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On the continuity of Arthur’s trace formula: the

semisimple terms
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Abstract

We show that the semisimple part of the trace formula converges for a wide class of
test functions.

1. Introduction

Let Γ be a lattice in a reductive Lie group G. The right regular representation of G on L2(Γ\G)
gives rise to integral operators

R(f)ϕ(x) =
∫
G
f(g)ϕ(xg) dg, f ∈ L1(G).

In particular, if Γ is a uniform lattice then R(f) is of trace class for f ∈ C∞c (G) and L2(Γ\G)
decomposes discretely as

⊕
π∈Ĝ m(π)π. Computing the trace in two different ways, Selberg

established the trace formula identity∑
[γ]

vol(Γγ\Gγ)
∫
Gγ\G

f(g−1γg) dg =
∑
π∈Ĝ

m(π) tr π(f),

where γ ranges over the conjugacy classes of Γ [Sel56]. This identity easily extends to the space
of smooth functions on G whose derivatives are all in L1(G).

If Γ is a non-uniform lattice then the trace has to be regularized in order to derive the trace
formula. In the case where G= SL2(R), this was carried out by Selberg as well. The case of a
general adelic quotient G(F )\G(A) of a reductive group G over a number field F was pursued
by Arthur in his lifelong work on the trace formula.

In this paper we begin to examine the geometric side of the trace formula from a functional
analytic point of view. Namely, we wish to extend the trace formula to test functions which are
not necessarily compactly supported. A natural space is obtained by fixing an open subgroup K
of G(Afin) and considering right K-invariant functions on G(A) (viewed as functions on the
differentiable manifold G(A)/K) all of whose derivatives are in L1(G(A)).1 More precisely,
the topological space C(G(A);K) is defined by the seminorms

‖f ∗X‖L1(G(A)), X ∈ U(g).

1 For the trace formula only functions which are invariant under conjugation by a maximal compact subgroup K
of G(A) need to be considered. This renders the apparent asymmetry inessential.
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On the continuity of Arthur’s trace formula: the semisimple terms

Let Bm be a basis of U(g)6m, where m= [F : Q] dimF G. For γ ∈G(F ), let C0
G(γ) be the

identity component of the centralizer CG(γ) of γ in G. Let G(F )ell (respectively G(F )ss) denote
the set of elliptic (respectively semisimple) elements in G(F ). For any γ ∈G(F )ss, let M(γ)
be the centralizer of the split part of the center of C0

G(γ), which is a Levi subgroup of G. Fix a
maximal split torus T0 of G defined over F . For any standard Levi subgroup M , the associated
weight factor vM (x) is given by [Art05, (18.2)] (cf. also § 6 below). Note that vM(γ) is CG(γ, F )-
invariant (assuming that M(γ) is a standard Levi subgroup). We refer to § 2.1 for unexplained
concepts and notation.

Our main result is the following theorem.

Theorem 1. The semisimple part of the trace formula, given by the sum-integral∑
[γ]⊆G(F )ss

∫
AMCG(γ,F )\G(A)

∫
AG

f(zx−1γx)vM(γ)(x) dz dx

=
∑

[γ]⊆G(F )ss

vol(AMC0
G(γ, F )\C0

G(γ, A))
[CG(γ, F ) : C0

G(γ, F )]

∫
C0
G(γ,A)\G(A)

∫
AG

f(zx−1γx)vM(γ)(x) dz dx

over the semisimple conjugacy classes [γ] of G(F ), where in each class we take a representative γ
such that M(γ) is a standard Levi subgroup of G, is absolutely convergent for any f ∈
C(G(A);K). Moreover, there exists a constant c such that∑

[γ]

∫
AMCG(γ,F )\G(A)

∫
AG

|f(zx−1γx)|vM(γ)(x) dz dx6 c
∑
X∈Bm

‖f ∗X‖1. (1)

In particular, this holds for the elliptic part of the trace formula∫
AGG(F )\G(A)

∫
AG

∑
γ∈G(F )ell

f(zx−1γx) dz dx

=
∑

[γ]⊆G(F )ell

vol(AGCG(γ, F )\CG(γ, A))
∫
CG(γ,A)\G(A)

∫
AG

f(zx−1γx) dz dx,

where the sum is over the elliptic conjugacy classes of G(F ).

Implicit in the theorem is the choice of a maximal compact subgroup K of G(A). For the
analogous result on the spectral side (with a larger value of m), cf. [FLM09].

