
FACTOR IDEALS
OF SOME REPRESENTATION ALGEBRAS

W. D. WALLIS

(Received 19 December 1966)

Throughout this paper & is an algebraically closed field of character-
istic p (# 0) and ^ is a finite group whose order is divisible by p. We define
in the usual way an ^-representation of & (or J^-representation) and
its corresponding module. The isomorphism class of the ^"^-representation
module u? is written {JK} or, where no confusion arises, M. A [$§) denotes
the ^"-representation algebra of 'S over the complex field ^ (as defined on
pages 73 and 82 oi [6]).

J. A. Green [6] and S. B. Conlon [5] have shown that A (@) is semi-
simple if and only if the algebras W3(@) (see Section 1) are all semisimple,
where 3) runs over the set of distinct (to within ^-conjugacy) ^-subgroups
of &.

The semisimplicity of Wa(&) is known to hold when S is cyclic and
in the special case where p = 2 and Si is a. sylow subgroup of 'S and is
isomorphic to the elementary abelian group on two generators i r

i . I have
considered the case where 2 is this group but the sylow condition does not
hold; it is shown that Wa(<&) is semisimple when & is the alternating group
on six or seven symbols (s/6 or J / 7 ) . It is also shown that A{s/6) is semi-
simple if and only if A(j/7) is. Use is made of Conlon's results. [3] on
A^J and A(j*t).

Section 1 of the paper is introductory. In the second section certain
properties of alternating groups are indicated; the semisimplicity of A (s/5)
is proven and those groups & for which Wg,(jz/e) is isomorphic to W^(s/7)
are listed. The remainder of the paper is concerned with the semisimplicity
of Wrt(s/k) for k = 6 or 7. Certain results derived in Section 3 concerning
the decomposition of induced modules are applied in the next section to the
y*4-projective JV6 and ^T7-modules (jVk is the j/j.-normalizer of T "̂4);
the generators of Ay (^Vk) modulo the projective ideal are calculated.
In the final sections the structures of W^i-^e) a n ( i ^ y 4 ( ^ 7 ) a r e f°un(i;
semisimplicity follows.

This research was carried out at the University of Sydney. I wish to
express my thanks to Dr. S. B. Conlon for his help with this work.
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110 W. D. Wallis [2]

1. Properties of representation algebras

We shall say an algebra si over the complex field <€ is semisimple1 if,
for every non-zero element A of si, there is an algebra homomorphism
<f>A : si -> c€, with A<f>A ^ 0. 2 If the radical of si is defined as the inter-
section n ^ of the maximal ideals u? of si, such that sif^tf ~ <&, then a
necessary and sufficient condition for the semisimplicity of si is that si
should have zero radical.3

If A (&) is as defined above, and ® ^ f, we define A3{&) and Wa{<&)
as in [6]. We write WjC&) = Aj{f§) where J is the group with one element.
It should be noted that Wa{&) is trivial unless Si is a. p-group.

If J f is a subgroup of IS, then the following results hold:

(1) THEOREM [5]. Ax(<§) = © W3(@), where © is the algebra direct
sum over all the non-'S-conjugate p-subgroups S> of & with Si

(2) COROLLARY. Ax{f8) is semisimple if and only if each W3(&) is.
It follows from (1) and (2) that to discuss semisimplicity we need only

discuss the semisimplicity of the algebras W. We make use of the following
result.

(3) THEOREM [6, p. 81]. / / ® ^ ^ g X g ^ , where JV is the <3-
normalizer of Si, then

In other words we need only consider the normalizer of Si in 9, rather
than <S.

WjC&) is always semisimple; in fact as IF is algebraically closed it is
the direct sum of r copies of ^ where r is the number of ^-regular conjugacy
classes in <& [3, p. 85].

Finally we note that there is no loss of generality in considering &
algebraically closed. If it were not, then let IF* be the closure of IF, and
write A*{<8), W%C&) for the algebras derived in this case. Then from
p. 80 of [4] we see that the semisimplicity of A* (or W*) ensures that
of A (or W).

2. Alternating groups

If we take sir as a permutation group on the first r positive integers
in the usual way we can write sir_x < siT, where sir_x is obtained by
omitting all elements of sir which properly permute one specific integer.

