in X is said to be excessive (resp. invariant) with respect
to (T\).x if, for any t =0, pe 2(T,) and p= T, (vesp. p = T,p).
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Remark 34. Let (T),s, be a transient diffusion semi-group satisfying
the condition (C*) and A be the infinitesimal generator of (7). If
re M+(X) is excessive with respect to (7)., then g is A-superharmoniec.

In fact, for g = V*fe RZ(V*) and t > 0, we put f;" = 1/i(g — T*g)* and
fo = 1/(g — T¥g)~. Then supp (f;") C supp(g) for all £ > 0, and hence the

Lebesgue theorem gives that lime,"dp = J f*dp. By the Fatou lemma
-0
and lim, , f;(x) = f~(x) for all xe X,

0<lim > [gdd — Tou = lim = [ 4 — T¥)gdp
t—0 t=0

3.9
=lim [ (¢ — f)dp < [frdu— [f-dp = [ fdu,

which implies that g is A-superharmonic.
The main theorem of this paragraph is the following Riesz decomposi-
tion theorem.

TurorEM 35. Let (T),s, be a transient and regular diffusion semi-group
on X, V be the Hunt diffusion kernel for (T,),., and A be the infinitesimal
generator of (T,),»,. Then every non-negative A-superharmonic measure p
in X can be written uniquely as

(8.5 p=Vv+p

where ve 2*(V) and p, is a non-negative A-harmonic measure in X. Fur-
thermore y = — Ap.
First we prepare the following two lemmas.

Lemma 36. Let (T,).;20, V and A be the same as above, and let y be a
positive A-superharmonic measure.” Then, for any fe 2 (T{)iz0) N 2*(V*)

with I fdy < oo and an associated family (f,);-. of f with respect to (T¢¥),s,

(I f,,dy)w is decreasing, J frdp < ‘[ fdp n=1,2,-.-) and lim | f,dp does
n=1

n—oo

not depend on the choice of (f,)z-1.

Proof. Since, for any n=1, V¥{f — f,) € R&(V*), I f.dp < J fdp and

n=1

respect to (T3),5,. We choose he 2*((T#),5) N 2+(V*) satisfying V*h >0

(I f,,d;e)°° is decreasing. Let (g,);-, be another associated family of f with
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on X and Ihdy < oo (see Lemma 30) and an associated family (A,)., of

h with respect to (7F),s,. For any integer m = 1 and any positive number
o, there exists an integer n, = 1 such that, for all n > n,,

(3.6) 6V*(h — h,) + V¥ — V¥, =2 V*f— V*g, on X,

which implies that
(3 ot —h) + g — frduzo0.
Letting n— o and next § — 0, m — oo, we obtain that

(.9) lim [ g,dp = lim j fudp .

m—co

In the same manner, we see the inverse inequality. Thus lim | f,dy does

not depend on (f,);-;, and hence the proof is achieved.

LemmMA 37. Let (T).z0 V, A and p be the same as above. Assume
that, for any fe 2*(V*) with dey < oo and any associated family (f)n-1
of f with respect to (T#),z, lim | f,dp = 0. Then, for any V*ge R*(V*),

Igdﬂ = 0 whenever Ig*d,u < oo,

Proof. It suffices to show that for any fe Cx(X) with f < g7, jg*dﬂ

= Ifd,u. Let (g,)z., and (f,)=., be an associated family of g* with respect

to (T#),so and that of f with respect to (7)., respectively. Let A and
(h.)s-1 be the same as in the above proof. Similarly as in Lemma 36, for
any integer n>1 and any number & > 0, there exists an integer m, = 1
such thet, for all m > m,,

3.9 o(V*h — V*h,) + V*g* — V*g, = V¥f — V*f, on X,

and hence
(3.10) Joth— hadu + [ (6" — gn+ £ — Nduz 0.

Letting m— oo and next §—0, n— oo, we obtain that Ig*dy > I fau.
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Thus Lemma 37 is shown.

Proof of Theorem 35. By Lemma 36, there exists one and only one
tn € M*(X) such that, for any fe Ci(X),

@.11) [ fdu = tim [ f.dp,

where (f,);_; is an associated family of f with respect to (T7).,s. Put
tty = #t — ptn. Then we shall show the following two statements:

(a) p. is A-harmonic.

(b) There exists v € 2*(V) such that g, = Vu.

We begin by the proof of (a). Let V*fe Rx(V*). Then |f| e 2((T).z0)
N 2(V*) and supp(f*) is compact (see the proof of Remark 34). Let
(f.)z-: be an associated family of f- with respect to (7)., Then it is
also an associated family of f* with respect to (77),»,. Hence (a) follows
from the equality

(3.12) [ gdu, = tim [ g.dp

for any g€ 2*(T#).2) N 2 (V*) with Igdy < oo, where (g,)7., is an as-
sociated family of g with respect to (7). We remark that fgdyh <

j gdy, because, for any g’ € Ci(X) with g’ < g,jg’dp,, < j gdu < j gdp.

Let A and (h,);-, be the same as in the proof of Lemma 36, and let (f,):.,
be an increasing sequence C Ci(X) with lim,..f, = g in C(X). Then
(V*f,)r-1 converges increasingly to V*g as n1 o, i.e, lim,_, V¥f, = V*g
in C(X). For any integer n>1 and any number § > 0, there exists an
integer m, > 1 such that, for all m = m,,

(3.13) sV*h + V*f, > V*g — V*g, on X.

Let (f.,.);-1 be an associated family of f, with respect to (T*),5,. By (3.13),
for any m = m,, there exists k, > 1 such that, for all 2 > &,

(3.14) oV¥h — h) + V¥(fn — fa0) 2 V¥¢ — V¥g, on X

This implies that

(315) 8 [ = hdp+ [ (fn = fuidn = [ (e — edn
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Letting £ — oo, m — o0, 6 — 0 and n — oo, we obtain that

(3.16) [edm <im [ g.dn.

On the other hand, for any integer n > 1, k=1 and any positive number
0 > 0, there exists an integer m, > 1 such that, for all m = m,,

(3.17) o(V*h — V*h,) + V¥g — gn) Z V¥(fa — fa) on X.

This gives that the inverse inequality of (3.16) holds, i.e., (3.12) holds.
Consequently (a) is shown.

Next we shall show (b). By (a) and (3.12), g, is a positive A-super-
harmonic measure and the assumption in Lemma 37 is satisfied. For any

feCi(X) and any t>0, V*({I — THf = .[: T*fdse R*(V*) and f((I —
THf)*duy < . Hence Lemma 37 gives that

(3.18) o< [@- Tordp, = [fad - Tow,,

and hence, (I — T)p, € M*(X) for any £ > 0. For any fe C{(X), we choose
g€ Ci(X) such that f< V*g on X. Since, for any ¢ >0,

<[ - Tou, < % [ Vegdd — Tu,
(3.19) -
= ”0 Trgdsdy, < Jgd#p ,

/I — T)p,)e>o is vaguely bounded. Let v e M*(X) be its vaguely cluster
point as t— 0 and choose a sequence (Z,);., of positive numbers such that
lim,_.. ¢, = 0 and lim,_., 1/t,(d — T, )y, = v (vaguely). By remarking (3.19)
and lim, , T, = I, we have ve 2*(V) and g, = Vv. On the other hand,
let fe Ci(X) and (f,);-, be its associated family with respect to (T7)x,.
Then, for any k> 1,

j fAVy = j Vfdy > j VH(f — f)dv

(3.20) = tim [ V(£ — fod La- T.)z)
= tim == [ ([ ¢ — RaT.)ds = [ fan, ~ [fuds

because the vague boundedness of (1/t(I — T,)u,):>, leads to lim,_, Ty, = 2,
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(vaguely). Letting k— oo in (3.20), we obtain that j fdvy = j fdu,, ie.

Vv = p,. Thus we have g, = Vv. We have also lim,_., 1/t(I — T,)p, = v
(vaguely), by the injectivity of V. Consequently we have p= Vv 4 g,.
Let 4 = VY + 4 be another decomposition satisfying our required condi-
tions. Then Remark 29 implies that —Ax =» =/, and so g, = p. Thus
we see the unicity of the decomposition of ¢ and v = — Ap. This completes
the proof.

DerintrioN 38. The above Vv and p, are called the potential part of
u# and the harmonic part of g, respectively. The decomposition of g in
Theorem 35 is called the Riesz decomposition of pu.

Theorem 35 gives directly the following

CoroLLARY 39. Let (T,).», V and A be the same as in Theorem 35.
Then we have;

1) If pe M*(X) is invariant with respect to (T,)s, then p is A-
harmonic.

(2) Let pe M*(X) be A-superharmonic. The harmonic part of yu is
the greatest A-harmonic minorant of p.

Evidently (1) holds. Let v e M*(X) be an A-harmonic measure satisfy-
ing g =v. Applying Theorem 35 to p — v, we see that p, = v, where g,
is the harmonic part of px.

Now we consider A*-superharmonic functions and A*-harmonic func-
tions.