The essence of the argument is the convergence of the elliptic part, which will be proved in § 5.
The general semisimple case is easily reduced to the elliptic case (§ 6). Roughly speaking, there
are two main themes in the proof. The first is simply to bound sums over lattices by integrals. The
second is to linearize the non-compact parameters of the problem. For the space AGG(F )\G(A),
this is done by choosing a Siegel set. For the set G(F )ell, we use the Bruhat decomposition. The
ellipticity condition is used in a subtle, but crucial, way to chop off one dimension from
the unipotent part of the Bruhat decomposition. Using Mellin inversion, the contribution
from each cell is controlled by intertwining operators of principal series, whose properties are
well understood. The argument somewhat resembles the one used by Langlands in his work on
the Tamagawa number [Lan66]. It is different in flavor from the analysis of [Art78]. In particular,
we do not use Arthur’s partition lemma [Art78, Lemma 6.4].

Ultimately, we would like to extend Theorem 1 to the non-semisimple terms as well and
obtain an expansion for the entire geometric side of the trace formula which is valid for
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T. Finis and E. Lapid

any f ∈ C(G(A);K). In the case where G= GL(2), this was carried out in [FL11].2 In the general
case, when using Arthur’s fine geometric expansion [Art85, Art86] one faces two difficulties. First,
it only applies to functions of the form fS ⊗ 1S , where S is a finite set of places containing the
Archimedean ones and 1S is the characteristic function of the maximal compact KS outside S
(rather than an arbitrary bi-KS-invariant function outside S). The second and more serious
difficulty is that while the local distributions appearing in the expansion are explicit and fairly
well understood, their coefficients are left unspecified, and they depend on S in a complicated
way. For the problem at hand, it would be imperative to bound them in a uniform way.

2. Preliminaries

2.1 The setup
Let G be a reductive group over a number field F . By passing to the restriction of scalars, we
will assume without loss of generality that F = Q.3 Let O =

∏
p<∞ Zp ⊆ Afin.

For a linear algebraic group H over Q, we denote by δH the modulus function of H(A). More
generally, if H and X are subgroups of G and H normalizes X, we denote by δH;X the modulus
function of the conjugation action of H(A) on X(A).

As usual, we denote Lie algebras by small Gothic letters. For example, LieG= g, Lie P = p

etc. The universal enveloping algebra of g with the usual grading will be denoted by U(g). We
denote by Ad :G→GL(g) the adjoint representation. The centralizer of x in H is denoted by
CH(x), its identity component by C0

H(x) and its Lie algebra by ch(x).
Fix a maximal split torus T0 defined over Q and a minimal parabolic subgroup P0 defined

over Q and containing T0. We have a Levi decomposition P0 =M0U0, where M0 = CG(T0) and
U0 is the unipotent radical of P0. By a standard parabolic, we will always mean a parabolic sub-
group containing P0 and defined over Q. Any standard parabolic admits a unique Levi subgroup
M containing T0, and moreover M is defined over Q. Such a Levi subgroup is called standard.
When P is standard, we always write P =MU for its standard Levi decomposition.

Let W =WG be the Weyl group NG(T0)(Q)/M0(Q) of G and fix representatives nw ∈
NG(T0)(Q) for each w ∈W . We have the Bruhat decomposition

G(Q) =
∐
w∈W

BG
w ,

where
BG
w = Bw = (U0(Q)/Uw(Q))nwP0(Q) = P0(Q)nwP0(Q)

and Uw = U0 ∩ wU0w
−1. We write δw for the modulus function of M0(A) on U0(A)/Uw(A). In

particular, for the longest element w0 of W , δ0 = δw0 is the modulus function of P0(A), and
δwδM0;Uw = δ0 for all w. We write A0 for the identity component of T0(R).

We let a∗0 be the vector space X∗(T0)⊗ R =X∗(M0)⊗ R which is isomorphic to the group of
continuous homomorphisms T0(Q)\T0(A)→ R>0. (Each such homomorphism extends uniquely
to M0(Q)\M0(A).) The homomorphism corresponding to χ ∈X∗(T0) is |χ|A. Complexifying, to
any λ ∈ a∗0,C we attach a continuous homomorphism M0(A)→ C∗, denoted m 7→mλ, which we
can of course pull back to P0(A). Let a0 =X∗(T0)⊗ R be the dual space of a∗0. The Weyl group

W acts naturally on X∗(T0), a∗0 and a0. Let ρ0 ∈ a∗0 correspond to δ
1
2
0 .

2 We would also like to mention a related work by Werner Hoffmann in this direction [Hof08].
3 This is only used for ease of notation.
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On the continuity of Arthur’s trace formula: the semisimple terms

Let R(T0, U0)⊆X∗(T0) denote the set of roots of T0 on U0, Rred(T0, U0) the set of reduced
roots and ∆0 the set of simple roots. The standard parabolic subgroups of G correspond to
subsets of ∆0 by attaching to P =MU the set of simple roots ∆P

0 = ∆M
0 of T0 on UM0 := U0 ∩M .

