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ON THE ZEROS OF SECOND ORDER LINEAR
DIFFERENTIAL POLYNOMIALS

by J. K. LANGLEY
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We determine all functions /(z) meromorphic in the plane such that /'(z)//(z) has finite order and /(z) and
F(z) have only finitely many zeros, where F(z) = f"(z) + Af(z) for some constant A.

1980 Mathematics subject classification (1985 Revision): 3OD35.

1. Introduction

Our starting point is the following result of Frank, Hennekemper and Polloczek [3]:

Theorem A Suppose that f(z) is meromorphic in the plane, and that f(z) and f(k){z)
have only finitely many zeros, for some /c^3. Then f'(z)/f(z) is rational, that is
/(z) = R(z)exp(P(z)), where R(z) is rational and P(z) is a polynomial.

A comparable result classifying functions /(z) meromorphic in the plane such that
/(z) and f"(z) have only finitely many zeros is not known. It is natural to extend the
above problem to consideration of the zeros of a meromorphic function /(z) and a
linear differential polynomial F in f(z), that is

<k> I aj(z)f^(z) (1.1)

where the a, are, say, rational. Among other results in [2], Frank and Hellerstein
classified completely those entire functions f(z) such that f(z) and F{z) have only
finitely many zeros, where F is given by (1.1) with fc^2 and the a,- polynomials. They
also showed that if / is meromorphic in the plane, and / and F have only finitely many
zeros, where /c^3 and the a,- are again polynomials, then / ' / / has finite order
determined by the degrees of the ay For constant coefficients, Steinmetz proved the
following [15]:

Theorem B. Suppose that f(z) is meromorphic and non-constant in the plane and that
f(z) and F(z) have no zeros, where F(z) is given by (1.1) with fc^3 and ao,...,ak-1

constants. Then f satisfies one of the following:
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266 J. K. LANGLEY

f(z) = exp(az + b + ecz+d); (1.2)

f(z) = eaz+b(e"+d-iyn; (1.3)

f{z) = ea'+b(z-c)-n.

Here a, b, c, d are constants and n is a positive integer.

The following was proved in [12];

Theorem C. Suppose that f(z) is meromorphic of finite order in the plane, and that
f(z) and F(z) have only finitely many zeros, where F(z) = f'\z) — a.f(z) for some constant
a. / / a = 0, then f'/f is rational. 7/a^O, then either f'/f is rational, or f is given by
(1.3).

The case <x = 0 in Theorem C represents a slight improvement of a result of Mues
[14]. Now the hypothesis that / has finite order appears in Theorem C because the
method of [12] uses asymptotic integration in sectors for / , with the Phragmen-
Lindelof principle used to "fill in the gaps". With a weaker assumption on / we shall
prove here:

Theorem 1. Suppose that f(z) is meromorphic in \z\^R, and that ao{z) and ax{z) are
analytic there, with

a,(z)=0(|zp-2). (1.4)

Suppose that f(z)F(z) has no zeros in \z\ ̂  R, where F is given by

Suppose finally that N(r,f) has finite lower order. Then f'/f has only finitely many poles
in \z\ ̂  R, with a pole or removable singularity at infinity.

Here N(r,f) counts the points at which / has poles, each counted just once (see
Section 2).

Corollary. / / f(z) is meromorphic in the plane, if f(z) and f"(z) have only finitely
many zeros, and if f'/f has finite order, then f'/f is rational.

Theorem 1 is sharp at least to the extent that the coefficients a-(z) cannot be made
any larger. For example, /(z) = sec (-Jz) has no zeros, and nor has

F(z) = /"(z) + (l/2z)/'(z) + (l/4z)/(z) = /3(z)/2z.
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LINEAR DIFFERENTIAL POLYNOMIALS 267

It seems reasonable to believe that Theorem 1 would be true without any restriction on
N(r,f). A comparable result is proved in [13] for k at least 3 and small rational
coefficients in (1.1). Also [11] contains a result with extra hypotheses on / and F, but
which allows slightly larger coefficients a,. The assumption made on N(r,f) in Theorem
1 is however considerably weaker than that of Theorem C, making no restriction on the
multiplicities of poles of / .

For the case a^O of Theorem C, we have the following:

Theorem 2 Suppose that /(z) is meromorphic in the plane, and that f(z) and F(z) have
only finitely many zeros, where F(z)=/"(z) —a/(z) for some non-zero constant a.
IfN(r,f) has finite lower order, then either f'/f is rational, or f is given by (1.2) or (1.3).