DerintTiON 40. Let (T)),», be a transient diffusion semi-group on X
satisfying the condition (C*), V be the Hunt diffusion kernel for (7).,
and A be the infinitesimal generator of (7)).s,. Let £ be an open set in
X. A real-valued Borel function z in X is said to be A*-superharmonic

(resp. A*-harmonic) in £ if Iluld |Ap| < oo and —f udAp =0 (resp.
JudA,u = 0> for any pe 9%(A; 2), where

(3.21) 27(A;2) = {Vpe Mi(X); 1€ 2(V) and supp(Vp) C £} .

LemmA 41. Let (T),5, be a transient and weakly regular diffusion semi-
group on X and V be the Hunt diffusion kernel for (T,),5,. Let pe2+(V)
and F be a closed set in X. For an exhaustion (0,):., of CF, we denote

n=1

by pl, the V-balayaged measure of p on Ca,. Then (1.);-, converges vaguely
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and its limit does not depend on the choice of (w,);_..

Proof. Evidently (V). is decreasing and Vy, < Vu. This implies
also that (¢,);-, is vaguely bounded. Let g} be its vaguely cluster point
as n— oo, Similarly as in Proposition 23, we have

(3.22) Vi = lim Vi, (vaguely).

n—rco

By Corollary 17, (u.);-, converges vaguely to ur as n— oo, Let (w})7.; be
another exhaustion of CF and p, be the V-balayaged measure of z on
Cw,. Then it is easily seen that lim,.. Vg, = lim,.. V.. By using
Corollary 17 again, we have g = lim, .. x/. Thus Lemma 41 is shown.

The above measure g is also called the V-balayaged measure of p
on F.

PropositioN 42. Let (T).., V and A be the same as in Definition
40, and let 2 be an open set in X. Assume that (T,),s, is weaklyr egular.
For fe Cy(X), we put

(3.23) u,(x) = f fde!, oo in X,
where ¢, ¢, is the V-balayaged measure of ¢, on Cf2. Then u, is A*-harmonic
in 0.

Proof. First we shall show that u, is Borel measurable in X. By
Lemma 41, it is sufficient to show that, for any open set o, the function

J. fde;,, of x is Borel measurable, where ¢; , is the V-balayaged measure
of e, on w. Let V*geRe(V*). Then j|g|de;,,,,< oo and f V¥gde,, —
J.nge,’,,,,,. Since R, (V*) is dence in Cr(X), it suffices to show that, for

any ge C#(X), the function jnge;,,,, of x is Borel measurable. Let xe¢ X

and (x,);., be a sequence C X with lim, .. x, = x. We choose a sub-

sequence (X,u,)i-, such that e converges vaguely and

7 (k) »@

(3.24) lim | gdVe,,, = lim | gd Ve,

n—oc0 k—ro0

n (k) »@ *

Put v = lim,_...¢;,, ... Then supp(v) C @ and, similarly as in Proposition
23, we have
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(3.25) Vv =1lim Ve, .. (vaguely)

k-
i.e., Vv = Ve, in w. By the definition of V-balayaged measures, we have
Vv = Ve, ,, which implies that the function '[ngs;,,,, of x is lower semi-

continuous in X. Thus we see that u, is Borel measurable in X. Let
Vee9A;2). Choose he Cx(X) such that V*h(x) >0 on supp(f) and

that Ith]/.tl < oo (see Lemma 30). Since R (V*) is dense in Cy(X),

there exists a sequence (V*g,)i.. C Rg(V*) such that [f(x) — V*g,(x)| =
(1/n)V*h(x) on X. Then we have

[ @@ = v @)dpt)] < 2 [ el 1)
(3.26) .
< L[ vr@din@,
n

where uy.,, and u,., are defined analogously to u,. Consequently, it suf-
fices to show that, for any V*ge R (V*),

(3.27) J'uy,gdp —0.

By remarking the first part of this proof, we have
[ i@ = [[ V*e()det ca(oduto
o = [ V26 ([ ¢0at®) ) = [ 80NV ([ ca®)3) .

Let (0,);-; be an exhaustion of 2, and put g = p*, . = ¢~. We denote
by #},. the V-balayaged measure of g, on C@, (j = 1,2). Then, by virtue
of the domination principle for V and by Proposition 16,

BB Vo 2 V([ dondn®) £ Vi G =120 =239,

where ¢ ¢;, is the V-balayaged measure of ¢, on C@,. This shows that
je;,cady,(x) is the V-balayaged measure of g, on C2 (j =1,2). Since
Vi = Vi, in a certain neighborhood of CQ2, we have

(3.30) [ eoodint) = [ ehoodpnt@ ,
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which implies (3.27). This completes the proof.
This implies the following

CoroLLARY 43. Let (T.).z, V and A be the same as above, 2 be an
open set in X, and let ge C*(X) and fe C¥(X) with supp(f) C 2. Assume
that there exists ¢ € 2*(V*) such that V*¢o =g on X. If g is A*-super-

harmonic in @ and if f= —A*g, ie., for any Vpe DiA;0), j gdp =

j fdVy, then

(3.31) @) = [ fd(Ve, = Vel,o0) + hix)

on X, where ¢, ;o is the same as above and h is an A*-harmonic function
in Q. In this case,

(3:2) ha) = [ 80)decdly) on X.

Proof. Let (0,);-, be an exhaustion of £ and ¢/, be the same as
above. Then, for any xe X and any n>1, Ve, — Ve, g5, € 2%(A; 2). This
implies that g(x) = Ig(y)ds;,ga(y) on X. Let 2 be the function defined in

(3.32). By Proposition 42, A is A*-harmonic in 2. By our assumption,
for any xe X and any n> 1,

(3:39) £@) — [ 80)det.on(3) = [ fd( Ve, — Veloca
Since lim,_. &} ¢s, = €500 (vaguely), we have

lim | gde; o5, = J‘ng;c,ca and
(3.34) i

n— 0

lim [ (V¥ — @)det.ce, 2 [ (V¥o — £)delca

Remarking that (Ve, ¢,,):, converges decreasingly to Ve, ., as n1 oo, we
have

(8.35) lim | V*ode; ¢z, = J V*ode, cq -

-0

By combining (3.33), (8.34) and (3.35), we see the required equality.
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§4. Positive eigen elements for 4 and completely A-superharmonic
measures

We begin by the following

DerintTION 44. Let (T)),», be a transient diffusion semi-group on X
satisfying the condition (C*), V be the Hunt diffusion kernel for (T);s,
and A be the infinitesimal generator of (7)),x.

(1) Given a non-negative number ¢, the set of all non-negative solu-
tions of the equation

4.1) —Ap =cp

is denoted by E(A;c) and called the eigen cone of ¢. Put E(A) = .2
E(A;c). We call pe E(A) a non-negative eigen element of A.

(2) Given a non-negative number ¢, the set of all non-negative solu-
tions of the equations

—Ap=cp

4.2
“.2) { # =0 V-ne. on the boundary of X

is denoted by Ey(A;c) and called the eigen cone of ¢ with zero conditions.
Put E(A) = Uz E(4;0). We call g€ E(A) a non-negative eigen element
of A with zero conditions.

Now we denote by H(A) the set of all non-negative A-harmonic
measures in X, ‘

ProrositioN 45. Let (T)).»0, V, A, E(A;c) and E(A;c) be the same
as above. Furthermore we assume that (T,),s, is regular. Then, pc E(A;c)
if and only if
4.3) p=cVy,
and we have
(4.9 E(A;c) = E(A;0) @ H(A),

where @ denotes the direct sum.
In fact, Remark 29, Theorem 35 and Corollary 39 give the first equiva-
lence, and (4.3) and Theorem 35 give (4.4).

DerinITION 46. Let (7)), be a transient diffusion semi-group on X
satisfying the condition (C*) and A be the infinitesimal generator of
(T)).s0- A Radon measure ge M*(X) is called a completely A-superharmonic

https://doi.org/10.1017/50027763000019425 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019425

COMPLETELY SUPERHARMONIC MEASURES 79

if, for all n=0,1,2,---, (—A)"¢e2(A) and (—A)*"'‘ue M*(X), where
(A =1 (—A) = —A and (—A)""'y = —A(—A)"x). In particular, a
completely A-superharmonic measure g is said to be with zero conditions
if, for all n=0,1,---, (—A)"¢ vanishes V-n.e. on the boundary of X,
where V is the Hunt diffusion kernel for (7)),

We denote by SC(A) the set of all completely A-superharmonic measures
in X and by SC,(A) the set of all completely A-superharmonic measures
in X with zero conditions.

Evidently SC(A) and SCy(A) are convex cones in M*(X), and SC(A)
D E(A) and SCy(A) D E(A).

ProposiTiON 47. Let (T}),», be a transient and regular diffusion semi-
group on X, V be the Hunt diffusion kernel for (T,).., and A be the in-
finitesimal generator of (T,),,. Assume that, for all n=1,2,---, V" is
defined as a diffusion kernel on X. Then, for any pc SC(A), we have the
following unique representation:

4.5) p= ,Z% Vol + fe s

where pu, € HA) (n=0,1,---) and p., € SCy(A).