1 Also called G-semisimple [3, p. 84].
4 All mappings except permutations and representations are written on the right.
a See p. 84 of [3].
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[3] Factor ideals of some representation algebras 111

Suppose 3> 5S $4r_x and suppose the normalizer ^V{<2); s/r) of Si in s/r

satisfies JV(@; s/r) ^ j / r _ x . Then, by (3),

This sort of result interests us because it provides a link between
A(s/r) and A{s/r_^), so we will investigate when these conditions hold.
To do this we introduce the idea of a permutation acting on an integer.

We say the permutation P acts on the integer i if, when P is considered
as a mapping of the integers, P(i) =£ i, and a subgroup 0* < s#r acts on i
if there is a member of & which acts on i. Thus the positive integers ^ r
are divided into two disjoint classes: <xr(0

i), the set of integers acted on by
0*. and Pr(0

>), the set of integers invariant under 0>. Then it is easy to see
t\ia±^V{0>; s/r) consists those even permutations N of the form N = N1N2,
where N1eJr{0); Sfa) and N2eS^r_a, a being the order of <tr{0>), Sf'„ the
symmetric group on the elements of <mr(0

i), and SPr_a the symmetric group
on the elements of |8r(^).

If a = r—1 then <S r̂_o consists the identity element only, and in this
case ^V{0>;s^r) =J/"(0>;j!/T_1) ^s/r_1. This is the condition we wanted.

(4) THEOREM. / / 0* is a subgroup of <s&pn+1 which acts on pn symbols then

and so
W^vn+1) c, W9{s*vn).

(s/pn is the alternating group on the symbols acted on by 0>').
"We have considered 2P acting on np symbols because of the following

result:

(5) LEMMA. / / 0* is a permutation group of order pm, where p is prime,
then 0> acts on exactly pn symbols for some integer n.

PROOF. Consider the orbit 0>{i) of the symbol i under 0*.

0>{i) = {j : P{i) = j for some P e0>}.

Then, by theorem 3.2 on p. 5 of [9], the order |^(*)| of 0>(i) divides that
of 0*. From the fact that 0* is a ^>-group, \0>if)\ must be a power of p.

The set of symbols acted upon by 0* is, by definition,

{* : |^(«)| # 1},
that is

u

the union being taken over all / such that |^ ( / ) | # 1. Since any two distinct
orbits are disjoint, this set has order
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112 W. D. WaUis [4]

and every term in the sum is a power of p, not p°. Thus p divides the sum,
giving the result, except for the trivial case where 0* acts on no symbols,
in which case m = 0 and we can put n = 0.

In particular a sylow p- subgroup of s/r must act on np symbols where
n is the largest integer such that np ^ f, so a sylow ^-subgroup of si\nJrX

acts on exactly pn symbols and satisfies the conditions of (4).
We shall consider the case p = 2. With n = 2 we can apply (4) to

s/t and s/&. Every 2-subgroup of s/s except J acts on 4(= pn) symbols,
so if 0* is such a group,

W.(st%) s W,(s/t).

A(s/A) is semisimple [3, p. 97], so each W9[si^ is semisimple by (2), and
so each W0(JI/S) is semisimple. Moreover Wf{s/5) is semisimple. As any
2-subgroup of s/& is of the same type as 0* or is J, we see by (2) that A (s#&)
is semisimple.

If n = 3 we have s/9 and s/7. If we write

U = (13) (24) X = (123) Z = (1234) (56)
V = (14) (23) y = (567) T = (12) (56)

then the distinct 2-subgroups of s/7 are S, 3?2> ^> "V> ^i a n ( i ̂ > a n ( i
their ^-conjugates, where

& = <z, vy.
These are also the 2-subgroups of s/e.

We shall prove that Wr(<s/g) and Wir(s/1) are semisimple. That
Wg(@) is semisimple when 2 = J has already been noted; that it is so
when 3) is cyclic has been shown in [8]. From (4) we see that

Wy,(s/e) S Wy,{sf,) and W,(J*,) s W,{J/,),

since both these subgroups act on 6(= np) symbols. Collecting these results
and applying (2) we see that A {s/7) is semisimple if and only if A (s/e) is.

