FACTOR IDEALS
OF SOME REPRESENTATION ALGEBRAS

W. D. WALLIS
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Throughout this paper & is an algebraically closed field of character-
istic p (# 0) and ¢ is a finite group whose order is divisible by p. We define
in the usual way an % -representation of ¢ (or & %-representation) and
its corresponding module. The isomorphism class of the # %-representation
module # is written {#} or, where no confusion arises, M. 4 (%) denotes
the & -representation algebra of ¢ over the complex field € (as defined on
pages 73 and 82 of [6]).

J. A. Green [6] and S. B. Conlon [5] have shown that A (%) is semi-
simple if and only if the algebras W, (%) (see Section 1) are all semisimple,
where 2 runs over the set of distinct (to within ¥-conjugacy) p-subgroups
of 4. ’

The semisimplicity of W, (%) is known to hold when 2 is cyclic and
in the special case where p =2 and 9 is a sylow subgroup of ¢ and is
isomorphic to the elementary abelian group on two generators ¥"4. I have
considered the case where 2 is this group but the sylow condition does not
hold; it is shown that W,(¥) is semisimple when ¥ is the alternating group
on six or seven symbols (&g or &7,). It is also shown that A4 (&/g) is semi-
simple if and only if A4(&;) is. Use is made of Conlon’s results. [3] on
A(¥,) and 4 (,).

Section 1 of the paper is introductory. In the second section certain
properties of alternating groups are indicated; the semisimplicity of A (<;)
is proven and those groups & for which W (/) is isomorphic to W (o)
are listed. The remainder of the paper is concerned with the semisimplicity
of W, () for k = 6 or 7. Certain results derived in Section 3 concerning
the decomposition of induced modules are applied in the next section to the
¥ y-projective A and A ;-modules (A" is the s/ -normalizer of ¥7,);
the generators of 4, (47) modulo the projective ideal are calculated.
In the final sections the structures of W, (#') and W, (A#7;) are found;
semisimplicity follows.

This research was carried out at the University of Sydney. I wish to
express my thanks to Dr. S. B. Conlon for his help with this work.
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1. Properties of representation algebras

We shall say an algebra & over the complex field ¥ is semisimple? if,
for every non-zero element A of &, there is an algebra homomorphism
b4: — €, with Ad, +~ 0.2 If the radical of &7 is defined as the inter-
section N .# of the maximal ideals .# of ., such that o//.# ~ €, then a
necessary and sufficient condition for the semisimplicity of ./ is that &/
should have zero radical.?

If A(%) is as defined above, and 2 < ¢, we define 4,(%) and W, (%)
asin [6]. We write W (¥9) = A (%) where £ is the group with one element.
It should be noted that W, (%) is trivial unless & is a p-group.

If 5 is a subgroup of ¢, then the following results hold:

(1) THEOREM [5]. 4,.(9) = @ W4(¥), where ® 1is the algebra direct
sum over all the non-G-conjugate p-subgroups D of 9 with D < .

(2) CorOLLARY. A, (¥) is semisimple if and only if each W 4(¥) is.

It follows from (1) and (2) that to discuss semisimplicity we need only
discuss the semisimplicity of the algebras W. We make use of the following
result.

(3) THEOREM [6,p.81). If @ <NV < H# < 9, where N 1s the ¥-

normalizer of D, then
WoH) = We(9).

In other words we need only consider the normalizer of & in ¥, rather
than #.

W (%) is always semisimple; in fact as & is algebraically closed it is
the direct sum of » copies of € where 7 is the number of p-regular conjugacy
classes in ¢ [3, p. 85].

Finally we note that there is no loss of generality in considering &
algebraically closed. If it were not, then let #* be the closure of &%, and
write A*(¥), W3(¥) for the algebras derived in this case. Then from
p- 80 of [4] we see that the semisimplicity of A* (or W*) ensures that
of 4 (or W).

2, Alternating groups

If we take &7, as a permutation group on the first » positive integers
in the usual way we can write AL, ; < A,, where o, ; is obtained by
omitting all elements of &7, which properly permute one specific integer.

1 Also called G-semisimple [3, p. 84].
* All mappings except permutations and representations are written on the right.
¥ See p. 84 of [3].
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Suppose Z < &7, , and suppose the normalizer 47 (2; &,) of 2 in «,
satisfies #/°(2; &,) < &/,_,. Then, by (3),

Wol,) = Wol(,y).