We make the following remark about the proof of Theorems 1 and 2 above. Suppose
for example that / and / " have only finitely many zeros. Then, as in [14], the function
z—(///') is a quotient of solutions of an equation w" + bw = 0, where b has only finitely
many poles. With our assumptions, b turns out to be rational. The proof then depends
on demonstrating the existence of unbounded regions where / ' / / has infinitely many
poles whose residues are incompatible with arising from poles of / . This is the key to
both proofs. It seems very difficult however to apply this in the general case where b
may be transcendental.

2. Preliminaries

We use the following notation. For r^O, and a, /? real, then

S{r,a,P) = {z:\z\>r, a<argz</?}.

We use W(u, v, w) to denote the Wronskian of u, v, w.
We need the Nevanlinna theory for functions meromorphic in 0<R^\z\< +oo. (See

for example [1, p. 98].) For such a function /(z), we have a representation /(z) =
z"h(z)G(z), where n is an integer, h(z) is analytic in \z\^R with a removable singularity
at infinity, and G(z) is meromorphic in the plane. (See [16, p. 15] for a proof of this
fact.) We can thus define Nevanlinna functionals m{r,f),N(r,f), etc. for r^.R, where

N(r,f) = ]n(t,f)dt/t,
R

and n(t,f) is the number of poles of / , counting multiplicities, in R^ |z |^ l . N(r,f) is
defined similarly, with multiple poles counted just once. The first fundamental theorem,
in this setting, becomes, for finite a,

-a)) = T(r,/) + 0(logr).

Now / has a pole or removable singularity at infinity if and only if T(r, f) = O (log r)
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268 J. K. LANGLEY

through a sequence tending to infinity. Moreover, T(r,f) differs from a non-decreasing
function by a term which is O(logr). Denoting by S(r,f) any quantity which is
0(log+ T{r,f) + log r), possibly outside a set of finite linear measure, we have
m{r,f'/f) = S(r,f). We can define the order and lower order of such terms just as in
[6, p. 16]. Finally we remark that Clunie's lemma is valid in this context. If P(f)f = Q(f),
where P{f) and Q(f) are differential polynomials in / whose coefficients a(z) satisfy
m(r,a) = S(r,f), and if Q(f) has total degree at most « in / and its derivatives, then
m(r,P(f)) = S(r,f). The proof is identical to that in [6, p. 68].

3. Lemmas needed for the proofs of Theorems 1 and 2

Our proofs make extensive use of Hille's method of asymptotic integration of the
equation

O. (3.1)

(See [8, Chapter 7], or [9]). Suppose that al and a0 are analytic in a sector
S1 = S(rl,9o-a,eo + a), such that ax(z)=0(|z|~1) and a'1(z) = 0{\z\-2) and

ao(z) = yz%l+0(l/\z\)) (3.2)

there, where nS: — 1, y is a non-zero constant and 0^a^2n/(n + 2), and a^n if n= — 1.
We first make a change of variable y = uv, where v'/v= —ajl, so that u satisfies

u" + b(z)u = 0 (3.3)

and b(z) = yz"(l + o(l)) as z tends to infinity in St. Now take a large z0 in St: setting

(3.4)

where /? = y1/22/(n + 2), makes Z analytic and one-one in a sector

-e).

Here r2 depends on a, which may be chosen arbitrarily small and positive. Now (3.1)
has linearly independent solutions

-l)kiZ) (3.5)

in S2, for k= 1,2, and any solution y of (3.1) satisfies

2 (3.6)
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there. If argz = 0o is a critical ray for (3.3), that is

Arg y + (n + 2)0o = O (mod 2n) (3.7)

then Re(ipzln+2)l2) = 0 on this ray, and if \0—8O\ is small and positive, then for large z
on argz = 0, one of the solutions (3.5) is large and the other is small. We need:

Lemma 1. Suppose that at and a0 are rational, such that at vanishes at infinity and a0

satisfies (3.2) with y # 0 and n^.— 1. Suppose further that (3.1) has linearly independent
solutions which are meromorphic in the plane. Then n # — 1. Also if n = 0 then there exist a
non-zero constant A and rational functions Ri,R2 such that Rl(z)eAz and R2(z)e~Az are
solutions o/(3.1).