Even more can be said. There is an isomorphism between J^^f; s/6)
and jr(rr;s/s) which carries V onto "T', and so W^,{s/9) s Wr{s/6)
and is semisimple. Therefore A (s/e) and A («J/7) are semisimple if and only
if W^s/i) is. As JV(0I) JI/6) is 01, we can say A (s/e) and A (s/7) are semi-
simple if and only if W9{0>) is semisimple.
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[5] Factor ideals of some representation algebras 113

It remains to show that ^ ( ^ J and TFr(j/7) are semisimple. By (3)
we need only consider Wr(^V6) and W^Jf^) where JTT is *V(f~; s/r) and

J^e = (U, V, X, T},
jr7 = <JJ> v, X, T, Y).

3. Decomposition of induced modules

Suppose Jf is a normal subgroup of &, and let ££ be an indecomposable
#"<3f-representation module with ^-stabilizer y . Then we know [2, p. 162]
that jSf5" decomposes as does a certain twisted group algebra ^"(y/«3f) on

over &. To be specific, suppose SCy ^ ££x © J5?2 ® • • • © JS?OT and
-^i © ^2 © ' ' ' © ^n . where the ^fj are indecomposable sub-

modules and the •/", are indecomposable left ideals. Then we can reorder
the S{ so that

m = n
(6) JSP, ̂  =5?,. if and only if Ji ^ . / ,

Furthermore jSff is indecomposable.

(7) THEOREM. / / ST = Jfx'W, then

© T T 4 <g>
I

*'s a decomposition into indecomposables, where

= ©
I

is a decomposition into indecomposable left ideals. (Wf ® ^ ^ 5 ^ is defined as
the subset of ^S? 0 f>e2£ consisting of the elements W ® L, where

PROOF. It is clear that the sum is direct and equals 3?* and that the
summands are ^^-representation modules. J{&'\20') is ^(S^j^) in this
case, so by (6) JS?5' must split into exactly h indecomposable parts. By
the Krull-Schmidt theorem these must be the Wt ® £C.

Write 3C for the alternating group on {5, 6, • • •, k}. Then (7) applies
when 9 = irx%' or j / 4 x ^ " , which are the cases we will need.

4. T^-projective representations of Jfu

The indecomposable ^-projective JOT^-representation modules are
just the indecomposable parts of the modules ^>jr" where & is an
representation module.
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114 W. D. Wallis [6]

The indecomposable Jry/"-representation module isomorphism classes
are known ([1], [7]). In the notation of Conlon [3] the classes are Ao,
An, Bn, Cn (/) and D, where n ranges through the positive integers and /
through IF u {oo}. Typical representations are given on pp. 86—7 of [3];
we shall denote this representative of A n by s/n, and similarly for the others.
The stabilizers are given in (8):

(8)

Module

<€n (0)

*•(!)

«•.(«)

Generators of Stabilizer

i n ^ .

17, F, X, T
V V.TX
V.V.T
V, V, TX*
V, V.X

v.v

V, V, X, T, Y
U, V, TX, Y
U, V, T, Y
U, V, TX*, Y
U, V, X, Y
V, V. Y

where cu is a primitive cube root of unity in & and / ranges over all values
not already listed. The stabilizer in jVk may be derived from that in ^T6

as noted in Section 3.
The representations of j / 4 are also known [3]; their classes are A%,

A~°, JB", C°(g), C*(f), La, where n ranges through the positive integers,
a through the integers modulo 3, g through {cu, a>2} and / through a set of
representatives of the equivalence classes of fF under the relation

1 1 4

/ <~ 1 -1 -~ , except co and co2.

If we write s/° for a representative module of the class Aa
n, and so on,

then JP° may be taken as an extension of J&f7; ^*(/) may be taken as
(^n(/))***• We follow Cordon's convention that «s/{J yields the representation

U -> 1, V -> 1, X ->coa

and _ _

Then if J50 gives the representation X - > A(X), ^ ° gives X^<oak{X).
Suitable matrices A(X) are known [3] for all cases except ^«(co) and ^(co2);
and the author has found that a suitable matrix to extend ^ ( w ) is
Mx © M2, where

li—2\
Mi has (i, j) element <oi+i+1 ( . I

M2 has (*, j) element coi+1+21 . I .
V — 1 /
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[7] Factor ideals of some representation algebras 115

the binomial coefficients being evaluated over characteristic 2 and ® being
direct sum of matrices. We take ^(co) to be the extension with

X{X) = ft>2"+2 {Ml 0 M2)

and otherwise follow Conlon's choice for the particular extension of JS?
which will be labelled j?°.