Let TM be the maximal split torus in the center of M and let AM be the identity component of
TM (R), which we identify with a Euclidean space. We also write PM0 = P0 ∩M , TM0 = T0 ∩Mder,
aM0 =X∗(TM0 )⊗ R and AM0 =A0 ∩Mder(A), where Mder is the derived group of M . The Weyl
group WM of M is identified with a subgroup of W . If M1, M2 are two standard Levis, then
M1 ∩M2 is also a standard Levi, ∆M1∩M2

0 = ∆M1
0 ∩∆M2

0 and WM1∩M2 =WM1 ∩WM2 .
Let ∆∨0 ⊆X∗(T0)⊆ a0 denote the set of simple co-roots, similarly for (∆M

0 )∨. Note that aM0
is spanned by (∆M

0 )∨. Denote by ∆̂0 = {$α}α∈∆0 the dual basis of ∆∨0 in (aG0 )∗. Similarly, let
∆̂∨0 = {$∨α}α∈∆0 denote the dual basis of ∆0 in aG0 .

Lemma 2.1. We have

δ
1
2
0 (awa−1w−1) = δw(waw−1)−1 = δw−1(a)

for all a ∈A0.

Proof. Let U ′0 be the unipotent radical of the parabolic subgroup opposite to P0 containing T0.
Since U0 = Uw(U0 ∩ wU ′0w−1), we have

δw = δM0;U0∩wU ′0w−1

and
δ0 = δM0;UwδM0;U0∩wU ′0w−1 .

Using these equalities for waw−1 and noting that wUw−1w−1 = Uw, we get

δw(waw−1) = δM0;w−1U0w∩U ′0(a) = δM0;w−1U ′0w∩U0
(a)−1 = δw−1(a)−1

and
δ0(waw−1) = δM0;Uw−1 (a)δM0;w−1U0w∩U ′0(a) = δM0;Uw−1 (a)δw(waw−1).

Similarly, U0 = Uw−1(U0 ∩ w−1U ′0w), so that

δ0(a) = δM0;Uw−1 (a)δM0;U0∩w−1U ′0w
(a) = δM0;Uw−1 (a)δw(waw−1)−1.

Together, we get
δ0(awa−1w−1) = δw(waw−1)−2,

as required. 2

For any w ∈W , letQ(w) = L(w)V (w) be the smallest standard parabolic subgroup containing
nw. It is defined by

∆Q(w)
0 = {α ∈∆0 : ∃β ∈ Φw such that 〈$α, β

∨〉> 0},

where Φw = {α ∈Rred(T0, U0) : wα < 0}. Note that Uw ⊇ V (w) and therefore

U
L(w)
0 /UL(w)

w ' U0/Uw. (2)

An alternative characterization ofQ(w) and L(w) is obtained by noting that nw belongs to the
standard parabolic Qα with ∆Qα

0 = ∆0\{α} (or, equivalently, to the corresponding standard Levi
Mα) if and only if w preserves the set {β ∈R(T0, U0) : 〈β, $∨α〉> 0}, which is in turn equivalent
to w$∨α =$∨α . This implies that

∆Q(w)
0 = {α ∈∆0 : w$∨α 6=$∨α}.
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The following lemma is an easy consequence.

Lemma 2.2. Let w ∈W and L= L(w). Suppose that λ0 is in the positive Weyl chamber of a∗0.
Then (1− w)λ0 =

∑
α∈∆L

0
cαα with cα > 0.

Proof. We have (1− w)λ0 =
∑

α∈∆0
cαα, where

cα = 〈(1− w)λ0, $
∨
α〉= 〈λ0, (1− w−1)$∨α〉.

It is well known that (1− w−1)$∨α is a non-negative combination of co-roots. Hence, 〈λ0, (1−
w−1)$∨α〉> 0 and equality holds if and only if (1− w−1)$∨α = 0. The lemma follows. 2

2.2 Reduction theory
Fix a maximal compact subgroup K =

∏
p6∞ Kp of G(A) such that Kp is special for all p <∞

and hyperspecial for almost all p. Let c > 0 and set

Sc = {pk : p ∈ P0(A), k ∈K, |α|(p)> c for all α ∈∆0}.

This set is left P0(Q)-invariant and right K-invariant.4 By reduction theory, G(Q)Sc =G(A)
provided that c is chosen sufficiently small. Let

Ac = {a ∈AG\A0 : α(a)> c for all α ∈∆0}.