Proof. The first part is essentially Theorem 2 of [7]. If n= — 1, we can choose 60

satisfying (3.7), and for a small positive E, determine a non-trivial solution y of (3.1) such
that for some positive cu

| ^ - c 1 | z | 1 / 2 (3.8)

in a sector S(r2,60 + e,60 + 2n — e). But y(z) has only finitely many poles and order at
most 1/2, and so must be rational, by (3.8) and the Phragmen-Lindelof principle [4,
p. 104]. This is a contradiction, as no rational function can satisfy (3.8) without
vanishing identically.

For the second part, we can again take 90 satisfying (3.7). Now (3.4) becomes

l\ogz+0{\/\z\)

for some constants b, and A with / l # 0 . Thus (3.1) has a solution satisfying

y(z) = z"2(\+o(l))eA'z

in S3 = S(r3,0o + e,6o + n — e), say, with b2 a constant and A^=±A, and such that
e\p{Aiz) tends to zero in S3. Determining a representation for y in S4 =
S(r2,do — n + e,9o — e), we see that since y has only finitely many poles and order at most
1, then y(z)e\p( — A1z) must be rational, using the Phragmen-Lindelof principle again.
We can make a second such solution similarly.

Lemma 2. Suppose that /(z) is meromorphic in \z\ ^ R, and that f and F have no zeros
there, where

F(z) = /"(z) + a, (z)f'(z) + ao(z)f(z)

and ao,av are analytic in |z|_i? and satisfy (1.4). Then for all r outside a set of finite
linear measure we have

T(r,f'/f) =
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Proof. Obviously we may assume that H = f'/f has an essential singularity at
infinity, for otherwise there is nothing to prove. We follow the now standard Tumura-
Clunie method [6, pp. 69-73].

Setting G = F/f, and A = H'-G'H/2G, we obtain m(r,A) = S(r,H) from Clunie's
lemma. We define h formally by h2 = G, so that setting g = al+h'/h we have

G = (H+g/2)2 + B

where B = A + ao—g2/4 satisfies m(r,B) = S(r,H). Writing U = H+g/2, we obtain UP = C,
where m(r,C) = S(r,H) and P = 2U'-(G'/G)U. Thus m(r,P) = S(r,H) by Clunie's lemma.
If P is not identically zero, we get

and the conclusion follows. If P vanishes identically, then G = U2 + B = cU2 for some
constant c. If c / 1 , then m(r,U) = S(r,H) so that m{r,H) = S(r,H). Finally if c= l then
substituting H = U-g/2 into G = H2 + H' + aYH + a0 and using the fact that h'/h = U'/U
we obtain

g2f4-g'/2 -gaJ2 + ao = Q,

which implies that g is analytic in \z\ > R and has a removable singularity at infinity,
with g(oo) = 0. Hence G is analytic in |z |># with at most a pole at infinity, and the
same is true for H, by Clunie's lemma.

4. Proof of Theorem 1

We assume that there exists a function /(z) meromorphic in |z|^i?>0 such that fF
has no zeros there, where

z)f(z) (4.1)

and aj(z),ao(z) are analytic in |z|^K with

a,(z) = O(|zp-2). (4.2)

We assume that N(r,f) has finite lower order, and will show that / ' / / has only finitely
many poles in \z\ ^ R, with at most a pole at infinity.

We take a sector So = S(R, a, a + 2n) for some real a, and define a function g analytic
on So by

(4.3)
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We remark that g might not be meromorphic on | z | ^ # , but certainly g2 is, and so is

g'/g-
Now the equation

y" + a1y' + aoy = 0 (4.4)

has by (4.2) a regular singular point at infinity, so that by [10, Chapter 15], (4.4) has a
solution fi(z) analytic in So such that for some constant ylt the function hl(z) =
/1(z)z"yi has a removable singularity at infinity, with /J1(OO) = 1. We can also define a
function W analytic in So by

W'/W=-al (4.5)

so that for some constant y2, the function h2(z) = W(z)z~Y2 is again analytic in \z\^R,
with a removable singularity at infinity, and with h2(co)=l. Finally we can define a
second solution f2 of (4.4) by

W (4.6)

so that f2 is analytic in So with

log+|/2(z)j=O(log|z|). (4.7)

Now (4.6) implies that

W(fuf2,f)=WF = Wf/g2

so that, proceeding as in [2],

W{wl,w1) = W (4.8)

where for 7 = 1,2,

"j=f'jg+fjh (4.9)

and

h=-(flf)g. (4.10)

Now g and h are analytic in So, and therefore so is each Wj, so that (4.8) implies that
Wy,w2 are linearly independent solutions of an equation

v = 0 (4.11)
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272 J. K. LANGLEY

where bl is analytic in So. Here we used the fact that W is non-vanishing in So. We
claim that b^ is in fact analytic in |z|>#, with at most a pole at infinity.