This sort of result interests us because it provides a link between
A(,) and A(,_;), so we will investigate when these conditions hold.
To do this we introduce the idea of a permutation acting on an integer.

We say the permutation P acts on the integer 7 if, when P is considered
as a mapping of the integers, P(i) = ¢, and a subgroup & < &/, acts on
if there is a member of & which acts on 7. Thus the positive integers < »
are divided into two disjoint classes: «,.(#), the set of integers acted on by
2, and B,(#), the set of integers invariant under 2. Then it is easy to see
that A" (2; &,) consists those even permutations N of the form N = N, N,,
where N; e /(?; &,) and N, e &,_,, a being the order of «,.(?), &, the
symmetric group on the elements of «,. (%), and #,_, the symmetric group
on the elements of g,(2).

If @ = r—1 then &, _, consists the identity element only, and in this
case N (P; A,) =N (P; H,_;) = ,_,. This is the condition we wanted.

(4) THEOREM. If P is a subgroup of o ., which acts on pn symbols then

NP A ppa) = NP5 A )
and so
W?('MIWH-I) = Wy(dwn)'

(A ,, 1S the alternating group on the symbols acted on by P).
We have considered 2 acting on #p symbols because of the following
result:

(5) LEMMA. If & is a permutation group of order p™, where p is prime,
then P acts on exactly pn symbols for some integer n.

Proor. Consider the orbit #(z) of the symbol 7 under 2.
P() = {j: P(f) =7 for some P eZ}.

Then, by theorem 3.2 on p. 5 of [9], the order |#(¢)| of #(¢) divides that
of #. From the fact that & is a p-group, |#(¢)| must be a power of p.
The set of symbols acted upon by £ is, by definition,

{t:120) # 1},
v 2(j),

the union being taken over all § such that [#(j)| # 1. Since any two distinct
orbits are disjoint, this set has order

that is
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21200

and every term in the sum is a power of p, not ° Thus p divides the sum,
giving the result, except for the trivial case where & acts on no symbols,
in which case m = 0 and we can put » = 0.

In particular a sylow p- subgroup of &, must act on #p symbols where
n is the largest integer such that np < 7, so a sylow p-subgroup of &/, .,
acts on exactly p» symbols and satisfies the conditions of (4).

We shall consider the case p = 2. With » = 2 we can apply (4) to
o, and ;. Every 2-subgroup of &7 except £ acts on 4(= pn) symbols,
so if & is such a group,

Wo () = Wy(sty).

A (,) is semisimple [3, p. 97], so each W, (%) is semisimple by (2), and
so each W ,(&f5) is semisimple. Moreover W ,(&/;) is semisimple. As any
2-subgroup of &7, is of the same type as & or is £, we see by (2) that 4 (<)
is semisimple.
If n» = 3 we have & and &,. If we write
U = (13)(24) X = (123) Z = (1234)(56)
V = (14)(23) Y = (567) T = (12)(56)

then the distinct 2-subgroups of &, are £, &,, ¥", ¥, £, and £, and
their &/,-conjugates, where

Z, = <U>
v =U, V>
¥ = UV, T
3'4= <Z>

P = (Z, V.

These are also the 2-subgroups of 27g.

We shall prove that W, («fs) and W, (%/;) are semisimple. That
W4(¥) is semisimple when & = # has already been noted; that it is so
when 2 is cyclic has been shown in [8]. From (4) we see that

Wy (o) = Wy (;) and W,y(s) = Wo(r),

since both these subgroups act on 6(= np) symbols. Collecting these results
and applying (2) we see that 4 (&,) is semisimple if and only if 4 (&) is.

Even more can be said. There is an isomorphism between A4 (¥”; </5)
and A (¥"; of4) which carries ¥~ onto ¥”, and so W,.(og) = W, ()
and is semisimple. Therefore 4 (/) and 4 («/;) are semisimple if and only
if W, () is. As N (P; ) is P, we can say A () and A (/) are semi-
simple if and only if W, (%) is semisimple.

https://doi.org/10.1017/51446788700005681 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700005681

[5] Factor ideals of some representation algebras 113

It remains to show that W, (/) and W (#/,) are semisimple. By (3)
we need only consider W (A7) and W (A4";) where 4, is /7 (¥"; &,) and
Ne=<U,V, X, T>,
N =(UV,XTY).