Proof. By Theorem 35, we have inductively, for any £ = 0 and any
n=k,

(4.6) (—Ap=pm~+ Vs + - + V¥ + Vn-k((—A)n/l) ’

where g, - - -, #t,_; € H(A). This implies that (V" *((— A)")r-x+: 1s decreas-
ing. Put

4.7 Yo, = lim V= ¥((— A)"pr) .

N0

Then we have p.., = V*u.,. Putting g, = p..,, then p., € SC(A). Putting
k =0 and letting n— o in (4.6), we obtain a required representation of
g. By virtue of the unicity of the Riesz decomposition of (—A)*u (k =
0,1,---), we see the unicity of the representation (4.5) of . This com-
pletes the proof.

Now we denote by S(A) the set of all non-negative A-superharmonic
measures in X.

Remark 48. Let (T.).» and A be the same as in Proposition 47.
Then S(A) is a vaguely closed convex cone in M*(X).
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In fact, let V be the Hunt diffusion kernel for (7),»,. For any V*f
e RE(V*), supp(f*) C supp(V*f), and hence, for any vaguely cluster point

4 of S(A), we have I fdp=0. This gives that S(A) = S(A).

But, in order to discuss the closedness of SC(A) and that of E(A),
we need the following

DerintTiON 49. Let (T)),5, be a transient diffusion semi-group on X
satisfying the condition (C*) and A be the infinitesimal generator of
(T).2- We say that A satisfies the condition (%) if, for any (u,);_, C S(A),
(4.8) lim g, = pe S(A) (vaguely) implies lim Ay, = Ap (vaguely).

ProrosrtioN 50. Let (T,).», and A be the same as in Proposition 47.
If A satisfies the condition (&), then, for any constant ¢ =0, H(A), E(A;c¢),
E(A) and SC(A) are vaguely closed convex cones in M*(X).

Proof. It is easy to see the vague closedness of H(A) and that of
E(A;c). We remark here H(A) = E(A;0). Let (u,);-, be a sequence in
E(A) tending vaguely to pe M*(X) as n— co. Then there exists a se-
quence of non-negative numbers (c,);., such that — Ay, = c,z,. By E(A) D
H(A), we may assume that —Apx = 0. The condition (%) for A gives that
(c.ptn)i-, converges vaguely to —Ap as n— oco. Hence (c,)r., converges to
a non-negative number ¢ as n — oo, which implies that x € E(A;c) C E(A).
Thus we see the vague closedness of E(A). Let (z,);., be a sequence of
SC(A) tending vaguely to pe M*(X) as n— oco. Inductively we have, for
any integer k= 0,

(4.9) lim (—A)'s, = (= Aue M*(X) (vaguely),

which implies that pe SC(A), and hence the vague closedness of SC(A)
is shown. This completes the proof.
The above proposition gives the following

ProrosrtrioN 51. Let (T)).», V and A be the same as above. Assume
that A satisfies the condition (&) and that, for alln = 1,2, - - -, V" is defined
as a diffusion kernel on X. Then, for any number ¢ =0, SCy(A), E(A)
and E(A;c) are Borel measurable convex cones in the metrizable space
M+(X).

Proof. Since X is with countable basis, M*(X) is metrizable. Choose
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(fo)pe1 € CE(X) such that (f,):., is total in Cx(X). For each integer m = 0,
n=1and p>=1, we put

(¢10 Buns = {1e SCA); [ fudpnn 2 =},

where g, , = (—A)"p — V((—A)"*'y). The condition (¥) for A gives that
B, .., is vaguely closed. Since

s

(4.11) SC(A4) = ﬁ ﬁ (CB,..., N SC(A)),

0

3
I

SC,(A) is Borel measurable. Remarking that E(A) = E(A) N SCy(A) and
E(A;c) = E(A;c) N SC(A), we see that E(A) and E(A;c) are Borel
measurable. Their convexities are evident, so we achieve the proof.

The following remark shows that the condition (%) for A does not
always imply the compactness of the support of A*, where A* denotes
the dual operator of A.

Remark 52. Let (T)),», and A be the same as in Proposition 47.

1) If A* is with compact support, i.e., if, for any V*fe R (V*),
supp (f) is compact, then A satisfies the condition (%).

(2) Assume that (T)).., be of convolution type and A satisfies the
condition (&¥). For a positive number p, let A, be the infinitesimal gene-
rator of the semi-group (77,.).s, defined in (2.43). Then A, also satisfies
the condition (%).

In fact, clearly we have (1). We shall show (2). Denote by (V,),2
the resolvent for (7)),,. Then, for any p >0, 2(4,) D M(X) and A, =
pI — pV,). Let (u,);-. be a sequence in S(A,) satisfying lim,_. p, = p¢
S(A,) (vaguely). By Theorem 35, we have

4 = <V+ —1~I)u,, ¥, (n=12,--) and
(4.12) b

p=(V+ LI+,
b

where v, =p(I — pV )., v=p(I —pV,)t, pnn€H(A,) and g, H(A,).
Since p,,, = PV, tta,n, the resolvent equation gives that, for any g > 0,
Uan = @V ptn,n, Which implies that p, , is invariant with respect to (T)),s,.
Similarly p, is also invariant with respect to (7)., Since (Vy, + Mo w1
is vaguely bounded, we may assume that it converges vaguely. By Theorem
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35, its limit is of the form V2 + p, where 1€ 27(V) and p € H(A). The
condition (%) for A implies that lim,_.v, = v (vaguely). Hence

4.13) (V+ %I)u + o= (V+ _1151)2 +

Since (T)).», is of convolution type, it is known that y;, is also invariant
with respect to (7)), (see [8], p.343). By virtue of the unicity of the
Riesz decomposition of yx, we have v = 2 and g, = g. Thus (2) is shown.

Hereafter in this paragraph, for any nonzero element x of M*(X), we

choose a fixed f, e C*(X) such that f(x) >0 on X and prdy < oo. For

a transient and regular diffusion semi-group (T.).», on X and its infini-
tesimal generator A, we put, for e M*(X),

(4.14) SC(A; 1) = {,, e SC(A); j fudv < 1} .

It is easily seen that if A satisfies the condition (¥), then SC(A; p)
is vaguely compact convex set in M*(X).

In general, for a convex set C in a locally convex space, we denote
by ex C the set of all extreme points of C and, for a convex cone K in a
locally convex space, we denote by ‘exr K the set of all extreme rays in
K*.

Our main theorem is the following

THEOREM 53. Let (T,)... be a transient and regular diffusion semi-
group on X, V be the Hunt diffusion kernel for (T.)),., and A be the in-
finitesimal generator of (T,),s,. Assume that, for all integer n>=1, V" is
defined as a diffusion kernel and that A satisfies the condition (¥). Then
we have:

(1) The set of all extreme rays in SC(A) is represented as follows:

(415)  exrSC(A) = (Q, v (exx H(A)) N Q(V"))) U <U0 oxt Ey(A; t)) ,

where V* ((exr H(A) N 2(V™) = {V"p; p e (exr H(A) N 2(V™)} and Vo =
{AV™;2 e R*} with nonzero element v of p, and SC(A) is the closed convex
6) A ray p in K is a set of the form {ix; e R*}, where 0 # x ¢ K, and we say that

p is an extreme ray if, for any xcp and any y,2¢ K, y,2ep whenever x =2y + (1 — 2z
for 2> 0. We denote here by R* the totality of all non-negative numbers.
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hull of exr SC(A)".
(2) Forany pe SC(A), there exists a regular Borel non-negative measure

@ on E(A) with jd(D < oo carried by U,gogx\{'Eo(A;t)B) such that

416) p= fzdcp(z) (i.e., f fdy = j ( fda)d@(z) for all fe CK(X)) .

Furthermore, for any pe SCy(A), there exists a Borel non-negative measure
g in (0,0) with finite total mass and a bounded o-measurable mapping
0, ) 3 t — p, € E(A) with p, € E(A; 8 such that

@17 p= r 1do(d) (i.e., j fdu = j: ( fdpt)do(t) for all fe CK(X)> .

To prove our main theorem, we use the following three Choquet
theorems.

ProposiTION 54 (see [17], p. 7 and p.19). Let C be a metrizable compact
convex subset of a locally convex space. Then ex C forms a Gj-set and, for
any x e C, there exists a regular Borel probability measure p on C carried
by ex C which represents x'°.

ProposiTION 55 (see [17], p.88-89). Let K be a closed convex cone in
a locally convex space and suppose that K is union of its caps'®. Then K
is the closed convex hull of exr K.

PropPosITION 56 (see [17], p.88). Let K be a closed convex cone in a
locally convex space and C be its cap. Then every extreme points of C lies
on an extreme ray in K.

7 In this case, exr SC(A) means {y ¢ p; pee;r SC(A)} and exr EyA;t) means the
analogous set.

8) We say that a regular Borel measure @ on E(A) is carried by a set Y c Ey(4)
if, there exists a Borel set B such that Bc Y and &(CB)=0.

9) We say that t— p; is o-measurable if, for any fe Cx(X), the function J' fdp: of

t is o-measurable and that is bounded if, for any fe Cg(X), I fdy: is bounded in (0, ).

10) A point x e C is said to be represented by g if, for any continuous linear fune-
tional f,

flx) = j.f(y)dﬂ(y) .

11) A non-empty subset C of K is called a cap of K if C is a compact convex
subset and if K — C is also convex.
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Proof of Theorem 53. (a) First we shall show that, for any
t # 0e M*(X),

(4.18) (ex SC(A; 1)) N SC(A) C E(A) .