To establish this claim, first note that

Wi=S/i((/'i//i)-(/'//)) (4.12)

so that Wi/vfi is meromorphic in |z|>.R, and therefore so is bt. Now by Lemma 2 there
is a sequence rm-> + oo such that

for some positive JW,, so that writing (4.12) in the form w1=g/1</», and using (4.3) we
obtain

T(sm,g2) + T(sm,<P) = O(s^) (4.13)

for some sequence sm-> + oo. Now (4.12), (4.13) and the lemma of the logarithmic
derivative imply that

m(r,b1) = O(logr) (4.14)

through a sequence of r tending to infinity. To complete the proof of the claim, we note
that we are free to define, in a sector S, = S(R, a — n, a + n), functions g*, h*, W*, ff and
wf in exactly the same way as g, h, W, fj and Wj were defined above. Thus wj and wf
are analytic solutions of some equation

where b\ is analytic in St. But it is quite clear that in the intersection of So and Su wf
and wj are linear combinations of Wj and w2, so that fcf = bl and bx is analytic in St.
Now (4.14) implies that bY has at most a pole at infinity.

Suppose now that b^ satisfies b1(z) = O(\z\~2) as z-»oo. Then the equation (4.11) has a
regular singular point at infinity so that

as z->oo in So. But

g = (w2f1-WJ2)/W (4.15)

so that using (4.7) and that fact that W(z)z~y2 has a removable singularity at infinity we
obtain

log+|g2(z)| = 0(log|z|)
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in So. A similar estimate holds in St, so that T(r,f/F) = 0(log r) and the conclusion of
Theorem 1 now follows from Lemma 2.

We consider now the case where fc1(z)#O(|z|"2) as z-»oo, and may write

Mz)= t °tzk (4.16)

in |z|>K where a* ̂ 0 and n ^ - 1 , and we set N = (n + 2)/2^ 1/2. We shall eventually
show that this case is impossible. We assert first that

T(r,f/F) = O(rN). (4.17)

For the region \z\ > R may be divided up into overlapping sectors in which using the
method described in Section 3 we have

log+|w(z)| = O(|z|")

for any solution of (4.11). Defining g, h, W, f} and vv, in such sectors as above, and
applying (4.15) we obtain (4.17). We now choose a real 0o satisfying

Arg(a*) + (n + 2)0o = O(mod2w), (4.18)

and take a small positive 5 t . We take analytic solutions / i and f2 of (4.4) in a sector
S2 = S(R1,90 — S^BQ + SI) such that W(fi,f2) = W, and functions g, h, wl5 w2 as in (4.3),
(4.9) and (4.10), all defined exactly as in Su keeping the same notation for convenience.
We define additional analytic functions I/,, U2, Gt and G2 in S2 by

Uj=W-1/2Wj and Gj=W-ll2fj (4.19)

for j= 1,2. We have, by (4.6) and (4.8),

W(Ul,U2) = W(Gl,G2) = l (4.20)

and GltG2 solve an equation

y" + A*y = 0, (4.21)

where A* is analytic in \z\ > R with

A*(z) = O(\z\-2), (4.22)

using (4.5). Also Ux, U2 solve
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u" + Bu = O (4.23)

where

(4.24)

is analytic in |z |>#. Now provided J?t is sufficiently large and <5X is sufficiently small,
the equation (4.23) has in S2 linearly independent solutions ut,u2 given by

l)k + 1iZ) (4.25)

where for a suitable point z0,

Z=] B{t)1'2dt= -ipzN + O(\z\N-1l2). (4.26)

Here /? is a non-zero constant, and by (4.18), Re{fizN)=Q on argz = 0o. We can write

(4.27)

for constants Cu C2, Dl and D2, where Ct and C2 cannot both vanish, and nor can D%

and D2. Finally we set

(pi = C2G1-C1G2 and 4>2 = D2G^-D^G2 (4.28)

and note that by (4.15), (4.19) and (4.27),

(4.29)