3. Decomposition of induced modules

Suppose 2 is a normal subgroup of ¥, and let £ be an indecomposable
FH# -representation module with #-stabilizer .. Then we know [2, p. 162]
that %% decomposes as does a certain twisted group algebra #(¥[5#) on
F[|# over F. To be specific, suppose ¥ > L, @ L, @+ - ® %, and
I(LH) 2 I, @I, D - ®F,, where the £, are indecomposable sub-
modules and the £, are indecomposable left ideals. Then we can reorder
the £, so that

m=mn
(6) L, >~ &, ifand only if £, >~ £,
dim,; #; = dim, £, - dim, &Z.

Furthermore #7 is indecomposable.

(7) THEOREM. If & = X W', then
LY ('Za W:iQ s0?
is a decomposition inio indecomposables, where
FHW = G:-) W,

is a decomposition into indecomposable left ideals. (W ; Q 5L is defined as
the subset of F&F Q ;% consisting of the elements W ® L, where
We#,and LeZ.)

ProoF. It is clear that the sum is direct and equals £ and that the
summands are &% -representation modules. (¥ [5#) is F(F[#) in this
case, so by (6) ¥ must split into exactly % indecomposable parts. By
the Krull-Schmidt theorem these must be the #°;, @ Z.

Write & for the alternating group on {5, 6, - - -, k}. Then (7) applies
when ¥ =¥ " X& or &, X%, which are the cases we will need.

4. ¥ -projective representations of A",

The indecomposable ¥ -projective .4, -representation modules are
just the indecomposable parts of the modules #** where £ is an F¥ -
representation modaule,
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The indecomposable ¥ -representation module isomorphism classes
are known ([1], [7]). In the notation of Conlon [3] the classes are A4,,
4,, B,, C, (f) and D, where n ranges through the positive integers and f
through & U {o0}. Typical representations are given on pp. 86—7 of [3];
we shall denote this representative of A, by &7,,, and similarly for the others.
The stabilizers are given in (8):

Generators of Stabilizer

Module -
in A in A

Ay B, D U,V,XT UV, XTY
(8) %, (0) UvV,TX Uv,TX,Y

%, (1) uv,T U,V,T,Y

%, () U, vV, TX® UV, TX,Y

Cl(w), €u(w?) UV,X UV, XY

%, (f) u,v Uuvy

where w is a primitive cube root of unity in # and f ranges over all values
not already listed. The stabilizer in A", may be derived from that in A7,
as noted in Section 3.

The representations of &7, are also known [3]; their classes are 43,
Az, B2, Cig), CX(f), D, where n ranges through the positive integers,
a through the integers modulo 3, g through {w, w?} and f through a set of
representatives of the equivalence classes of % under the relation

4
except w and w?,

1
~1d —~ ,
M1+~
If we write /¢ for a representative module of the class A2, and so on,
then 2% may be taken as an extension of Z; Z*(f) may be taken as
(%.(f))*+. We follow Conlon’s convention that 27§ yields the representation

U->1,V—->1X—o®
T Q P~ Fowd,
Then if 2° gives the representation X — A(X), Z° gives X — 0®A(X).
Suitable matrices 1(X) are known [3] for all cases except €,(w) and €, (w?);

and the author has found that a suitable matrix to extend €,(w) is
M, ® M,, where

and

e (12
M, has (1, 1) element @*H+1 C 2)

e (P—1
M, has (7, §) element @*+/+2 (; 1) ,

£ 1~0~
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the binomial coefficients being evaluated over characteristic 2 and @ being
direct sum of matrices. We take €g(w) to be the extension with

AX) = o®*2 (M, ® M)

and otherwise follow Conlon’s choice for the particular extension of &
which will be labelled Z°.

If & is an #¥ -representation module with stabilizer & in A7, and
Z is as before, the following conditions hold:

if XeS, VLo, L A XELS;
if X¢, VAV XE LS,

in both series equality holds in the last place if and only if T ¢ <.

Suppose FX ~ @ Z; is a decomposition into indecomposable left
ideals. Then, from (7), L% ¥ @ X; ® 44 is a decomposition into
indecomposables. If X € & then in every case

P~ §o®§1®§2’
$O

PAXE ~ é (:g?a)auxz’
a=0

so using (7),

PAXE

e

@ @g ®§4‘

a==0

Again the direct summands are indecomposable.