Let 0+ pe SC(A; 1) N SC(A). Theorem 35 and Corollary 39 give that
p= V(—Ap. Let t>0. Remarking that T,(—Ap) < —Ap and V- T, =
T,-V, we obtain that T,z e 2*(A) and — A(T,p) = T(—Ap). Hence we have

(4.19) (=A)"(Ty) = T((—Awe M*(X) (n=0,1,--),

because x4 = V*((—A)"w). This implies that T,ue SC(A). Since (I — T\
= f T(— Ap)ds, we have also (I — T,)ue SC(A). Let 0+ pe(exSC(A; w))
N SCy(A) and put

(4.20) e = f fodT,p and c,, = j fudd — T .

Then ¢,, >0 (j = 1,2), because —Apx+0, and If,,,,dp =1. From T,ype
SC(A; o), (I — T)pe SC(A; ),

(4.21) u= c(ﬂ) + c(g—_—T)") and ¢, + ¢, =1,

Ci,e Co,t
it follows that, with a constant 0 <¢c, <1,
(4.22) p=cTypy,

which implies that, with a constant a¢ > 0,

(4.23) —Ap=lim A= Tt _ iy (_1_:C_>ﬂ —ap.

t—0 t t—0

Thus we see (4.18).

(b) Let 0 ye M*(X). We shall show that, for any pe SC(4; m) N
SC,(A), there exists a regular Borel probability measure @ on E (A) carried
by (ex SC(A; 1)) N SCy(A) such that the analogous equality to (4.16) holds.
Put, for each integer n =1,

(4.24) H,(A) = {V ;. # 0 2*(V") N H(A)}

and H(A) = H(A). The condition (¥) for A implies that, for any n >0,
®z_, H,(A) is vaguely closed and, similarly as in Proposition 51, we see
that H,(A) is Borel measurable. Remarking that (H,(A));., and SC,(A) —
{0} are mutually disjoint, we have
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ex SC(A; )
= (U (ex SC(A; 1) N HL(A)) U (ex SC(A; ) N1 SCA)),

and (ex SC(A; 1)) N H,(A) (n = 0,1, ---) and (ex SC(4; ) N (SC,(A) — {0})
are mutually disjoint Borel measurable sets (see Propositions 51 and 54).
By Proposition 54, there exists a regular Borel probability measure on

ex SC(A; 1) such that p = Ilddi(l). Put

(4.25)

@ on (exSC(A; w)) N H,(A) (n=0) and ¢ — & — iQ

“4.26) @, = { .
0 otherwise =0

Then we have

.27 §= i; 2d, () + jqu)m(z) .

By (a), 9., is a regular Borel non-negative measure on E,(A) carried by
(ex SC(A; 1)) N SC(A). For any n =0, the closedness of @7_, H,(A) im-
plies that ZLJRd@,ﬁ) e ®r.,H,(A), and hence Proposition 47 gives that

Jldq),,(l) = 0. Hence we may assume that & = @, which gives our as-

sertion.
(c) We shall show that, for any nonzero element y, of M*(X),

429 (exSC(A;m) N SCAA) = U ex (B(A; ) SC(A; ) -

Evidently we have the inclusion —, and so we shall show the inverse
inclusion. Let 0+ peex(Ey(A;c) N SC(A; ). Then ¢ = 0. Assume that,
for 4,6 SCA; 1) (j=1,2), p=1/2(y + ). Then p,e SC(A) (j=1,2).
By (b), there exists a regular Borel probability measure @, on Ey(A) carried
by (exSC(A; m)) N SC(A) such that p, = j‘ld@j(l) (j=1,2). By using

Propositions 50 and 51, we see that Ey(A;c), U.s:iz0 Bo(A; 1) and U, Eo(A; f)
are Borel measurable, because, similarly as in Proposition 50, we see that,
for any s >0, U, E(A;1) is closed in M*(X) and that (.2, E(4;8) N
SC(A) = Uz E(A;0). Put, for j =1,2 and £ = 0,1, 2,

9, on E(A;c) 0, on (Uesezo E(A; 1)) — {0}
(4-29) @o i = . 1,7 = .
0 otherwise, 0 otherwise,

0,,=0,— 0, —b,, and O, = %@k,, 1 3,).
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For any integer n > 1, we have, by the condition (%) for A,

y= (_lA>”,u - f (-%A)ud@ga) + j (—%A)"de){(z)

c

(4.30) + j (— %)"de);(l)
_ f 2d®(3) + j (——z‘—)”zddii(z) + j (__zz_)ud@;(z) ,

where c, is a positive constant satisfying — A2 = c,A. We remark here
that the mapping (E,(A) — {0}) 21— c, is continuous. By letting n— oo

in (4.30), we see that y = Ild@{,(l). This implies that g, = Jldﬁo,,(l)

(j=1,2). Since prody =1, we have g = g; (j = 1,2), Thus we see that

(4.28) holds.
(d) Since SC(A) = Upspescw SC(A; 1), Proposition 55 gives that SC(A)
is the closed convex hull of :a?c;SC(A). Evidently we have

oxr SC(A) C (D v ((exr H(A)) N .@(V"))) U (g oxx Ey(A; t))
and
‘exr SC(A) D CJ v ((exr H(A)) N 2(V™)

by Proposition 47. Let t>0 and p e%;;E’o(A; t). We choose a nonzero
element z of p. Then peex(E(A;t) N SC(A;p), and hence (c) implies
that g€ (exSC(A; ) N SCy(A). By Proposition 56, we have p e&;SC(A).
This implies that (4.15) holds. Proposition 56, (b) and (c) give also (4.16).

(e) Finally, we shall show (4.17). Let pze SCy(A) and @ be a regular

Borel non-negative measure with Id@ < oo defined by (4.16). By (b) and

(c), @ is carried by (ex SC(A; ) N (U,20 E(A;%). For any ¢> 0, we put
® on | E(A;s)

“31) o, = 2320 and o(f) = j do, — f ( f,‘dz)ddit(,?),

0 otherwise

because ff,,dl = 1 for any nonzero element 1 of ex SC(A; ). Then v(?) is

a bounded non-negative increasing function on (0, ). Let ¢ be a non-
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negative Borel measure in (0, o) such that v(t) = r do. Then J:o do < oo,
0
For fe Cy(X), we put

(4.32) v () = j ( j fdl)d(b,(l) .

Then there exists a real Borel measure ¢, in (0, o) such that v,(f) = r do;.
0

We have also r d|g;| < co. Since |f| < ¢,f, on X for some positive number
0

¢;, we have, for any ¢t > s> 0,

(4.33) [0A8) — vs)] < ¢,(u(®) — v(s)) ,

which shows that ¢, is absolutely continuous with respect to ¢. By the
Radon-Nikodym theorem, there exists a o-integrable function f on (0, o)
such that do, = fds. We have also |f| < ¢, ¢-a.e.. By (4.32), we have, for
any f,ge C#(X), and any constants a, b,

4.34) of + bg = af + bg g-a.e..

We choose a countable set of continuous functions (f,):; C Ci(X) such
that (f,)r_; is total in Cx(X). By (4.34), there exists a Borel set F in
(0, o) such that ¢(CF) = 0 and that, for any te¢ F, any rational number
r and any integers n>1 and m > 1,

(@) = @), lim 2 [ fudo =, and
(4.35) 510 0 Je

Fo T )0 = F.0) + Ful®) -

For any te CF, the mapping f, — f.() can be extended to a positive linear
form on C.(X) in the usual way, and hence there exists a uniquely de-

termined non-negative Radon measure g in X such that f,(f) = ‘[fndy,
for all n = 1. By defining g, = 0 for all te CF, we see that (0,)>¢—
€ M*(X) is o-measurable. Since J f.dp, <1 for all £€ (0, o0), (0, ©) >t —
1, € M*(X) is bounded. Furthermore we have

(4.36) o= j " udo(t) .

The condition (¥) for A and the second equality in (4.85) give that
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1€ E(A; ¢ for all te (0, c0). By Theorem 35 and (4.36), we may assume
that p, € E(A;?). This completes the proof.
Now we notice the following equality:

SCy(A) = { j " 1do(t); 0 € MF((0, 00)), t — 1, € Ey(A; #): bounded and
(4.37) ’

a-measurable} s

where M; ((0, o0)) denotes the totality of all non-negative Borel measures
in (0, o) with finite total mass. In fact, let ¢ € M;((0, 0)) and (0, c0) 3¢
— p, € E(A;t) be a bounded s-measurable mapping. Put ¢, = ¢ on [1/n, n]
and ¢, = 0 otherwise (n = 1,2,--.). Then the condition (%) for A gives
that, for all n=1,2,--- and m =0,1,2,---,

(=4 [" ndou® = [ trudo.®) and

(4.38) . I : wdo () = Vr (J:o t"‘,atdo‘n(t)> .

By letting n— oo in (4.38) and using the condition (¥) for A, we have,
for any m >0, I " tudo(t) e M*(X) and
0

(—A)" j: ndo(t) = j : t"ude(t) and

(4.39) ([ ndoty = v= (|| tudats)

By combining Theorem 53 and (4.39), we have (4.37).