We make some observations about Gx and G2. Now Gt is determined from flt which
is chosen so that fxz~yi has a removable singularity at infinity. Further, G2 is
determined from f2, which is required only to satisfy W(f1,f2) = W. Thus we are free to
choose G2 subject only to (4.20). We can assume therefore that in S2,

) (4.30)

and that since

we have

G 2 /G 1 =( l -2v) - 1 z 1 - 2 v ( l+o( l ) ) (4.31)
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or, if v= 1/2,

G2/G1=logz + o(l) (4.32)

in S2. We thus have

G1G2 = z(l-2v)-1( l+o(l)) or G1G2 = (zlogz)(l+o(l)) (4.33)

in S2. We shall establish the following Claim:

Claim. There exist constants k > 1 and K > 0 with the following property. There exist
arbitrarily large positive r such that in

X~lr<\z\<kr, largz-flol-c^,

f(z) has no poles, while for 7 = 1,2,

|log|0/z)||gKlog|z|. (4.34)

To prove this Claim we set

H = (UJU2)(f2/fl)=(Ul/U2)(G2/Gl). (4.35)

By (4.9) and (4.19),

and thus at a large pole of/ in S2 we must have H—\, since / t and f2 are non-zero for
large z in S2, by (4.30) and (4.31) or (4.32). Also a pole of / is a zero of g, but not of h,
so that C/j and U2 cannot vanish at a large pole of / , and H cannot have pole there.
Also

{f\lh)-(f'ilfi)= ~ WI(fJ2)= -1/(6,62).

Thus at a large pole of / in S2, we have H = 1 and / ' / / has a simple pole with residue
equal to

(-l/(G1G2))/(-H')=((f/7H)(G1G2))-1=(l-(G1G2)/(l/1t;2))-1 (4.36)

by (4.20) and (4.35).
Assume for the time being that Re(l-2v)#0 and that G ^ G ^ O in S2, that is that

Re (1 - 2v) > 0. At a large pole of / in S2, H = 1 gives

(4.37)
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using (4.27). We note that by (4.25),

»!C2-»1 (4.38)

as z->oo in S2. Recalling that Ui,U2
 a r e non-zero at a large pole £ of / in S2, (4.37)

gives

( O = 0. (4.39)

If C, =0, then D, # 0 and (4.38) and (4.39) yield

(C1vl+Dlv2)(C2vl+D2v2) = O(l) (4.40)

at £. The same conclusion (4.40) holds if Dx =0 and if C ^ ^ 0 . Now (4.40) implies that

IMC) l/2(C) = 0(|5(C)| -1 /2) = O(|C|1/2), (4.41)

using (4.27). Now (4.33) and (4.41) yield

(l/,(C) U2(Q)/(Gl (C)G2(C)) = O(|C|-1/2) (4.42)

which on substitution into (4.36) gives a contradiction, since the residue (4.36) is
required to be a negative integer. In this case therefore / can have only finitely many
poles in S2. By the obvious symmetry of (4.37) and the fact that we are only concerned
with the products GtG2 and UtU2 in (4.36), the same conclusion holds if Re(\— 2v)<0
so that G2jGx ->0 in S2.

Now suppose that 1—2v = 0. In this case, by (4.32), GJG2->0 in S2 again, so that as
above we obtain (4.39) and (4.40) at a large pole £ of / in S2. By (4.33), (4.42) now
becomes

and we have a contradiction as before.
We have thus proved that if Re(l — 2v)^0 or if v= 1/2 then / has only finitely many

poles in S2. Moreover, in this case (4.34) holds for all sufficiently large z in S2, by (4.30)
and (4.31) or (4.32).

We still need to establish the Claim in the case where 1 — 2v = ifi, where n is real and
non-zero. In this case, log|G1/G2| = O(l) in S2. For a large pole C of / in S2 we again
have (4.37), which gives, at £,

(C, - C2GJG2)Vl +{Dl-D2Gl/G2)v2=0. (4.43)

Using (4.38), this equation clearly gives
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(4.44)

unless one of the coefficients of vlfv2 in (4.43) is small. Now (4.44) leads to (4.41) again,
and we obtain (4.42) and a contradiction as before. Therefore in this case, for any et >0,
/ has only finitely many poles in S2 outside the set where

|C1-C2G1/G2 |<e1 or \D1-D2GJG1\<E1.