Using the Iwasawa decomposition, for any left AGG(Q)-invariant non-negative measurable
function ϕ on G(A) we have∫

AGG(Q)\G(A)
ϕ(g) dg 6

∫
AGP0(Q)\Sc

ϕ(g) dg

=
∫
K

∫
U0(Q)\U0(A)

∫
M0(Q)\M0(A)1

∫
Ac

ϕ(uamk)δ0(a)−1 da dm du dk (3)

provided that the right-hand side converges.

2.3 Elliptic elements
Recall that a semisimple element s ∈G(Q) is called elliptic if Z(C0

G(s))/Z(G) is anisotropic. We
denote by G(Q)ell the set of elliptic elements of G(Q).

Lemma 2.3. Let s be a semisimple element of G(Q). The following conditions are equivalent.

(i) s is elliptic.

(ii) C0
G(s) is not contained in any proper parabolic subgroup of G defined over Q.

(iii) cg(s) is not contained in any proper parabolic subalgebra of g defined over Q.

(iv) (1−Ad s)(g) does not contain the nilradical of any proper parabolic subalgebra defined
over Q.

Moreover, if we replace ‘parabolic’ by ‘standard parabolic’, the conditions (ii)–(iv) are still
equivalent.

Proof. If s is not elliptic, then the maximal split torus T of Z(C0
G(s)) strictly contains TG.

Hence, CG(T ) is a proper Levi subgroup defined over Q containing C0
G(s). Conversely, if C0

G(s)
is contained in a proper parabolic P defined over Q, then by the results of [Mos56] we can find a

4 A fundamental domain for P0(Q)\Sc is called a Siegel set.
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On the continuity of Arthur’s trace formula: the semisimple terms

Levi subgroup M of P defined over Q containing C0
G(s). Thus, Z(C0

G(s))⊇ Z(M) and therefore s
is not elliptic.

The equivalence of (ii) and (iii) is immediate.
Finally, to show the equivalence of (iii) and (iv), we note that if u is the nilradical of a

parabolic subalgebra p then its orthogonal complement u⊥ with respect to the Killing form is p

while [(1−Ad s)(g)]⊥ = cg(s). 2

Definition 2.4. We denote by G(Q)well the set of semisimple elements γ of G(Q) such that
C0
G(s) is not contained in any proper standard parabolic subgroup. Thus, G(Q)ell ⊆G(Q)well and

G(Q)well is stable under conjugation by P0(Q).

For any w ∈W with Q(w) = LV , we set

BL
w = L(Q) ∩Bw = PL0 (Q)nwPL0 (Q) = (UL0 (Q)/ULw (Q))nwPL0 (Q)

and
Ew =G(Q)well ∩BL

w.

Recall that if P =MU is a Levi decomposition of a parabolic subgroup of G and m ∈ P (Q) is
semisimple, then there exists u ∈ U(Q) such that umu−1 ∈M(Q) (e.g. [Mos56]). Thus, denoting
by κs :G→G the commutator map

κs(x) = s−1xsx−1,

we infer that
G(Q)well ∩Bw =

⋃
m∈Ew

mκm(V (Q)). (4)

3. The space C(G(A); K)

3.1 Fourier analysis
We begin with an elementary and well-known identity from harmonic analysis of the real line.
Let f ∈ C∞c (R) and f̂ its Fourier–Laplace transform

f̂(s) =
∫

R
e−sxf(x) dx.

Then for any s0 > 0 we have

1
2πi

∫
Re s=s0

f̂(s)
s

ds=
∫ 0

−∞
f(x) dx. (5)

This follows by applying the isometry relation of the Fourier transform∫
R
f1(x)f2(x) dx=

1
2πi

∫
Re s=0

f̂1(s)f̂2(s) ds

to the L2-functions f1(x) = f(x)e−s0x and f2(x) = es0xχ[−∞,0](x), observing that f̂1(s) =
f̂(s0 + s) and f̂2(s) = 1/(s0 − s).

It follows that the left-hand side of (5) which a priori makes sense only for f ∈ C∞c (R) extends
to a continuous linear functional on L1(R).

Consider the higher-dimensional case. Let V be a Euclidean space and V ∗ its dual space. We
consider the Frechet space C(V ) consisting of smooth functions f on V such that ‖f ∗D‖L1(V ) <
∞ for any invariant differential operator D on V .
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We say that a function f on a subset A of V ∗C is of moderate growth if there exist n and c
such that |f(λ)|6 c(1 + ‖λ‖)n. Similarly, f is rapidly decreasing if for all n there exists cn such
that |f(λ)|6 cn(1 + ‖λ‖)−n on A. For f ∈ C∞c (V ), let

f̂(λ) =
∫
V
e−〈λ,v〉f(v) dv, λ ∈ V ∗C .