For pe M(X), we write p(¢) = {cy;ce€ R*}. In particular, we have the
following

ProposiTioN 57. Let X be a locally compact abelian group with count-
able basis and & be a Haar measure on X. Let (T,),», be a transient diffu-
sion semi-group of convolution type on X and a, be the non-negative Radon
measure on X defining T, (see (2.17)). Assume that the infinitesimal gener-
ator A of (T).s, satisfies the condition (¥) and let Exp (X) be the totality
of all positive continuous exponential functions on X'». Then we have:

12) A real-valued function ¢ on X is said to be exponential if, for any «,y e X,
o + ¥) = o(x)- ¢(¥).
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(1) exrH(A)C {p(;p;g); o Exp (X), j oda, = 1 for all t2 o} < H(A)

@ Foranyc> 0, exx E(A;c) C {p(¢$); o € Exp (X), cJ:( f gadat)dt — 1}
C Ey(A4;0).

Proof. It is known that

H(A) = {pe M*(X); 4t = pxa, for all £ = 0}

(4.40)
={pe M*(X); p = p*a,, for some ¢, > 0}

(see [8], p.343). This implies the second inclusion in (1). By the Choquet-
Deny theorem (see [5])', we see the first inclusion in (1). Similarly we
see the assertion (2). Lastly in this paragraph, we shall discuss the Bern-
stein theorem. Put

(4.41) T,: M((0, 0)) > p — the restriction of z_,u to (0, o) € M((0, o))

for all £ = 0, where z_, is the translation of —z. Then (T)),s, is transient
and regular diffusion semi-group on (0, ), and its infinitesimal generator
A is equal to d/dt. Denote by dt the Lebesgue measure in (0, c0). Since
the Hunt diffusion kernel V for (T)),., satisfies

(4.42) V= ( f - dp)dt for all ze Mg((0, o))
t
and
d\ _ d .\ _ _
(4.43) H(—d?) — p(df) and Eo< = ,c) — p(exp(—ct)dt) for all ¢ >0
Hence, our main theorem implies the Bernstein theorem. We remark here
that
° 1

v =( ! _(x—trd x)dt

st b= (]} gy — e
for all pe M ((0,)) and n=1,2,---,

and that

13) This shows that, for a non-negative Radon measure ¢ in X, the solution g of
the convolution equation g = uxo¢ is of form

p= (J' sodl(so))é,

where 2 is a regular Borel measure with finite total mass on {go e Exp (X); j odo = 1} .
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(4.45) dte2*(V") for all n=1,2,---

§5. Application to elliptic differential operators

In this paragraph, we consider the same setting as in S. It6’s paper
[10]. Let D be a subdomain of an orientable N-dimensional C<-manifold
(N =2) and L be an elliptic differential operator of the form:

Lu(x) = il (x/ a(x)- a”(x) ou (x))
6.1) ”‘N
+ 50 c@u(x)
for ue C(D)* and x = (x',---,x¥)e D, where (a"(x));,., is a contra-

variant tensor of class C~ in D and is symmetric and strictly positive-
definite for each xe D, a(x) = det(a,(x)) = det(a¥(x))"!, (b (%), is a
contravariant vector of class C~ in D and c(x) is a non-positive function
of class C~ in D. We shall denote by dx the volume element with re-
spect to the Riemannian metric defined by the tensor (a,(x))Y;.,. The
formally adjoint operator L* of L is defined by

1

v =3 -1 _ 2 (Va@. a”(x) Y@
5.2) =1 va (x ( )

R A CCRICROBECRD

for ve C¥D).
Evidently we have the following

Remark 58. Let u and v be in C*D). If ue C4(D) or ve Ci(D), then
we have

(5.3) fLu(x)u(x)dx - f w(x)L*v(x)dx .

DEFINITION 59 (see [10]). Let £ be a subdomain of D. We say that
2 satisfies the condition (S) if its closure 2 is contained in D and its
boundary 02 consists of finite number of simple closed hypersurfaces of
class C°.

ProposITION 60 (see [9], Theorem 1). Let 2 be a subdomain of D

14) We denote by C*(D)={f ¢ C(D); f is of class C” in D} for n =1 and by C>(D)
=Ny, CYD). We write also Cx(D)= C*D) n Cx(D) and Cx(D)= C=(D) n Ck(D).
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satisfying the condition (S). Then there exists one and only one funda-
mental solution Uy, x,y) of the initial-boundary value problem:
Given u,e C(2) and ¢ e C((0, o) X 92),

Z—IZ(t, x) = Lu(t, x) for each (t,x)e (0, ) X 2
.4 u(0, x) = u,(x) for each xc 2

u(t, x) = ¢(, x) for each (t,x)€ (0, 0) X 392 .
Furthermore Uy(t, x,y) satisfies the following five conditions:
(6.5) Uy, x,y) is a non-negative finite continuous function on (0, o) X

2 X 92 and Uyt x,y) = 0 if and only if xc o2 or yeaf.

(5.6) I Uyt, x,y)dy < 1 for any (t,x) € (0, ) X 2.

6.7 I U@, x,9)Uy(s, 5, 2)dy = Uyt + s, x,2) for any t >0, s >0 and any
(x,2) e 2 x 2.

(5.8) For any u,c C(Q), we put u(t,x) = j Ut, x, V)u(y)dy. Then u(t, x)
is the unique solution of (5.4) with ¢ = 0.

(5.9) For any u, e C(2), we put u*(t,x) = I UL, y, x)uy)dy. Then u*(t, x)

is the unique solution of the initial-boundary value problem:

Z_‘t‘(t, x) = L*u(t, x) for each (4, %) e (0, o) X 2

(5.10) u(0, x) = u(x) for each xe 9

u(t,x) = 0 for each (¢, x) € (0, ) X 392 .

The following remark is elementary.

Remark 61. Let 2 be a subdomain of D. Then there exists a sequence
(2,)z., of subdomains in £ satisfying the condition (S) such that 2, C
Quirs U:=1‘Qn = Q.

We call (2,);., a regular exhaustion of 2.

ProrosITiON 62 (see [9], Lemma 5.4). Let 2 and (2,);., be the same
as above. Then (U,/(t, x,¥));-, converges increasingly to a continuous func-
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tion Uy(t, x,y) in (0, 00) X 2 X 2.
We remark here that U, (t, x,y) — Uy, x,y) in C((0, ) X 2 X 2) as
n— oo and that Uy(t, x,y) does not depend on the choice of (2,):...

CoroLLARY 63. Let 2 and Uy, x,y) be the same as above. Then we
have:
(1) Fort>0,5>0and (x,2)e2 X 2,

(5.11) j Ualt, %, ) Us(s, 3, 2)dy = Uy(t + 5, %,2) .

(2) For any fe Cx(2), we put

(5.12) u(t, x) = { Us(t, x, y)f(y)dy in (0, ) X 2
f(x) on {0} X 2

and

(5.13) u¥(t, x) = {I Udt,y, x)f(y)dy in (0, ) X 2
f(x) on {0} X 2.

Then u(t, x) and u*(t,x) are finite continuous in [0, o0) X Q.

Proof. Since U,(t,x,y) 1 Ug(t,x,y) as nt oo, (6.7 gives (5.11). To
show (2), we may assume that f is non-negative. Put

(5.14) u,(t, %) = {I U,. (¢, %, Nf(y)dy in (0, 0) X 2
f(x) on {0} X 2.

Then u, is finite continuous on [0, ) X 2. Since (u,(t, x))=-., converges
increasingly to u(t, x) as n— oo, u is lower semi-continuous on [0, o0) X £.
Evidently u(f, x) is finite continuous in (0,c0) X 2. Let ¢ be a fixed
positive number. Then there exists a constant ¢>0 such that

cI Uy, x, Yf(y)dy = f(x) on 2. Hence cu(t, + ¢, x) — u(t, x) is also lower

semi-continuous on [0, o) X 2. This implies that u(z, x) is finite continuous
on [0, ) X 2. By the similar argument, we see that u*(¢, x) is also finite
continuous on [0, o) X 2. This completes the proof.

15) We may assume that Ug,(¢,2,) is a finite continuous function in (0,00) X 2 X 2,
by defining that Ug,(t,2,y) =0 if £ C2, or y e CQ,.
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Let 2 be a subdomain of D. For any ¢>0, we define linear op-
erators T, ,, and Ty, , from M,(2) into M(2) as follows:

(615 Toom = ([ Vst 2,9)du))dx and Tpoo = ([ Vst 3, D) )

By Corollary 63, we have the following

Remark 64. Putting T, 0= Tps 00 =1, we see that (T,,.).z and
(T1v,0,:)120 are diffusion semi-groups on £.

For the sake of simplicity, we write T,,=T,,, and T\, = Tiep,.
t=0).