Let .# be one of the direct summands in this last decomposition.
L[(A ¢ X Z) has order 1 or 2, and so its group algebra over # is indecompo-
sable. So .#% is indecomposable. A similar result holds if X ¢ . We have
the following decompositions into indecomposables:

© (#,0, )  HXES
) v

e

2
DD (L @y, P if XS

a=0
The calculation of the isomorphism-classes of ¥ -projective F.A",-repre-
sentation modules is now an easy task, using the last part of (6).
For A", we find that the classes are 45°, A%?, B%?, C%*(w), C¥°(f)
and D%?% where a4 and b range through the integers modulo 3, #» through

the positive integers and f through the elements of & U {o0} other than
o and w?. The following identities hold:
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AP = AP, AZS = A, By = Bl®, Db = D

1
*0(0 _ CRO(o) — C*(}) wh — 14 — ,
CRP(f) = C2*(@) = CI™(h) when g = 14— or 1
1 /
h=— or — or 14f5
7o
The classes for A7 are just those for 4", with all reference to b dropped
(we write, for example, A5, Cx(f)) and with L¢ = L% whenever L9 = L%0°,
We use the convention that

(La,b)”. = L9, (La).u. — La_*_Lza-

The representation matrices for typical members of the % .4 ,-classes
are shown in (10) in terms of the corresponding & &/, representation with
superscript 0. These corresponding representation matrices are denoted by
A. The table also shows the #F¥ -class from which each #.# ,-class is ob-
tained and the dimension of square block-matrices involved. The &F.A -
representations are found by deleting the matrix for Y.

(10)
FN pclass 4%® BY? CoP(w) okl )]
Corresponding
F ¥ -class 4n By Calo) Calh
Block size 2n+1 2n 6n
Matrix for I:}.(U) 0 [A(U) 0 AU) 0
U 0 AV 0 A(V) [0 AV)
v [}.(V) 0 [A(V) 0 AV) O
A 1(7)) 0 AU) I:o MU)
w*A(X) O wlA(X) 0 AX) O
X I:O w28 (X )2] [O w2BAUX )2] I:O AlX )2]
0 I 0 I 0 I
T [I 0 [I 0 [I 0
wbI 0 ‘ wbI 0 wbl 0
Y I:O 02?1 [0 I [0 w?bI

5 In particular C¥?(1) = CF2(1) = c¥%(0) = C*P(w)
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5. Multiplication of module classes

The multiplication of module classes is defined in the usual way:
If Lis {¥}and M is {4}, then LM is {¥ ® #}.

We shall consider the multiplication of F A ¢-classes modulo W (¥).
The effect is that of putting D* = 0, since W ,(¥) is a direct summand of
A (%) for any ¢ and any o < ¥, ¢ so there is no confusion in writing L
for L4+W ,(AN ).

The multiplications for ¥~ and &/, are given in propositions 2—4 of
[1] 7 and equations (6), (7), (9) and (11)— (16) of [3]. However we can be
more specific about C2(w). The convention of Section 4 yields upon a direct
calculation the following result when n» = m = 1:

(1) C () C(w) = 2C° () if » =2 (mod 3)
= CL(w0)+C%(w) if n £ 2 (mod 3).
(This replaces equations (13) and (14) of [3].)
From these results, the distributive law and the law
B M (LD M)

where .Z is an &# & -representation module and .# is an & .4 ¢-representation
module, we can calculate the products of #.4# 4-classes. We introduce two
points of notation: we write L*s for the class {##s}; and we write f ~ g
whenever f ~ g or f ~ 1/g, that is whenever f and g are members of the same
set of cross-ratios. Example calculations are
A:Ab — [(Aa_l__Aza)Ab ]ms
= (A A"
— AhALE

and,if m <nand f= 1,

Cr(NCrle) = LIC(N+CR /) Calg) 1"
_ ‘ 2Cr(f) if f~ g,
- if g,
except
CTHCT () = C3(f);
moreover

Ca(1)Ch(1) = (2GR (1)Ch(1))*e
= 4C*(1).

Similar calculations yield the following multiplication table:

8 This follows from Corollary 5 of [3].
? There is an error in Bagev’s work — see p. 88 of [3].
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(12)
m<n A% B L () ) gt
a2 AZTD L AZEY ATD L A2 O () 4 CEM ) 2G5 (6)
By B 4 BIHY B L BMEY  CoP M w)+ O w) 20, () o
Calw)  CHH™™(w) Cotmy)y i) it m=n=1
+Cat M @) +qﬁ%HMW)ﬂ%Mwnﬁns2mmdm0
Cot " @)+ CpF 2 (w)
if £ 2 (mod 3)
when # > 1
cHpn ¢k 2¢*(f) 0 0 if fabyg
f#w k) if frgml