It is rapidly decreasing for Re λ in a bounded set. Let I be a linearly independent set in V and VI
its linear span. Let λ0 ∈ V ∗ be such that 〈λ0, u〉> 0 for all u ∈ I. As before, for any f ∈ C∞c (V )
we have

νI

∫
Re λ=λ0

f̂(λ)∏
u∈I〈λ, u〉

dλ=
∫
VI

f(x)χI(x) dx, (6)

where χI is the characteristic function of{∑
u∈I

αuu : αu 6 0 for all u
}
,

νI = volVI ({
∑

u∈I αuu : 0 6 αu 6 1 for all u}) and the measure on Re λ= λ0 is obtained by
identifying it with V ∗ via v 7→ Im v and taking the Haar measure on V ∗ dual to that on V .
To prove (6), we first reduce to the case VI = V by taking the restriction g of f to VI and
noting that ĝ(λ) =

∫
iV ⊥I

f̂(λ+ µ) dµ. In the case VI = V , the identity (6) follows by applying

the isometry relation of the Fourier transform to the inner product of f1(v) = f(v)e−〈λ0,v〉 and
f2(v) = e〈λ0,v〉χI(v), observing that f̂1(λ) = f̂(λ0 + λ) and f̂2(λ) = νI/(

∏
u∈I〈λ0 − λ, u〉).

Proposition 3.1. Let r > 0, µ0 ∈ V ∗ and h be a holomorphic function of moderate growth on
the tube ‖Re λ− µ0‖< r. Let S be a linearly independent set in V and let λ0 ∈ V ∗ be such that
‖λ0 − µ0‖< r and 〈λ0 − µ0, u〉> 0 for all u ∈ S. Then

f 7→
∫

Re λ=λ0

f̂(λ− µ0)h(λ)∏
u∈S〈λ− µ0, u〉

dλ (7)

extends to a continuous functional on C(V ).

Proof. Without loss of generality, we may assume that µ0 = 0. The statement is clear for S = ∅.
Indeed, if h(λ) 6 c(1 + ‖λ‖)n then the integral is majorized by

∑
D‖f̂ ∗D‖∞ 6

∑
D‖f ∗D‖1,

where D ranges over a basis of the invariant differential operators of degree 6n+ dim V + 1.

Consider the general case. Fix elements $u ∈ V ∗, u ∈ S such that 〈$u, u
′〉= δu,u′ for all

u, u′ ∈ S. For any I ⊆ S, let λI = λ−
∑

u∈I〈λ, u〉$u. Then λ 7→ λI is a projection on the
annihilator I⊥ of I whose kernel is the span of $u, u ∈ I. The annihilator WI of {$u, u ∈ I} is
a complement of VI in V . We define

hS,I(λ) =

∑
I⊆J⊆S(−1)|J |−|I|h(λJ)∏

u∈S\I〈λ, u〉
.

Then hS,I(λ) depends only on λI and is a holomorphic function of moderate growth on any tube
‖Re λ‖< r′, r′ < r. By inclusion–exclusion, (7) is equal to the sum over I ⊆ S of∫

Re λ=λ0

f̂(λ)hS,I(λI)∏
u∈I〈λ, u〉

dλ.
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By splitting the integral and using (6), each summand is equal up to a constant to∫
iI⊥

f̂ Iλ0
(λ)hS,I(λ) dλ,

where f Iλ0
∈ C∞c (WI) is given by

f Iλ0
(u) =

∫
VI

χI(v)f(u+ v) dv, u ∈WI ,

and we identify I⊥ with the dual space of WI . The proposition follows from the previous case and
the fact that the map f 7→ f Iλ0

defines a continuous operator from C(V ) to C(WI). 2

3.2 Sobolev estimates
Let now H be an affine algebraic group over Q and let K be an open subgroup of H(Afin). Define
C(H(A);K) to be the Frechet space of smooth functions on H(A) which are right K-invariant
and such that ‖f ∗X‖L1(H(A)/K) <∞ for any X ∈ U(h). (We usually write ‖f‖1 for the L1-norm
if the measure space is clear from the context.) In particular, let µ0(f) =

∑
X∈BH‖f ∗X‖1, where

BH is a basis of U(h)6dimH .
The following lemma is clear.