ProrostTioN 65. The diffusion semi-group (T,.).»o on D is transient
if and only if the Green function G(x,y) of L on D™ exists. If G(x,y)
exists, then G(x,y) = r Uy(t, x, y)dt.
0
This follows from the following
Prorosition 66. The Green function G(x,y) of L on D exists if and
only if there exists a non-constant lower semi-continuous and locally in-

tegrable function f satisfying 0 < f< oo, f# o0 and —Lf =0 in the sense
of distributions in D. Furthermore, if G(x,y) exists, we have G(x,y) =

j: Uy, x,y)dt. For any ye D, the functions G(x,y) and G(y, x) of x belong
to C=(D — {y}), and for any fe Cg(D), Gf(x) = IG(x, Yf(y)dy e C=(D) and

(5.16) LGf = GIf) = —f.

S. Itd shows the above assertion in the case of c(x) =0 (see [10]).
In the case that c¢(x) =0, we see, in the same manner as in [10], that
there exists the Green function of L on D (see also [9] and [12]).

Remark 67 (see [9], § 10 and [10]). If G(x,y) exists, then G*(x,y) =
G(y, x) = r U,(t,y, x)dt is the Green function of L* on D and, for any
0

16) For an open set 2 in D, the Green function Ga(x,y) of L on 2 means a non-
negative continuous function in 2 X 2 in the extended sense satisfying the following
conditions:

(@) Go(r,y) < oo if x#y.

M LyGo(x,y)=—¢y in the sense of distributions.

(¢) For any yef and any non-negative function heC*®2) with Lh=0 in £,
Go(x,y) = h(z) in 2 implies h = 0.
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fe Cx(D), G¥f(x) = f G*(x, y)f(y)dy e C~(D) and

(5.17) L*G*f = G¥(L*f) = —f.

Proof of Proposition 65. We remark that, if (T, ,),., is transient, then,
for any nonzero element g of Mz (D), J.:J‘ Uy(t, x, y)du(y)dt is a non-con-
stant lower semi-continuous and locally integrable function in D satisfy-
ing —L( f :j UL, x, y)dy(y)dt)g 0 in the sense of distributions in D. If
G(x, y) exists, Proposition 66 and Remark 67 give that, for any fe Cx(D),

'[ TF.fdt is a non-negative lower semi-continuous function in D and that,
0

for any fe Cg(D), r T#.fdt = G*fe C~(D), and hence (T )., is transient.
[1]

Hereafter, we shall always assume that the Green function G(x,y) of
L on D exists. Define the linear operators V, and V.. from M (D) into
M(D) as follows:

(5.18) Vip=(Gwdx and Vo= (G*pdx,

where Gu(x) — IG(x, y)du(y) and G¥u(x) = I G*(x,y)du(y). Then V, and
V,+ respectively are the Hunt diffusion kernel for (7} ,),», and that for

(TL*,t)tQO‘
Remark 68. Let pe My (D). Then
(5.19) LGy = —p and L*G*p= —p

in the sense of distributions in D.

In fact, V, and V,. are defined, so that G¢ and G*y are locally in-
tegrable. The two equalities in (5.19) follow from (5.16) and (5.17). The
two equalities (5.16) and (5.17) imply also the following

Remark 69. We have R (V¥) D Cgz(D) and R (V%) D Cz(D), i.e.,
(T.,0)i20 and (T4 ))ix, satisfy the condition (C*). Let A, and A;. be the
infinitesimal generator of (77},),», and that of (T%. )., respectively. Then,
for any pe 2(A,) (resp. pe 2(AL),

(5.20) Ap = Ly (vesp. App = L*p)

in the sense of distributions.
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Let 2 be a subdomain of D satisfying the condition (S). It is well-
known that, for any ye £, there exists the V,-balayaged measure ¢,
(resp. V,.-balayaged measure ¢, ;) of ¢, on C22. We have supp (e),¢0) C 042,
supp (&;.¢co) C 02,

[ Utz )dt = Gwy) — Gepos®) and
(5.21) )
[ Uat, 3 99t = 67(5,) — Gellou®

(see, for example, [11], p. 333). Put Gy(x,y) = r Uy(t, x,y)dt. Then Gy(x,y)
0

is the Green function of L on £. In this case,

(5.22) lim Gy(x,y) = lim Gy (y,x) = 0 for all xe 2.
y—an Yy—-0Q

To apply our main theorem to L, we need the following

TaEOREM 70. Two diffusion semi-groups (T .).so and (T..).», are
regular.

Proof. We shall show only that (T},),s, is regular, because the other
is proved similarly. By Remark 69, it suffices to show that (77 ,),», satisfies
the condition (D*). By Proposition 62, Remark 61 and (5.21), (T ).z, is
weakly regular. Let (D,)s., be a regular exhaustion of D and put 7,,
=T, =0;n=1,2,--.). Since, for any pe Mi(D), T, p < T, ¢ in
D,, (T, ). 18 also a transient and weakly regular diffusion semi-group
on D,  Let V., the Hunt diffusion kernel for (7, ... Then V, . p=
(Gp,p)dx for any n = 1. First we shall show that if, for any n = 1, (T%,):20
satisfies the condition (D*), then so is (7} .).s. For each fe Ci(D), we
choose an integer n, > 1 such that fe Ci(D,) for all n = n,. Let (f,, »)n-:
be an associated family of f with respect to (T.).» (n = n,). By Proposi-
tion 62, we have
(5.23) Vi< VE.ofin D and lim V#,f = V#f in C(D)™ .

n—oco

Hence we can choose inductively a sequence (f,, »)i-: satisfying the fol-
lowing conditions (5.24), (5.25) and (5.26), where n, = n, and n, < 1,

(5.24) Vif — Vinf < % on D,, .,

17) We put V¥, f=0 on CD,. Then V¥ .f € Cx(D) by (5.21) and (5.22).
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1 —_
(525) Vik,nkfnk,mk < —k‘ on D"lc—l ’

(5-26) Vlﬁnk_lf_ Vi“;ﬂk—lf'ﬂk—hmk—l é Vl’imf"' V;ﬁnkfnk,mk inD.

We shall show that (f,, )i~ is an associated family of f with respect to
(T¥)iz0- Since, forany n > n, and any m > 1, L*VF (f — fom) = —f + fam
in the sense of distributions in D,, f,, . € C#(D,), and hence we may assume
that f, . € C£(D). We have

(5‘27) I:kf_ Vikfnk,mk = Vik,nkf- Vz‘,nkfnk,mk (kg 1) ’

because L¥(V¥,..f — VEufumd = — faum, in the sense of distributions in
D. This implies that VF#f = V#f,.n. and supp (V¥ — V3. ) is compact.
By (5.24), (5.25), (5.26) and (5.27), we have V¥f,. . n... = Vifoim, in D and
Vifome < 2/k on D,, .. Thus we see that (f,, .,);-, is an associated family
of f with respect to (T} ,).». Consequently, it suffices to show that, for
any subdomain 2 of D satisfying the condition (S), (T,,,.):», satisfies the
condition (D*). For a fixed y,e CR, we put h(x) = G*(x,y,) for each x e 2.
Then inf,., A(x) >0, he C=(Q) and L*h = 0 in 2. Let fe C#(2), and put
Gi(x,y) = Gy(y, x) and

(5.28) a = min _Giftx) >0.
zeswp () h(x)

We choose a sequence (¢,);-; C Cz(R") such that, for each n = 1, supp (¢,)
C (a/(n + 2), a/(n + 1)) and fgo,,(r)dr = 1. For any 0 < r<a, we put
(5.29) 2, = {x e 2; Gif(x) > rh(x)} .

Then 2, is an open set with 2, C 2, because G%f(x) -0 as x—32. Let
V.o and A, , be the Hunt diffusion kernel for (T},,).z and the infini-
tesimal generator of (T, o,.):0, respectively. Then, for any V, ,ue€ 2%(A. 0; 2,),

630 [ (G — rhydp = [faVion— r [ Gow D@ = [ faVian,
because supp (z) C 2,. Hence Corollary 43 and (5.21) give that
(5.31) (G¥f — rh)*(x) = jfd( Vi,06: — VL,QE;,CD,-) = Gif(x) — G} c"’n,(x) in 2,

where ¢, ¢, is the V), ,-balayaged measure of ¢, on CQ2, and f7,, is the
Vs, 0-balayaged measure of fdx on Cf2,. Put

https://doi.org/10.1017/5S0027763000019425 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019425

COMPLETELY SUPERHARMONIC MEASURES 97

(5.32) £®) = | GFio@ou)dr (1 =1,2,--).
Then we have

(539 2.x) = Gf@ — h@onrv(-ZT ) in 0,

h(x)
where () = ¢ in (0, ) and ¥(#) = 0 in (—o0,0]. By (5.32), g.€ C*(2,,)
and, by (5.33), g,¢c C~(2 — supp(f)), ie., g£,¢C*(2) (n=12,---). By
(5.32), (g.);_, converges decreasingly to 0 as n— o. Since supp (G}f — g,)
C Qojtnrryy G*f — g, is with compact support in £. Since, for any x¢ 2,
the function G¥f¢,(x) of r is finite continuous in (0, @), (5.17) gives that

0,a) > r—f,, is vaguely continuous, and hence ffé’,,,go,.(r)dr is defined.

Putting f, = —L*g,, we see that f, e C(2) and f, = f o o.(Pdr in the

sense of distributions. Thus (f,);., is an associated family of f with re-
spect to (T7,,):20- This completes the proof.

In the usual way, we define the L-superharmonicity and the L-har-
monicity.