If £C is an ^^"-representation module with stabilizer Sf in *Vk, and
3C is as before, the following conditions hold:

if ley.fKKxfiy;

in both series equality holds in the last place if and only if T $ Sf.
Suppose ^3C s ® J j is a decomposition into indecomposable left

ideals. Then, from (7), ^iry-x ~ © # \ ® ^ ^ is a decomposition into
indecomposables. If X e £f then in every case

so

a=0
so using (7),

2

o=0 i

Again the direct summands are indecomposable.
Let ^K be one of the direct summands in this last decomposition.

6^'j{s/i x2£) has order 1 or 2, and so its group algebra over SF is indecompo-
sable. So ^l* is indecomposable. A similar result holds if X £ y . We have
the following decompositions into indecomposables:

(9)

i o=0

The calculation of the isomorphism-classes of T^-projective
sentation modules is now an easy task, using the last part of (6).

For Jf, we find that the classes are A%\ A°-\ Ba
n-

h, C°-b(a>), C*-6(/)
and Da-b, where a and b range through the integers modulo 3, n through
the positive integers and / through the elements of & u {oo} other than
co and <o2. The following identities hold:
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116 W. D. Wallis [8]

A<*,b A2a,2b j o , J _ Aia,2b D S , ( T>2a,2b /)<•>& == 7)2<«, 26

Ci-'lf) = cr'fe) = C»(») when j = 1+ I or

S =i . ( ) rJ_o r l + / (

The classes for Jf^ are just those for J/~1 with all reference to b dropped
(we write, for example, A%, C*(/)) and with La = Ld whenever La-° — Ld-°.
We use the convention that

The representation matrices for typical members of the
are shown in (10) in terms of the corresponding ^sd\ representation with
superscript 0. These corresponding representation matrices are denoted by
A. The table also shows the ^"T^-class from which each ^vT7-class is ob-
tained and the dimension of square block-matrices involved. The
representations are found by deleting the matrix for Y.

(10)

^ V c l a s s

Corresponding

Block size

Matrix for
U

V

X

T

Y

.a,b r,a,bAn • an

2n+l

rt(U) 0 -1
Lo A(K)J

rX{V) 0 -|
Lo A(t/)J
rcoak(X) 0
Lo o>*ah

ca
r<u6 / o "I

Lo co26/J

(X)2J

2M

rA(t/) 0 -i
Lo A(7)J

rA(K) 0 -I

Lo X(U)\

ra>aX(X) 0

Lo <u2oA(X)2

C o]
rco6/ o -i

cn(/)

6«

rA(I7) 0 -i

Lo A(F)J

Lo A(C/)J
-i rA(^) o -I
J Lo APO2J

ca
Lo 0)2!>/J

In particular C*-»(l) = C*-2b(l) = C*'6(0) - C*-"(oo)
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[9] Factor ideals of some representation algebras 117

5. Multiplication of module classes

The multiplication of module classes is defined in the usual way:
If L is {JS?} and M is {J(}, then LM is {Se <g> JK).

We shall consider the multiplication of ^vT6-classes modulo Wj(^).
The effect is that of putting Da = 0, since W^) is a direct summand of
Ax(fS) for any IS and any «3f ^ IS, 6 so there is no confusion in writing L
for L+W,(jre).

The multiplications for if and «s/4 are given in propositions 2—4 of
[1] 7 and equations (6), (7), (9) and (11) —(16) of [3]. However we can be
more specific about C£(co). The convention of Section 4 yields upon a direct
calculation the following result when n ^ m ^ 1:

( m <%(<») C°n(o) = 2CJJ.M if » ^ 2 (mod 3)
1 j Ci(o,)+C^(co) if » # 2 (mod 3).