Lemma 3.2. Let C ⊆H(A) be a compact set. Then there exists an open subgroup K ′ of H(Afin)
such that for any continuous seminorm µ′ of C(H(A);K ′) there exists a continuous seminorm µ of
C(H(A);K) such that for all f ∈ C(H(A);K) and x ∈ C, the function fx(g) = f(x−1gx) belongs
to C(H(A);K ′) and µ′(fx) 6 µ(f).

We will also need the following.

Lemma 3.3. Let C be a compact neighborhood of the identity element of H(A). Then there
exists c such that for any f ∈ C(H(A);K) and any h ∈H(A), we have

|f(h)|6 c
∑
X∈BH

∫
C
|(f ∗X)(hx)| dx. (8)

Moreover, ∑
γ∈H(Q)

|f(hγ)|6 cµ0(f)

for all h ∈H(A).

Proof. The second part follows from the first one by choosing a compact neighborhood C of e
such that C ∩ γC = ∅ for any 1 6= γ ∈H(Q) and summing (8) over hγ, γ ∈H(Q).

To show (8), we can assume upon left translation that h= e. We can also assume that
C = C ′K ′, where C ′ is a neighborhood of e in H(R) and K ′ is an open subgroup of K. Using
local coordinates and letting n= dimH, the inequality reduces to the inequality

|f(0)|6
∑

I⊆{1,...,n}

∫
[0,1]n

∣∣∣∣ ∂|I|f∏
i∈I ∂xi

(x)
∣∣∣∣ dx

for any smooth function on Rn, which is turn follows from the identity

f(0) =
∑
I

∫
[0,1]n

∂|I|f∏
i∈I ∂xi

(x)
∏
i∈I

(xi − 1) dx,

which can be shown by induction on n using integration by parts. 2
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From now on, we fix a compact open subgroup K of G(Afin).

Lemma 3.4. There exist constants cX , X ∈ U(g) such that for any f ∈ C(G(A);K) there exists
f̃ ∈ C(G(A);K) satisfying:

(i) f̃ is right K-invariant;

(ii) f̃(x) > |f(x)| for all x ∈G(A);
(iii) ‖f̃ ∗X‖1 6 cXµ0(f) for all X ∈ U(g).

Moreover, if f ∈ C∞c (G(A)), then we can choose f̃ ∈ C∞c (G(A)).

Proof. Choose a compact symmetric neighborhood C of e in G(A) and let c be as in the previous
lemma for H =G. Fix a non-negative right K-invariant function ϕ ∈ C∞c (G(A)) such that ϕ> c
on C. Let

f̃ =
∑
X∈BG

|f ∗X| ∗ ϕ.

By construction, f̃ is right K-invariant. Moreover, it follows from (8) that f̃(g) > |f(g)|. Finally,

‖f̃ ∗ Y ‖1 6 µ0(f)‖ϕ ∗ Y ‖1
for any Y ∈ U(g). The lemma follows. 2

Corollary 3.5. Suppose that ν is a Radon measure on G(A). Then
∫
G(A) f(x) dν(x) is

continuous on C(G(A);K) if and only if there exists a continuous seminorm µ on C(G(A);K)
such that

∫
G(A) f(x) dν(x) 6 µ(f) for all right K-invariant non-negative f ∈ C∞c (G(A);K). In

this case,
∫
G(A)|f(x)| dν(x) is a continuous seminorm with respect to µ0.

3.3 Principal series and intertwining operators
Consider the principal series representation I(λ), λ ∈ a∗0,C, which is parabolically induced from
the character pλ on P0(A) (normalized induction). Explicitly,

I(λ) = {ϕ :G(A)→ C smooth | ϕ(pg) = pλ+ρ0ϕ(g) for all p ∈ P0(A), g ∈G(A)}.

We can construct I(λ) as follows. Let f ∈ C∞c (G(A)) and set

Ff (g) =
∫
P0(A)1

f(pg) dp.

Then for any λ ∈ a∗0,C

ϕ(λ)(g) =
∫
A0

Ff (ag)a−(λ+ρ0) da

belongs to I(λ).

Lemma 3.6. Let F̃f = δ−1
0 Ff |A0 . If f is right K-invariant, then ‖F̃f ∗X‖1 6 ‖f ∗X‖1 +

2|〈ρ0, X〉|‖f‖1 for any X ∈ LieA0. If f ∈ C∞c (G(A)), then ϕ(λ)(e) = ̂̃Ff (λ− ρ0) for λ ∈ a∗0,C.

Proof. Note that F̃f (a) =
∫
P0(A)1 f(ap) dp. Thus, F̃f ∗X = F̃f∗X − 〈2ρ0, X〉F̃f for any X ∈

LieA0. If f is right K-invariant, then we have

‖F̃f‖1 =
∫
A0

|Ff (a)|δ0(a)−1 da6
∫
A0

∫
P0(A)1

|f(ap)| dp da= ‖f‖1.