By (4.31) it is clear that there are regions free of such points as described in the Claim.
In such regions (4.34) follows from (4.30) and (4.31), and the Claim is proved in all
cases.

We are now in a position to obtain a contradiction, and show that the case
ft1(z)#O(|z|~2) is impossible. We take a region

A~1r<|z|<Ar, l a r g z - 0 ^ ^ ! ,

with r large, on which / has no poles and hence g has no zeros, and on which (4.34)
holds. Setting p = Xul, standard estimates yield a positive constant K2 such that

ig'tf/giz^Ks"-1 (4.45)

on

For g2 is analytic on |z|^R, and by (4.17) can be represented as the product of a power
of z, a function with a removable singularity at infinity, and an entire function h3 with
T(s,h3) = O(sN). We recall that g = Mi</>i + u2<£2, and that ut and u2 are given by (4.25)
and (4.26), where Re(/izN) = 0 on argz = 0o. We assume without loss of generality that
Re(fizN)>0 on 0 o <argz<0 o + 51. For any fixed 82 in (0,5j/2), we have, if r is large
enough,

(4.46)

on p~1r^\z\^pr, argz = 0o + ( —1)*+1<52. Here K3 is a positive constant, and (4.46)
follows from (4.25) and (4.34). Let F be the contour consisting of the arcs

Iz^p"1/-, \z\ = pr, |argz-0o|g<52,

and the straight line segments joining their end-points, and let the vertices of r be X,,
^i, Y2, X2, ordered anti-clockwise, with Xi=p'1rexp(i(90 — 82)). By (4.45) there is a
positive constant K4 such that the integral of g'jg around the curved parts of F,
described in the positive sense, has modulus at most 52K4r

N. Choose 52 so small that
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By (4.25), (4.26) and (4.46), if r is large enough,

\ogg(Yl)-\ogg{Xl) + \ogg(X2)-\ogg{Y2)= -2peiNe°rN(pN -p-N)cos(NS2) + r,

where, for some positive constant K5,

If r is large enough, this contradicts the argument principle.

5. Proof of Theorem 2

Suppose that /(z) is meromorphic in the plane and that / and F have only finitely
many zeros, where

F(z) = /"(z)-a/(z) (5.1)

and a is a non-zero constant. Suppose further that N(r,f) has finite lower order. By
results from [2], where we apply Theorem 1 if / is entire and Lemma 8 if / is not
entire, / ' / / has finite lower order. We shall prove that either / is given by (1.2), or /
has finite order, so that in the latter case we can appeal to Theorem C. Clearly we may
assume that <x = 1, that / is transcendental, and that F is non-constant.

We begin by defining a rational function R and an entire function g by

g{z)2 = R(z)f(z)/F(z) (5.2)

Now g has finite lower order, and so has

h(z)=-(f'(z)/f(z))g(z) (5.3)

which has only finitely many poles. Indeed there is a sequence sn tending to infinity such
that

T(sn,g) + T(sn,h) = O(s?>) (5.4)

for some positive M,. To see this, we need only take a corresponding sequence s'n for
T(r,f'/f) and if necessary make sn slightly smaller. Now

W{e*,e-\f)=-2F=-2Rf/g2

so that

W(wuw2)=-2R (5.5)

where for j= 1,2,

(5-6)
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with

/i(z) = ez, /2(z) = e~z- (5-7)

Each Wj is meromorphic in the plane with only finitely many poles and with finite lower
order, by (5.4). Now (5.5) implies that tv,, w2 are linearly independent solutions of an
equation

w"-(R'/R)w' + b1w = 0 (5.8)

where b^z) is meromorphic in the plane and has only finitely many poles, since
poles of bt can only arise from poles of the Wj and zeros of their Wronskian. Since
wt has finite lower order the lemma of the logarithmic derivative implies that fej(z)
is rational. We shall show that b1(oo)#0,oo by considering the two contrary cases
b1(oo)=0, b1(oo) = oo separately.

Suppose that bl(co) = 0. Then by Lemma 1 we must have bi(z) = O(\z\~2) as z-»oo,
so that (5.8) has a regular singular point at infinity. Thus each vv, is rational, and by
(5.6) and (5.7) we obtain

/ 7 / = (»i+ l) / (»i-1)

where vl = Tle
2z and T1 is rational. Thus / ' / / has infinitely many poles at points where

t>i = 1, and at a large such pole / ' / / has residue

But this implies that / has infinitely many zeros, which is a contradiction.