DEeFINITION 71. A function z in D is said to be L-superharmonic
(resp. L-harmonic) if u satisfies the following three conditions:

(5.34) u is lower semi-continuous (resp. continuous).
(5.35) —oco<u=<L oo, uzxtoo (resp. —oo < u< o),

(5.36) u is a locally integrable function in D and — Ly = 0 (resp. Lu = 0)
in the sense of distributions.

Similarly we define the L*-superharmonicity and the L*-harmonicity.

ProOPOSITION 72. Let u be a lower semi-continuous function in D satis-
fring —co < u< oo and ux co. Then the following three conditions are
equivalent:

(1) wu is L-superharmonic.

@) If 2 is a relatively compact subdomain in D and if v is continuous
on 2, L-harmonic in 2 and satisfies v(x) < u(x) on 092, then v(x) < u(x) in
Q.

(8) For any relatively compact subdomain 2 in D and any x€ £,
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(5.37) ux) = j wy)del oo(3) ,

where € ;o is the Vi.~-balayaged measure of ¢, on CSR.

Proof. The equivalence between (1) and (2) is shown by S. It6 (see,
[12], Theorem 2).

@2)=>(3). Let (2,);-, be a regular exhaustion of 2 such that 2,5 x.

It is well-known that, for any fe C(02,), the function J.fde;” con Of x is L-
harmonic in £, (see, for example, [11]). In particular, if f< u on 02,,
then (2) gives that u(x) > f fdel c,- By letting f1 u and n —oco, we obtain

the required inequality.
The implication (3)=>(2) is directly followed from Proposition 42 and
Corollary 43. This completes the proof.

COROLLARY 73. Let u and v be L-superharmonic functions in D. If
u = v dx-a.e. in D, then u = v everywhere.

Proof. First we remark that, for any xe D, G(x,x) = c. Let 2 be
a subdomain of D satisfying the condition (S). For a fixed ye C2, put
h(x) = G*(x,y) on 2. For any x,€ 2 and r > 0, we denote by 2, the con-
nected component of {xe 2;G*(x, x) > rh(x)} with 2,5x, and choose

¢, € CZ(R") such that ¢, >0, j¢n(r)dr =1 and supp(p,) C (n,n+1) (n =

1,2,.-.). Similarly as in Theorem 70, Je;;,onr¢n(r)dre Cz() in the sense

of distributions, and hence

(5.38) f ( j uds;;,c,,,)%(r)dr - f( f vde;(,,OQ,)gon(r)dr .

Since U s,’[o,o,,,go,,(r)dr):;1 converges vaguely to ¢,, as n — oo, the lower semi-
continuity of u, that of v and (3) in Proposition 72 imply that u(x,) = v(x,).
The subdomain 2 and x, being arbitrary, we see Corollary 73.

By the above corollary, we obtain the following

ProPoSITION 74. Let pe M(D). If p is A,-superharmonic (resp. A«
superharmonic), then there exists one and only one L-superharmonic (resp.
L*-gsuperharmonic) function u in D such that p = udx.

Conversely, for an L-superharmonic (resp. L*-superharmonic) function
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u in D, udx is A, -superharmonic (resp. A.~-superharmonic).
In order to prove Proposition 74, we use the following known lemma.

LEMMA 75 (see [18], p. 143). Let 2 be a domain in the N-dimensional
Euclidean space R¥ (N =1) and L be an elliptic differential operator of the
analogous form to (5.1). If, for pe M(R2), Lpe C=(2) in the sense of dis-
tributions, then pc C=(2) in the sense of distributions. In particular, Ly = 0
in 2 implies pe C=(2) in the sense of distributions.

Proof of Proposition 74. Let pe M(D) be A,-superharmonic. Then
Remark 69 gives that — Ly = 0 in the sense of distributions. Let o be a
subdomain of D satisfying the condition (S) and i, be the restriction of
the positive measure —Ly to o. Put 1 =g — (G4,)dx in . Then L1 =0
in o, and hence 1 = ¢dx in w by Lemma 75, where ¢ € C"(w). The sub-
domain o being arbitrary, we obtain that g = udx, where u is an L-super-
harmonic function in D. By Corollary 73, u is uniquely determined. Let
u be an L-superharmonic function in D and put g = udx. Since —Lyg >0
in the sense of distributions in D, Remark 69 gives that x4 is A,-super-
harmonic if pe 2°(A;). Let V¥fe Rx(A,). Then supp(f) is compact, and

hence II fldp < oo, which implies pe€ 2°(A,). Thus g is A,-superharmonic.

The rest of proof is similar. This completes the proof.
This implies evidently the following

CoROLLARY 76. The infinitesimal generators A, and A,. satisfy the
condition (£).

We denote by S(L) the convex cone of all non-negative L-superharmonic
functions in D and by H(L) the convex cone of all non-negative L-har-
monic functions in D.

By Theorem 35, Corollary 73 and Proposition 74, we obtain the well-
known Riesz decomposition theorem.

Remark 77. For each ue S(L), there exists uniquely (v, h) € M*(D) X
H(L) such that x4 = Gy + h.
Now we discuss the Martin compactification of D for L.

ProrositioNn 78. The Martin compactification D* of D for L is defined.
Let &, be the essential part of the Martin boundary I' = D* — D® and

18) ©;={fe'; the harmonic function K(z, &) of « is minimal}. A positive harmonic
function # in D is said to be minimal if, for any positive harmonic function » in D,
v =cu with a positive constant ¢ whenever v = v in D.
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K(x,£) be the Martin kernel on D X I'. If h is positive L-harmonic in D,
then there exists one and only one regular Borel positive measure p on &,

with j dp < oo such that

(5.39) h(x) = j _ K(x,8due) in D

In the case of ¢(x) = 0, the same assertion is obtained by S. Itd (see,
[11], Theorem 5.3). Similarly we can prove Proposition 79 (see also [6],
Chapter 11 and [18]).

For a constant ¢ > 0, we discuss non-negative solution of the follow-
ing ideal boundary value problem:

(5.40)

lim u(y) =0 4,, — a.e. on I',
seb

{——Lu(x) = cu(x) for any xe D

where 1., is the harmonic measure for a certain x,e D.
Denote by E,(L;c) the set of non-negative functions of class C~ in D
satisfying (5.40) and by Ey(L) = .z Eo(L; ©).

PrOPOSITION 79. Let ¢ be a non-negative constant. For each pe Ey(A,;c),
there exists one and only one ue E(L;c) such that p = udx. Conversely,
for any ue E(L;c), we have udx e E(A.;c).

Proof. Since Ey(A.;0) = {0} and E(L;0) = {0}, it suffices to show our
conclusion in the case ¢>0. Let g be a nonzero element of Ey(A;;c).
Then, by Propositions 45, 74, Corollary 73 and Remark 77, there exists
one and only one we S(L) such that 4 = udx and u = cGu. Since the
function

. K(x,§)
1 57 g
i’g‘g “) K(x,,8) M(S)

of x is L-harmonic and <u in D, the second equality in (5.40) holds.
Hence it suffices to show that ue C(D). We put inductively G"*'(x,y) =
j G"(x, 2)G(z, y)dz and G u(x) = J G"(x,y)u(y)dy for n=1,2,.--, where

G'(x,y) = G(x,y). Then we have u = ¢"G"u. Let £ be a relatively com-
pact subdomain of D. When we consider L as a differential operator in
R, L is uniformly elliptic and all coefficients of L are of class C* on 2.
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Hence, for any n > N/2 4+ 1, Gi(x,y) is finite continuous in 2 X 2 (see,
for example, [15], p. 1288), where the function Gi(x, y) is defined analogously
to G*(x,y). Let 2, be another subdomain of D such that 2, C 2 and f be
in Ci(D) suchthat 0 < f< 1, f(x) = 1 on 2, and supp(f) C 2. Put u, = fu
and u, = (1 — f)u. Then G%u, is finite continuous in £ whenever n >
N/2 4+ 1. By remarking that, for any 2> 1,

(5.41) G**'u, — Gi'uy, = G(G*u, — Giu,) + G(Ghuy) — G(Ghu,)

and that, for any non-negative locally integrable function g with g < u,
Gg — Gyg is of class C~ in 2 (see Lemma 75 and Corollary 73), we obtain
inductively that G"u, — Giu, e C*(2) (n =1,2,.--). On the other hand,
Gu, is of class C* in £, by Lemma 75. Let 2, be a subdomain of D such
that 2, C 2, and ¢ be in Cg(D) such that 0< ¢ <1, ¢(x) =1 on 2, and
supp () C 2,. Then G((1 — ¢)Gu,) is of class C~ in 2, and G(pGu,) € C~(D),
because ¢Gu, € Cz(D). The subdomain £, being arbitrary, G*u, is of class
C> in £2,. Inductively we see that, for any n>1, G"u, is of class C* in
£2,. Thus G"u is finite continuous in 2, if n> N/2 + 1. The subdomain
£ and 2, being arbitrary, uec C(D). Since u,c Ci(D), Giu,c C"(Q) (n =
1,2, ...), and hence G"u, € C"(2). Consequently G'ue C*(2) (n=1,2,--.),
and so ue C=(D).