The last part is immediate. 2
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Remark 1. The integral defining Ff converges for any f ∈ C(G(A);K). However, already for
G= GL(2) the integral defining ϕ(λ) will not converge for Re λ 6= ρ0 for all f ∈ C(G(A);K) since
F̃f can be an arbitrary function in C(A0) and its Fourier–Laplace transform is in general only
defined on the imaginary line.

The intertwining operators

M(w, λ) : I(λ)→ I(wλ)

are given by the meromorphic continuation of

M(w, λ)ϕ(g) =
∫
Uw(A)\U0(A)

ϕ(n−1
w ug) du.

This integral converges if Re λ− ρ0 lies in the positive Weyl chamber. If ϕ is right K-invariant,
then

[M(w, λ)ϕ](e) =m(w, λ)ϕ(e),

where we can write

m(w, λ) =
∏
α∈Φw

mα(〈λ, α∨〉).

For any α, let Mα be the Levi subgroup such that aMα
0 is the line spanned by α∨. Let ρα0

be the element in (aMα
0 )∗ corresponding to δ

1
2
P0∩Mα

. Each function mα(s) is holomorphic for
Re s > sα := 〈ρα0 , α∨〉, has finitely many poles s1, . . . , sk for Re s > 0 which are all simple and
real [MW95, Proposition IV.1.11] and

∏k
i=1((s− si)/(s+ si))mα(s) is holomorphic and bounded

on the strip |Re s− sα|6 sα [HC68, Lemma 101]. Note that sα 6 〈ρ0, α
∨〉 with equality if and

only if α ∈∆0. In particular, we have the following.

Lemma 3.7. For r > 0 sufficiently small, the function∏
α∈∆0∩Φw

〈λ− ρ0, α
∨〉m(w, λ)

is holomorphic and of moderate growth on ‖Re λ− ρ0‖< r.

4. Lattice sums and integrals

The following elementary lemma is essentially contained in the proof of [Hum75, Theorem 18.3].
For completeness, we provide some details. Recall the commutator map κs(x) = s−1xsx−1.

Lemma 4.1. Let U be a unipotent subgroup of G defined over Q, let Z be its center and let
s ∈G(Q) be a semisimple element normalizing U . Suppose that κs(u2)κs(u1)−1 ∈ Z(Q) for some
u1, u2 ∈ U(Q). Then κs(u2)κs(u1)−1 ∈ κs(Z(Q)).

Proof. Let U = U/Z and let x 7→ x denote the canonical projection NG(U)→NG(U)/Z. By the
condition on u1, u2 we have u−1

1 u2 ∈ CU (s)(Q). In the proof of [Hum75, Theorem 18.3], it is shown
that CU (s) = CU (s). Since CU (s)(Q) = CU (s)(Q)/Z(Q), there exist x ∈ CU (s)(Q) and z ∈ Z(Q)
such that u−1

1 u2 = xz. Thus,

κs(u2) = κs(zu1x) = κs(z)κs(u1x) = κs(z)κs(u1),

as required. 2
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Lemma 4.2. Let U and s be as before. Let U0 = 0⊆ U1 = Z(U)⊆ U2 ⊆ · · · ⊆ Ud = U be the
ascending central series of U , where d is the nilpotency class of U . Suppose that u =

⊕d
j=1 Vj

is a decomposition of u into Ad s-invariant subspaces defined over Q such that ui =
⊕

j6i Vj ,
i= 1, . . . , d. Let e1, . . . , en be a basis of u over Q such that edim Ui−1+1, . . . , edim Ui is a basis
of Vi for all i= 1, . . . , d. Let B be a compact set of U(A). Suppose that 0 6 k 6 n is such that
ek /∈ (1−Ad s)(u). (For k = 0, there is no condition.) Then there exists a constant c such that for
any a ∈G(R) which normalizes U(A) and satisfies Ad a(ei) = aiei, i= 1, . . . , n, with ai > 0
and any u ∈ U(A), we have

|aBa−1 ∩ uU(Q)|6 c
n∏
i=1

(ai + 1)

and

|aBa−1 ∩ uκs(U(Q))|6 c
∏
i6=k

(ai + 1).

Proof. We prove the statements by induction on the nilpotency class d of U . Let

Y = aBa−1 ∩ uκs(U(Q)).

