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Two properties of Bochner integrals

B. D. Craven

Two theorems for Lebesgue integrals, namely the Gauss-Green
Theorem relating surface and volume integrals, and the
integration—by~parts formula, are shown to possess
generalizations where the integrands take values in a Banach
space, the integrals are Bochner integrals, and derivatives are
Fréchet derivatives. For integration-by-parts, the integrand
consists of a continuous linear map applied to a vector-valued
function., These results were required for a generalization of

the calculus of variations, given in another paper.

This paper assumes the definition, and standard properties, of
Bochner integrals, as given in Hille and Phillips [2] and in Yosida [3].
Neither of these books gives the theorems proved in this note. Let V
denote & Banach space, over the real field, and let [V] denote the
Banach space of all bounded linear maps from V into V , with the usual

norm. Let I = [a, b] denote a compact real interval; let XE(')

denote the characteristic function of £ , where E 1is a measurable

subset of I .

let G be a bounded open subset of Euclidean p-space RP , with

boundary 3G ; let up(x) denote p-dimensional Lebesgue measure, where

x = (xl, cees xp) ¢ RP , for x ¢ 3G, let vix) and o(x) denote

suitable defined unit exterior normal and surface area on the "surface"

3G , as defined in Craven [1].

If glx) = (gl(x), ces gp(x)] is a p-vector valued function of
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3g. ()

. _ 7 =
(1) divg(x) = iil B, and g(x).v(x) = iil g; (v, (z)

then the Gauss-Green Theorem states that, if G and g satisfy suitable

conditions, then

(2) f divg(x)dbp(x) = j gl(x).v{x)do{x)
G G

If g maps the closure G of & into VP » where V 1is a Banach

space, instead of into RP ,and, for 7 =1, 2, ..., p , gi is

Fréchet-differentiable with respect to Ty for fixed xj (7 #1) , then
(1) and (2) remain meaningful in terms of Fréchet derivative and Bochner
integrals; both divg(.) and g(.).v(.) are maps of ¢ into V . The

Gauss~Green Theorem then holds in the following form:

THEOREM A. Let G be a bounded open subset of RP , such that G

is a countable union of disjoint continuous images of the unit sphere in
RP , and ®(3G) <o ; let ECG satisfy the same conditions as 3G .

Let g : G~ ¥ be a continuous map, such that divg(x) exists at each
point of G - E , and |ldivg(x)| is Lebesgue integrable on G . Then (2)
holds for G, 3G, and g .

Proof., Since the proof differs only in a few key details from the
proof for V.= R (Theorems 1, .2 and 3 of [l]), only the changes need be
stated. By Bochner's Theorem ([3], p. 133), integrability of [|ldivg(x)}
implies that the left side of (2) exists as a Bochner integral. The proof
of Theorem 1 of [1] remains applicable, with the norm .|| of V¥
replacing absolute value |.| where appropriate. In the proof of Theorem
2, equation (11) applies with ||.}| replacing |.| . The definition of

the function ¢ requires modification. Let
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z = gi(xl, sees Tp 0 bi’ Lipqs tves T )

- gi(x s oeees Ty 0 @ps Tpls eees xp)
9g .
i
- fT axi(xl’ ees Ty g Tps Tplls wens 1b)dxi ;

thus 2 € V ., Denote by 3" the canonical image of 2 in the second
dual space V" . Then Lemma 5 of []] applies to

wlx) = f[gi(x s eens Tps Ty Lpls wens & )]
for each f in the dual space V' such that |fll =1 . Then

|f(z)]| =k = N[bi-ai_ul(Ti]] s
so that
izl = liz"ll = sup{|£(=z)| : lIfll =1} = k.

From this, equations (13) and (16) of the proof of Theorem 2 follow, with
.l replacing |.| . Then Theorem 3, with g : G =+ ¥  replacing
g:G~ RP , is an immediate consequence of the modified Theorems 1 and 2.

Integration by parts for the Bochner integral depends on the

following lemma (for integration with respect to Lebesgue measure) .

LEMMA 1. Let f : I -V be Bochner-integrable on I ; let
TO € (V] ; let a<=a<B<b; then

E X(a,s](t)ToU: f(S)ds]dt -

b (rs b
i I Ua X(a,p] H19E) T f(8)ds + (B-a)T, f fls)ds .

a a
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Proof.

f: To[ft f(s)ds]dt
a

B (rt
[ [f (Tof)(s)dstt by [2], Theorem 3.7.12,
a

Q

Ia Uz Tof(s)dt]ds + Jz US Tof(s)dt]ds vy [27,

Theorem 3.T7.13,

0, B
I (B-a)Tof(s)ds + Ja (B—S)Tof(s)ds ;

a
which yields the right side of the stated result by rearrangement.

THEOREM B. If f :I->V and T(.) : I > (V] are

Bochner-integrable on I , then
L_ T(t)U: flo)as]at = - L Ui T(¢)at) flo)as + UI r(¢)dt) UI o))

REMARK. For each t € I , T(t) is a bounded linear map from V

t
into V . If, in particular, V =R , then T(%) f fls)ds is of the

t
form ¢(%) f Ffls)ds , for some function ¢(.) ; and the result reduces
to the usual integration-by-parts formula. But in general, each integral
is a Bochner integral on I = [a, b] or a subinterval.
Proof. Lemma 1 gives the result, in case T(%) = X(a 6](t)To and
’
T, € [V] ; hence Theorem B holds for any Bochner-integrable f and any

step-function 7(.) , that is, any function 7(.) which assumes only

finitely many values in [V] , each on a subinterval of I . In terms of

the norm (||T||| = f [T(t)}ldt , the step-functions are a dense subspace of
I

the Bochner-integrable functions; so Theorem B follows, from the

definition of Bochner integral.

Theorem B has a variant in terms of line integrals in a (real) Banach

space V , taken by convention along straight segments. If a, b €V , B8

is a real variable, z =a + Rb , [|b]] =1 , denote also f ..dlx] to
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mean f ... dB and J ... dxr to mean J ... (dB)b .

THEOREM C. Let A and V be real Banach spaces; U a convex open
subset of A ; T(a) € [V] foreach a €U ; h : U~V a continuous
Fréchet-differentiable map such that, for a, b € A, |bll=1, and
a, e=a+ A € U, h(a+fb)b 1is an absolutely continuous function of
B € [0, A) . Then

e e (2 e

f T(x)h(z)d|z| = - J [J T(x)dlx[]h’(z)dz + [I T(x)dlxl]h(c) .
a a “a a

Proof. From Theorem B,

A o
f T(a+8b)[[ h'(a+ab)bda]d8 =
o o]

A @ A A
- J [J T(a+Bb)dB]h’(a+ab)bda + [f T(a+Bb)dB][J h'(a+ab)bda] .
o VYo 0 0

Define f : [0, Al =V by f(B) = h(a+Bb)b ; 1let e € V ; let P
be the projector of V onto the one-dimensional subspace spanned by e ;

then Pf is absolutely continuous, mapping [0, B] into Re ; therefore
o
(Pf)(a) - (Bf)(0) = J (Pf)'(8)dB = P fa £'(g)dB (0 < a <)
o] o]

since % , and therefore f , is Fréchet-differentiable. Therefore, since

e 1is arbitrary,
o
h(a+ad) - k(a) = fla) - f(0O) = J h' (a+Bb)bdB .
[¢)

Substitution of this expression into the result from Theorem B proves

the theorem.
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