2ckf it n£1
it m=n=1
when fay g5 1

We see from (12) that £A45 is an identity element for the algebra
R = A, (N)[W,(Ng), and admits of the orthogonal idempotent decom-
position 349 = J,+J,, where

Jo=4Ab+143,

Ji= %Ag—%"%'
Then

R=R], ®R],-
Write A'na = Ag]ar Bmz = Bo]a’ Cno = Cg(w)]o’ C:l = C:(w)]l' Then

n

the set of these elements (where « is 0 or 1 and a is any integer modulo 3),
Jo, J1 and the distinct C¥(f) together generate %, since

A?, =Ad,+A4,
Bg = B,y+B,;
4, = %Ano_%Anl
B, = %Bno—%Bnl
Caw) = Coo+Cry.
Moreover the identity C2 +C?% +C2 = 0 holds, and so we can drop C,

from the list of generators.
Writing X, = 14,, we see that 4,, = 2(X,)* and B,, = 2(X,)™",
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so the set generated by all the 4,, and B,, for a given a is isomorphic to
€[X,,1/X,]. If we write &/, for the algebra generated by all the CX(f)
and C,,, and &, for that generated by the Cy,, then

Ry = C[Xy, 1/ X1+,
2], = €[Xy, 1 X ]+,

where &7, is an ideal of Z],.
We next set up orthogonal idempotents which generate 27, and &,.

For o, we use

L) = CH),

L) = HCH)—Coy() a1,

I (@) = %(Caot(—=1)"v/2Cy) if n =1 or 2,

I (o) = $Cro—Car0) it n>2,

I(f) TCIN+H(=D)CE(R) if n=1o0or 2,51,
= HC(N—Caa(h) itn>2 71

In each case, ,%I,,(f) ~ €I,.(f).
To consider &7, we set
K& = %(Co+(—1)"4/2CY) if n=1 or 2,
Ko =hCo—hayCo1n it n> 2,
where , = }if » = 2 (mod 3) and 4, = —1 otherwise.
The K? are orthogonal and ZK? ~ #€[K?, K%, K2]. Since K3K! = K&
and K34+ K1+K2 = 0 we see that if we put
LnO = %(Kros_*—qulb_i—uzKﬁ)’
L.y = 3(Kp+uw K +uK3),

where # is a primitive cube root of unity in %, then
RKy) = RL,y ® #L,, and ZL,, =~ ¥L,,.

From these we can find the structure of #Z. A, (AN) 2 Z © W (AN),
and W (A7) 2 € @ ¥, so A, (AN) has the following form to within
isomorphjsm:
Ay (N) = {F[X,, 1/ X+ @, L)}
(13) @ {%[Xli 1/X1]+ ®2 ?Lna}
® {¢ @ ¢}
where @, ranges over all positive integers # and all f € # U {c0} modulo

the relation a~, and @, ranges over the positive integers » and « = 0, 1.
The I,,(f) and the L,, are sets of orthogonal idempotents, and
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Xola(f) = L.(7),
X,L,, = u*+2L, ,.
We work similarly in the 4", case. The ¥ -projective & A4 ,-representa-

tion module classes are considered modulo W ,(A4",;), and find the following
multiplication table for & = A (A7;)/W ,(A7;):

(14)
m<n 4% BYe Ché(w) e et o
A:'c A::'}_b,; ¢4 A:tzi cd C:{-a-{-b, c+d(w) C::" c+d(g)+c:,2c+d(g)
44 a+2b, ¢4-24 +A:i-$:' ¢+2d + C;+2a+b, 2¢c4+d (w)
B:' 4 B:t,:,', c+d Bf:l',':i c+d 6’2':‘+a+b. o4 (w) C:':" ctd (© +C::' 2c+d(g)
+B:i?,?' c+2d +B:"+'_f:'°+2'1 +C?:+2a+b,2c+d (@)
Collw) Cptothotd(y) Cpmrath et () fn=m=1, 0
+ C:s+a+2b, e+ Cﬁm+a+2b, o+ 24 ) c;+b, o+d (g
if n£1, n=2 (mod 3)
2C;zn+b, °+d(w)
if n£1, n£ 2 (mod 3)
an+b+1, c+d (w)
a-+b+2, c+d
+Co T )
Caolth  CRoHN+CR ) CRtin+Cr ot o 0if fribg
f#o