Let ue E(L;c). Then, by Remark 77, u = cGu 4+ h, where he H(L).
Since, for any xe D, mr_l,,g% w(y) =0 2,-a.e. on I', the harmonic part A

¥

of u is equal to 0, which implies that udx e E,(A;;c). This completes the
proof.

DEerFiNITION 80. A function u in D is said to be completely L-super-
harmonic in D if, for any integer n >0, (—L)"u is L-superharmonic in
D, where (—L)u = u and (—L)"u is in the sense of distributions.

In particular, a completely L-superharmonic function z in D is said
to be with zero conditions if lim,,& (—=L)"u(y) = 0 for any x€ &, and any

¥

n=01---.

We denote by SC(L) the convex cone formed by all non-negative com-
pletely L-superharmonic functions in D and by SCy(L) the convex cone
formed by all non-negative completely L-superharmonic functions in D
with zero conditions.

Similarly as above, we see the following

PropostTiOoN 81. For each ppe SC(A;) (resp. € SC(AL)), there exists one
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and only one u e SC(L) (resp. € SC(L)) such that u = udx. Conversely, for
any ue SC(L) (resp. € SC(L)), udxe SC(A;.) (resp. € SC,(AL)).

Applying Theorem 53 to completely L-superharmonic functions, we
obtain the following

THEOREM 82. We have SC(L) C C=(D) and the following assertions
hold:

(1) If there exists an integer k=1 such that, for any n with 1<n
<k, (V)" is defined as a diffusion kernel in D and that (V. )**' is not
defined, then, for each ue SC(L), there exists uniquely a finite family (2,)%Z}

of non-negative regular Borel measures on ©, with Idli <o (j=0,1,-.--,

k — 1) such that
(5.42) uw) = 3, [ G K dae)

where G'-K(x,§) = K(x,) and G* K(x,¢) = | G"(x, 9)K(3, §)dy.

() If, for any integer n =1, (V)" is defined as a diffusion kernel on
D, then, for each uec SC(L), there exist a sequence (2,)7., of non-negative

regular Borel measures on &, with Idz,, <o (n=20,1,---), a non-nega-
tive Borel measure ¢ on (0, o) with Ida < oo and a o-measurable mapping

(0, ©) 5 t — u, € C=(D) with u,c E(L; )" such that, for any ye€ D,

(5.49) u() = 3 [ 6" K, 91,0 + [ ul)da® .

Furthermore (,);-, is uniquely determined.

Proof. We first consider the case where the assumption of (1) holds.
Let ue SC(L). Similarly as in Proposition 47, there exist uniquely a finite
family (h,):zi € H(L) and v € 2*((V,)*) such that

(5.44) udx = z(;) (V) hadz) + (V) -

Since v e S(4,), Theorem 35 gives that v = V, (—A) + h.dx, where h, e
H(L). Assume that v+ 0. Let pge M#(D) and 2 be a subdomain of D

19) We say that t— u; e C»(D) is o-measurable if, for any « e D, the function u(x)
of t is s-measurable.
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satisfying the condition (S) and supp(y) C 2. We denote by pi, the V-
balayaged measure of g on C2. Then V,u— V,pioe2((V,)*) and, by
supp (¢to) C 02 and the domination principle for V, there exists a con-
stant ¢ > 0 such that V ug, < ov. Since ve 9(VL)H), Vipe 2*(V,)¥), and
hence the mapping M,(D) 3 p— (V)"(V,p) € M(D) is defined and continuous,
ie., (V,)**! is defined as a diffusion kernel, which contradicts our assump-
tion. This, Proposition 78 and (5.44) give (5.42), and (5.42) gives that
SC(L) < C=(D).

Next we consider the case where the assumption of (2) holds. We
remark that, for any y € D, the mapping
(5.45) M+(D) D {vdx; ve E(L)} € vdx — v(y) € R*
is lower semi-continuous. This follows from the existence of a sequence

(f)z-1 € CE(D) satisfying lim, .. f,dx = ¢, (vaguely) and v(y) = j v(2)f.(2)dz

for all ve S(L) (see the proof of Corollary 73). Let uwe SC(L). By using
Theorem 53, there exist a sequence (h,);., C H(L), a non-negative Borel
measure ¢ on (0, ) with fda < oo and a bounded s-measurable mapping
0, ©)st—u,dxe E(A;) with u, € E(L;t) such that

(5.46) udx = 3 (V)(hadx) + j :’ (u,dx)da(t) .

n=0

Hence Corollary 73 and (5.45) give that, for any xe D, (0, o0) 3 t — u,(x)
is ¢-measurable and that

(5.47) wx) = 31 Grh(x) + I: u(x)do(t) .

n=0

This fact, Proposition 78 and the unicity of (h,)>., imply the assertion (2).
It remains to show SC(L) € C~(D) under the assumption of (2). Let n be

an integer >N/2 + 1 and put v, = [ t'udo(®. Then (—Ly ([ udo(tidx)
= v,dx in the sense of distributions in D, i.e., v, is locally integrable.
Similarly as in Proposition 79, G™v, e C(D), and Jj u,do(t) = G™v, (see
corollary 73). In the same manner, (—L)*"u e C(D) in the sense of distri-
butions for all n>1. This implies that j: u,d(¢) € C~(D), and also, in the

same manner as in Proposition 79, > i, G* *h,(x) is finite continuous in
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D ((k=0,1,--.), 22 0G"h,c C>(D). This completes the proof.

M. V. Noviskil [15] discusses completely L-superharmonic functions in
the following setting. Let D be a bounded domain in RY (N = 2) of class
C** (>0 and L be a uniformly elliptic differential operator of the
form

2

(648 Lu@ = 3 au(®- 0% (@) + 3 b0 2L @) + c@ul)

0
0x,0x, ox;
with coefficients € C~(D), for ue C¥(D) and x = (x,, %, - - -, Xy) € D, where
a,(x) = a,(x) and c(x) < 0.
Evidently there exists the Green function G(x,y) of L on D and we
have lim:g% G(x,y) = hm;g;, G(y,x) = 0 for any ye D and any z€aD.

Theorem 82 gives the main theorem of M. V. Noviskii’s paper [15].
COROLLARY 83. Let D be a bounded domain in RY (N = 2) of class
C"* (2> 0) and L be given in (5.58). Denote by ¢, a first eigen function

>0,~0 of L with zero conditions on 0D. A completely L-superharmonic
function u in D™ has the form

(x, ) p(y) + coi(x) ,

(5.49) u(x) = i(;) f - agn

Y

where 9/on, denotes the outer normal derivative on dD, y, is a non-nega-
tive measure on 0D (k = 0,1, - - -) and c is a non-negative constant. Further-
more (14);-0 and c are uniquely determined.

LEMMA 84 (see, [15], Lemma 3). Under the same conditions as above,
a non-negative L-superharmonic function f in D is integrable if fe C¥D).

Proof of Corollary 83. Similarly as in [11], § 6, we may assume that
the kernel —(9/on,)G(x,y) on D X oD is the Martin kernel for L and that
9D is the essential part of the Martin boundary. We remark that

k+1
W ,3) = — [ @, 29
n, on,

(.50 — (z,y)dz on DXoD (k=1,2,---)

20) The domain D belongs to the class C¥:2 (2> 0) if for an arbitrary x, e dD there
exists a neighborhood of z, in which 8D is specified by an equation ;= f(x1,%3,+",

Xi-15%4415°**,®x), Where = (%1,%a,+++,2x)€dD and f is a k-times continuously differ-
entiable function, the k-th derivatives of which satisfy a Hélder condition with ex-
ponent 2> 0.

21) By Noviskii’s definition, it is an infinitely differentiable function which satisfies
the condition (—L)*u(x) =0, xeD, n=0,1,---.
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and that there exists a first eigen function ¢, =0, #0 of L with zero
conditions on 9D (see [13], Theorem 7.10). Hence it suffices to show that
E(L) = {agp;;ae R*}. Evidently E(L)>¢. By Proposition 79 and Lemma

84, we have, for any ve E(L), Ivdx < oo, so that G™v is bounded if n >
N/2 + 1, i.e., v is bounded, and hence lim,_, Gu(y) = 0 for any x € dD, i.e.,
yeD

lim,_, v(y) =0 for any x € dD. Thus we see that, for any v € E(L), .[ Vdx < oo,
yeD

It is also known that there exists a first eigen function ¢f > 0, #0 of L*

(see also [13], Theorem 7.10). Evidently I(gof)“’dx < oo. Let ¢* >0 be the

eigen value of ¢f. Then ¢} = c*G*pf. For any v +# 0¢ E(L), there exists
¢ > 0 such that v = cGu, which implies that v >0 on D. Since

X
(5.51) jgo{"-udx = c*jG*go{"-vdx = c*‘[go;"chdx = —cc—Igo;“-vdx,

we have ¢ = c¢*, this implies that E(L) = E(L;c*). Thus we see that, for
any ve E(L) and any real number ¢, ¢, — tv is also a first eigen function
of L with zero conditions on 9D. By remarking that any first eigen func-
tion of L with zero conditions on D takes always non-negative values or
non-positive values (see [13]), we obtain that, for any ve E(L) v = ap,
with ¢ € R*. This completes the proof.
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