(This replaces equations (13) and (14) of [3].)
From these results, the distributive law and the law

where S£ is an ^"j^4-representation module and ^ is an SFJf 6-representation
module, we can calculate the products of ^yK"6-classes. We introduce two
points of notation: we write L** for the class {JS?-^*}; and we write / an g
whenever / ~ g or / ~ ljg, that is whenever / and g are members of the same
set of cross-ratios. Example calculations are

A O+6 _i_ A 2o+l>
•™-n+m~r~-tLn+m

and, if m ^ n and / 76 1,

except

moreover
C*(l)C*(l) =

Similar calculations yield the following multiplication table:

6 This follows from Corollary 5 of [3].
7 There is an error in BaSev's work — see p. 88 of [3].
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118 W. D. Wallis [10]

K
B*

<

'(»)+cr^(») 2c:te)

if m

r M i f M s 2 ( m o d 3 ) 0

if n ^ 2 (mod 3)

when n > 1

C*(/) 2C*(/) 2C*(/) 0 0 if

2C*(/) if n ^ 1

C*(/) if w = » = 1

when /

We see from (12) that -|v4{J is an identity element for the algebra
& = Ar(jt

r
6)/Wj(jtr

e), and admits of the orthogonal idempotent decom-
position ^ J = J0+Jlt where

Jo = 6'-

Then

Write Ana = A°nJa, Bna = B°nJa, Cn0 = C°n(a>)J?, Ca
nl = C«(a>)/x- Then

the set of these elements (where a is 0 or 1 and a is any integer modulo 3),
/ „ , Jx and the distinct C*(f) together generate M, since

Al = An0+Anl
Bn = Bn0 + Bnl
Jl 3_A 2.4

Moreover the identity C^+C^+C^ = 0 holds, and so we can drop C^
from the list of generators.

Writing Xa = \A^ we see that Ana = 2(Xa)
n and B«a = 2(Xa)-

n,
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[11] Factor ideals of some representation algebras 119

so the set generated by all the Ana and Bna for a given a. is isomorphic to
#[XO, 1/XJ. If we write s/0 for the algebra generated by all the C*{f)
and Cn0, and s/x for that generated by the C^, then

where j / a is an ideal of ,
We next set up orthogonal idempotents which generate J / 0 and

For j / 0 we use

( ) t . 1 ( ) ) if » > i ,
= i (C 2 0 +( - l ) n V2C10) if n = 1 or 2,

if » > 2,
)) if » = 1 or 2, / g& 1,

hit) = KCC/J-C:.^/)) if * > 2, / ^ 1.
In each case, ̂ /B(/) ~ <€In{f).

To consider J / J we set

K = i ^ + C - l ) " V2CJ0 if ft = 1 or 2,
^ = A.C^-A,_1Ct.1>1 if ft > 2,

where hn = ^ if n = 2 (mod 3) and An = — 1 otherwise.
The i?« are orthogonal and ̂ K» s *[«2, « i , «2]. Since X^

and Xj+iiCi+Kj = 0 we see that if we put

where u is a primitive cube root of unity in <€, then

= @Ln0 0 ^L n l and ®Lna ~

From these we can find the structure of 3t. A^J^^ ^ 0t © W,
and WyM^g) s "̂  © ^, so Air{J/'^) has the following form to within
isomorphism:

(13)
©{«'©«'}

where ©x ranges over all positive integers n and all / e ^" u {oo} modulo
the relation «*, and ©2 ranges over the positive integers n and a = 0, 1.
The /„(/) and the Lna are sets of orthogonal idempotents, and
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X0In(f)=In(f),

[12]

(14)

120

We work similarly in the ^V1 case. The 0^"-projective
tion module classes are considered modulo Wj(^V7), and find the following
multiplication table for Sf = A

m <n At
36,d

Aa+b,e+d

. *a+2&,
"• Jn+n

ja+b.c+d
^n—m

, c+2d

Ba+b, c+d

• Ro+26,c+2d

if n T^ 1, M = 2 (mod 3)

if n ^ l , n^k2 (mod 3)

0 if

if / ss

Ce+d(f) iifn
m = n — 1

2Cc+d(f) U

Write S = ^g-1+^J-°+^J'2. The identity element
of an orthogonal idempotent decomposition:

J° of ^ admits

0' =

/o = &

We proceed much as before. It is clear that £? is generated by the Jx and
the elements
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[13] Factor ideals of some representation algebras 121

4 40,0 T r> A0,0 jj
x

cn>0(f) = cyvvo Q,IO(/) = cy
Cn,0H = CrWJo QioH = C^

where a ranges through the integers modulo 3, x through {0, 01, 10, 11, 12}
and / through the non-equivalent members of & other than eo under the
relation m.