Suppose that t»1(oo) = oo. Then we can write

fc1(z) = anz
n + an_1z"-1 + --- (5.9)

for large z, where n is at least 1 and a n / 0 . Set 7V=(n + 2)/2. We observe first that the
plane can be divided up into overlapping sectors in which we have (see Section 3)

log+|w(z)| = O(|z|")

for every solution of (5.8). Solving (5.6) for g we obtain a similar estimate for log+ \g{z)\
and deduce that

T(r,g) = 0{rN). (5.10)

We now take 90 in (— n/2, n/2) satisfying
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Arg(an) + (n + 2)0O = O (mod 2n) (5.11)

and will proceed to a contradiction. We shall first establish the following Claim.

Claim 1. For any positive ex and ru f has infinitely many poles in the sector

We again use the method of asymptotic integration as described in Section 3, and a
fairly standard application of the argument principle. Obviously we may assume that rt

is large and that £j is small. Now the equation (5.8) has linearly independent solutions
Mj and u2 in St given by

l)J+1/Z) (5.12)

where

b(z) = bl(z) + R"/2R-3R'2/4R2

and

iZ = piz
N + O(\z\N-1'2). (5.13)

Here pt is a non-zero constant. Also Re{p1z
N)=0 on argz = 0o, and we may assume

that Re(Plz
N)>0 on Siri^o^o + e^. Now we can write

Uj = F'jg + Fjh

for j= 1,2, where Fly F2 are linearly independent solutions of y"—y = 0, and so

g=(u1F2-u2F1)/W(F2,F1). (5.14)

Now (5.12), (5.13), (5.14) and obvious estimates for F,, F2 imply that for any sufficiently
small positive (5t there exists r 2 >0 such that for |z|^r2, argz = Q0 + ( — l)J8l, we have

\ogg{z)={-\y^zN + O{\z\N-^). (5.15)

Here we have used the fact that F t and F2 cannot vanish in Slt by the choice of 9Q.
Now if/ has only finitely many poles in Su (5.10) and routine estimates yield a positive
constant K, such that

l l z r * 1 (5-16)
in S(r3,6o — Ei/2,6o + el/2) if r3 is large. Take a large r4 and r5 with rjr^ large, and let T
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be the contour consisting of the circular arcs from rkexp(i(0o + ^1)) to rkexp(i(0o — <5i)),
for k = 4,5, and the straight line segments joining them, F described anti-clockwise. Now
the integral of g'/g around the two circular arcs in the positive sense has, by (5.16),
modulus at most K^^ for some positive constant K2. Choose <5X so small that
K2di<\pie

iN6ocosN5i\. By (5.15), if r4 is large enough, then the integral of g'/g along
the two straight line segments, again in the positive sense, is equal to

- 20! (rN
5 - rj) eme° cos N8t + O(rN

5~
1/2).

This is clearly impossible, and Claim 1 is proved.

We now examine the residues of the poles of / ' / / in Slf to obtain a contradiction
and thus show that bl(co) = oo is impossible. By the choice of 60, we may assume that

|e2z|>|z|2n (5.17)

in Sl. Now (5.6) yields

f'/f = (l+H)/(l-H) (5.18)

where

H = e-2zwjw2. (5.19)

At a pole of / in St we have H=l, and / ' / / has a simple pole with residue —2/H'. At
a 1-point of H,

H' = H'/H=-2+W(w2,wl)/(wlw2)=-

using (5.5). So the multiplicity of a large pole o f / i n St is

( _ l + K / ( W l W 2 ) ) - i . (5.2O)

Set

W}{z) = R{z)-'l2b(z)^Wj{z). (5.21)

At a large pole of / in S,, ( say, we have

e2i = W1(C)/W2(Q. (5.22)

We may write, by (5.12),

in Su for some constants Cu Du C2, D2, and observe that there are positive constants
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e2 and K3 such that if C is large and |W2(O|<£2 then \W1(C)W2(Q\^K3. But this last
estimate gives, using (5.21),

which on substitution into (5.20) yields a contradiction. On the other hand,
leads to

by (5.17) and (5.22), so that in this case

if C is large enough, and again (5.20) gives a contradiction.
We are therefore left only to consider the case where b1(oo)^0, oo, the alternative

cases having each led to a contradiction. Now by Lemma 1, the equation (5.8) has
linearly independent solutions Vte

Az, V2e~Az, where Ft and V2 are rational, and A is a
non-zero constant. Now (5.3), (5.6) and (5.7) give

K ' 'f ' + f

where Alt A2, Bx, B2 are constants. We note that At and A2 cannot both vanish, and
nor can Bt and B2, since wt and w2 are linearly independent. We shall complete the
proof of Theorem 2 by dividing this case up into subcases.