2(Ch 1)+ Ch )
if fugavl

Cith if favgabd,

m=n=1

205H4(f) if fa g,
nFl

Write S = AY4+ 43 %+ AL2 The identity element 145° of & admits
of an orthogonal idempotent decomposition:
345° = Jot+JrwtJa+Tut T
Jo = 15(43°+25)
Ja» = $(43°+345°—5)

We proceed much as before. It is clear that & is generated by the J, and
the elements
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Amc = A?z'o]a: Bm = Ag'o]z
Cuolf) = C2°(N T Caolf) = Ca (N 1o
Cuol@) = C%w) ]y mi0(@) = Co*(0) ] 1o

Crolw) = C3°(w)], (@ # 0, 10),

where a ranges through the integers modulo 3, « through {0, 01, 10, 11, 12}
and f through the non-equivalent members of &# other than o under the
relation .
Putting Y, = }4,, we obtain as before 4, , = 2(Y,)", B, , = 2(Y,)™"
and
S, = €Y., 1Y, 144,

where 4, is an ideal. We then write

I(f) = %(Cz,o(f)“f‘(_l)" V2Cy0(f)) ifn=1o0r2,

L(f) = 3(Cn,o()—Cry,0(N) if n > 2,
K3 0lf) = %(Cg,m(f)‘i‘(_l)" \/2C1,10(f)) if n=1or 2 and f#1,
K: 10() = 3Ca 10(H—Ca_1,10()) if #>2and f1,

1 10( ) = %Cg,lo(l)
K3 10(1) = £(Ca10(1) —Cog10(1)) if n#1,

Ko@) = 1(C5 o(0)+(—1)" v2C§ ,(@)) f =1 or 2

K3 o (0) = 1, Cg o) =R, 1Co 4 0(w) if n>2,

where # = 01, 11 or 12 and 4, is defined as before. It is found that {I,,(f)}
{K3 10(f)} and {K? .(w)} are sets of orthogonal idempotents generating
By, By and B,. L1,(f) = €I,(f) and LK 10(1) = €KJ 14(1); in the other
cases we find

FRL(f) = CIKL(f), K2o(f), K2,.(P)]
so we put

L,,00(f) = Kp o)+ KL L (f) +u+2K2 (f).
For convenience write L, o 1o(1) = KJ 1,(1).
Proceeding as before we find A, (A7) is
Ay (W) = {€1Y,, 1/Y ]+ @, CL,(f)}
@ {%[YIO’ 1/Y10]+ G-)2%I‘n,a,10(f)}
@ ®3 {%[Yw I/Yz]+ @4 Ln,a,z(w)}
PEDECEDECDE DT}

where @, is over all elements f of &#, modulo s, and all positive integers #,

(15)

@, is as @,, and also over « = 0, 1, except for thecase f=1, a =1,
@, is over 2 = 01, 10, 12,
@yisoverall# = 1and «a = 0, 1, and we have
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YOIn(f) = In(f)
YlOLn,a, 10(f) = Ln,a,lo (f)
Yan,a,z(w) = u2a+2Ln,a,z(w)'

The classes of Z,-projective ¥ -modules are D and C,(1). Therefore

Ag (W) 2CL,(1) O FDF
Ag(H2) = €L,4(1) @ Ly () @EOEOEDC DY,

Thus W, (AN ) = Z[€I,(1). I,(1) e#],, so we need only consider this
factor. It can be split into two components, one of which is €I,(1), by the
idempotent decomposition

]o = I1(1)+ (]0—11(1))
= I,(1)+J,, say.

If we write X, = X,J,, then the decomposition of #J,, is just that of Z],
with X, replaced by X,, and with the case f = 1, n = 1, dropped from the
summation. Notice that X,I,(f) = X[, (f) except when # =1 and /= 1.
The same considerations apply to the .4, case. Therefore when & = 6 or 7
the form of W, (4",) is just that given in (13) or (15), provided that the
final term consisting of copies of € is omitted and that thecasen = 1,f =1,
is dropped from all direct sums where it occurs.

6. Semisimplicity

It is now easy to see that W, (A g) and W, (A4";) are semisimple. If
&, is any algebra of the form
(16) o, =CX,1/X]|+%

where & is an ideal of the form @ %I, with » ranging through some indexing
set, then &/, is semisimple. 8 It is clear that if o/, @ &, @ - - - is a finite
sum of semisimple algebras then it is semisimple. But both W, (A47) and
W (A";) are of this form, where each &7, has the form of &7, in (16). There-
fore we have the following result.

(17) THEOREM. W (A"¢) and W (AN";) are semisimple.
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