Putting Yx = \Alx we obtain as before An-X = 2{Yx)
n, Bn>x = 2{Yx)-»,

and

where 8$x is an ideal. We then write

I nit) = i(C2,o(/) + ( - l ) " V2C1>0(/)) if n= 1 or 2,
hit) = i(CB,o(/)-Cn-i,o(/)) if « > 2,

«:.io(/) = i(Q,io(/) + ( - l ) " V2C1>10(/)) if n = 1 or 2 and / 96 1,
io(/)-Q-i,io(/)) if » > 2 and / 96 1,

if » ^ 1,
- l ) n V 2 C ? . » ) if » = 1 or 2

^,-(«») = *»Ci: , .H-A1,_1C:_l i .H if » > 2,

where x = 01, 11 or 12 and hn is defined as before. It is found that {/„(/)},
{Knioif)} a n ( i {K° x(co)} are sets of orthogonal idempotents generating
ao,'aM and am. £fln{f) ~ <£In{f) and S?Ko

nil0(l) ~ «X2,M(1); in the other
cases we find

so we put

For convenience write Ln010(l) = i^",io(l)-
Proceeding as before we find Ayl^V?) is

© {^[^10, i / y w ] + ©

where ©x is over all elements / of IF, modulo m, and all positive integers n,

©2 is as ©x, and also over a = 0, 1, except for the case / = 1, a = 1,
©3 is over x = 01, 10, 12,
©4 is over all n 5: 1 and a = 0, 1, and we have

https://doi.org/10.1017/S1446788700005681 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005681


122 W. D. Wallis [14]

Y0In(f)=In(f)

The classes of ,2?2-projective ^-modules are D and Cx(l). Therefore

( s ^ ( 1 ) e «• e «•

s wlt0(i) e * *

Thus WY{^V6) = m^I-Sy). I-SS) e@J0, so we need only consider this
factor. It can be split into two components, one of which is #7^(1), by the
idempotent decomposition

say.
If we write Xo = X0J0, then the decomposition of ̂ J o is just that of
with Xo replaced by Xo, and with the case / = 1, n = 1, dropped from the
summation. Notice that X0In(f) = X0In(f) except when n = 1 and / = 1.
The same considerations apply to the yT7 case. Therefore when ft = 6 or 7
the form of W^JV^ is just that given in (13) or (15), provided that the
final term consisting of copies of t> is omitted and that the case n = 1, / = 1,
is dropped from all direct sums where it occurs.

6. Semisimplicity

It is now easy to see that Wr(^T6) and Wr(J^7) are semisimple. If
•J/J is any algebra of the form

(16) six = v[X, iix]+a

where 3S is an ideal of the form © *ifJr with r ranging through some indexing
set, then sfx is semisimple. 8 It is clear that if s^x © jtf2 © • • • is a finite
sum of semisimple algebras then it is semisimple. But both Wir(J

r
6) and

W^JT^) are of this form, where each s/( has the form of s/x in (16). There-
fore we have the following result.

(17) THEOREM. TF^(^6) and W^JV^) are semisimple.

References

[1] V. A. Basev, 'Representations of the group Z , x Z , into a field of characteristic 2',
(Russian) Dokl. Akad. Nauk SSSR 141 (1961), 1015—1018.

[2] S. B. Conlon, 'Twisted group algebras and their representations', / . Ausl. Math. Soc. 4
(1964), 152—173.

8 The proof is an easy generalization of the proof of the Theorem on p. 90 of [3].

https://doi.org/10.1017/S1446788700005681 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005681


[15] Factor ideals of some representation algebras 123

[3] S. B. Cordon, 'Certain representation algebras', / . Aust. Math. Soc. 5 (1965), 83—99.
[4] S. B. Conlon, 'The modular representation algebra of groups with Sylow 2-subgroup

Z2XZ,', / . Aust. Math. Soc. 6 (1966), 76—88.
[5] S. B. Conlon, 'Structure in representation algebras', / . of Algebra 5 (1967), 274—279.
[6] J. A. Green, 'A transfer theorem for modular representations', / . of Algebra 1 (1964), 73—

84.
[7] A. Heller and I. Reiner, 'Indecomposable representations', Illinois J. Math. 5 (1961), 314—

323.
[8] M. F. O'Reilly, 'On the semisimplicity of the modular representation algebra of a finite

group', Illinois J. Math. 9 (1965), 261—276.
[9] H. Wielandt, Finite permutation groups (Academic Press, 1964).

La Trobe University
Melbourne

https://doi.org/10.1017/S1446788700005681 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005681