Subcase 1. Suppose that Ar = B2 = 0, or Bl = A2=0.
Then (5.23) yields

/ ' / / = - l+2/( l -» 2 )

where v2=V3e
d<z with V3 rational, and dt a constant. If dl=0, then obviously / ' / / is

rational. If d^ ^0 then / ' / / has infinitely many poles at points where v2 = 1, with residue

-2/v'2= -2/((K'3+J1 V3)^
z)= -2/d,
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So 2/dl must be a positive integer, and V3 must in fact be constant, and / is given by
(1.3).

Subcase 2. Suppose that AlBlA2B2¥
z0.

We shall show that in this case / has finite order. From (5.23) we see that there exist
a real 0t and positive r6, K4 and K5 such that for large z outside the semi-infinite
"logarithmic" strips

J | | | | o g | z | / | z | } (5.24)

we have

where |log|</>(z)||^K5. This clearly gives

(5.25)

for large z outside fti,ft2
 a nd the semi-infinite strips ft3)ft4 given by |z|>r6,

|i?e(z)| <K6, say. For a large z outside the Q7 this leads to

log+|l//(z)| = O(|z|). (5.26)

Now setting G = / ' / / , (5.23) yields T(r,G) = O(r). By Theorem 3 of [5], we can certainly
obtain

|G'(z)/G(z)|^(logr)4 (5.27)

for all z on |z| = r, where r lies outside a set of finite logarithmic measure. For such r,
(5.25) and (5.27) lead to

G(z) = 0(exp(logr)e)

on \z\ = r, for some positive Q, and hence using (5.26) we obtain

2e) (5.28)

on the same circle, if r is large. On the other hand, if Q is one of fi1; fi2, fi3, fi4, and
A3, Ax are suitably chosen constants, then by (5.26) the subharmonic function

4/{z) = \og+ \eAiZ+A'f{zyl\

vanishes on the boundary of Q. Estimates for harmonic measure [4, p. 104] now show
that either \j) vanishes for all z in ft, or
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lim inf m(s) expf - n J dt/tO(t)) > 0 (5.29)
s—co V re, J

where m(s) = sup{i]/(z):\z\ = s, z in Q} and Q(t) is the angular measure of the intersection
of Q with \z\ = r. But 6(t) = O((\ogt)/t) so that (5.29) yields \ogm(s)>K1s/(logs), say,
which contradicts (5.28). Thus î (z) = 0 on Q and (5.26) holds for all large z.

Subcase 3. Suppose that exactly one of Ax, A2, Bu B2 is zero.
Then without loss of generality (5.23) gives

(5.30)

or

(f'-f)/(f'+f) = (A2e
2* + B2VeBTl (5.31)

with B constant and V rational. We may assume that (5.30) holds for otherwise we need
only set f3(z)=f( — z) and apply the following argument to / 3 . Now (5.30) gives

/ ' / / = - 1 + 2 / ( 1 - A.e-^-B^e"*). (5.32)

If B= — 2, then (5.32) shows that / ' / / is bounded at least for large z outside a pair of
logarithmic strips, so that we can apply the argument of the previous section to
conclude that / has finite order. The same conclusion holds if B^O, — 2, except that we
may need more than two, but at most six, logarithmic strips ii BlV does not vanish
identically. Finally if B = 0, we obtain

with K4 rational. In this case either K4 is identically zero, in which case / is given by
(1.2) or / ' / / has infinitely many poles at points where V^ = Ale~2z, with residue
2/(V'4. + 2VA). Thus a large pole f of / has multiplicity bounded by a power of |C|, so
that N(r,f) has finite order. We can thus write f = ego/Hl, where Ht has finite order
and g0 is entire. But Lemma 8 of [2] gives m(r,f'/f) = O{logr), and g0 is a polynomial.
Now / has finite order and Theorem 2 is proved.
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