Suppose first that U is abelian. We identify U with u through the exponential map and identify
κs with the linear transformation Ad(s−1)− 1 on u. In particular, κs(U) is a vector subspace of
U defined over Q. Clearly,

|aBa−1 ∩ uU(Q)|6 |aB′a−1 ∩ U(Q)|
and

|Y |6 |aB′a−1 ∩ κs(U(Q))|,
where B′ =BB−1. Identify u(Q) with Qn through e1, . . . , en. Without loss of generality, we may
assume that B′ = [−1

2 ,
1
2 ]n +On, since in any case B′ is contained in the union of finitely many

translates of the latter. Trivially,

|U(Q) ∩ aB′a−1|=
∣∣∣∣Qn ∩

n∏
i=1

([−ai/2, ai/2] +On)
∣∣∣∣6∏

i

(ai + 1).

This proves the first inequality and hence also the case k = 0. Suppose that k > 0 and let
pk : u→ u be the projection defined by

pk

(∑
i

xiei

)
=
∑
i6=k

xiei.

By the condition on k, pk is injective on κs(U). Thus,

|κs(U(Q)) ∩ aB′a−1| 6
∣∣∣∣pk(κs(U(Q))) ∩

∏
i6=k

([−ai/2, ai/2] +On−1)
∣∣∣∣

6

∣∣∣∣Qn−1 ∩
∏
i6=k

([−ai/2, ai/2] +On−1)
∣∣∣∣6∏

i6=k
(ai + 1).

For the induction step, let Z be the center of U and let U = U/Z. As before, denote the
image of an element x (respectively a subset X) of NG(U) in NG(U)/Z by x (respectively X).
We clearly have

|Y |6 |Y | max
v∈U(A)

|Y ∩ vZ(A)|
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and
|Y |6 |uκs(U(Q)) ∩ aBa−1|.

Furthermore, let ι : u→ V>1 :=
⊕

j>1 Vj be the projection. Then ι is Ad s-equivariant and induces
an Ad s-equivariant isomorphism ι : u = u/z→ V>1. Thus, if k > dim Z and ek ∈ (1−Ad s)(u)
then applying ι we get ek ∈ (1−Ad s)(V>1). Therefore, by the induction hypothesis,

|Y |6 c
∏

{i>dim Z:i6=k}

(ai + 1).

On the other hand, by the previous lemma, uκs(U(Q)) ∩ vZ(A), if non-empty, is a coset of
κs(Z(Q)). Therefore,

max
v∈U(A)

|Y ∩ vZ(A)|6 max
v∈U(A)

|aBa−1 ∩ vκs(Z(Q))|.

Once again, this is majorized by |aB′a−1 ∩ κs(Z(Q))|. By the abelian case, this is bounded by
c
∏
{16i6dim Z:i6=k}(ai + 1). Altogether we get the second inequality. The first inequality is proved

in a similar vein. 2

Corollary 4.3. Let U , s, e1, . . . , en and k be as before. Let KU be an open compact subgroup
of U(Afin). Then there exists a continuous seminorm µ on C(U(A);KU ) such that for any
f ∈ C(U(A);KU ) and a as above we have∑

γ∈U(Q)

|f(a−1γa)|6 µ(f)
n∏
i=1

(ai + 1)

and ∑
γ∈κs(U(Q))

|f(a−1γa)|6 µ(f)
∏
i6=k

(ai + 1).

Proof. Let B be a compact neighborhood of the identity in U(A). By Lemma 3.3,

|f(x)|6 c
∑
X∈BU

∫
B
|f ∗X(xu)| du

for any f ∈ C(U(A);KU ) and x ∈ U(A). Therefore,∑
γ∈U(Q)

|f(a−1γa)|6 c
∑
X∈BU

∫
U(A)
|f ∗X(u)||a−1U(Q)a ∩ uB−1| du

and ∑
γ∈κs(U(Q))

|f(a−1γa)|6 c
∑
X∈BU

∫
U(A)
|f ∗X(u)||a−1κs(U(Q))a ∩ uB−1| du.

We now appeal to the lemma above. 2

We specialize to the case where P =MU is a proper standard parabolic. For any α ∈∆0\∆P
0 ,

let Qα be the maximal parabolic of G (containing P ) determined by α and let Vα be its unipotent
radical. The roots R(T0, Vα) are exactly the roots in R(T0, U0) whose α-coordinate with respect
to the basis ∆0 is positive. Let

ΞP =
{

1
|∆0\∆P

0 |
∑

α∈∆0\∆P
0

βα : βα ∈R(T0, Vα) for all α ∈∆0\∆P
0

}
.
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Thus, ΞP is a finite subset of

a∗0,P+ :=
{∑
α∈∆0

cαα : cα > 0 for all α ∈∆P
0 and cα > 0 for all α ∈∆0\∆P

0

}
.

Using the previous corollary, we obtain the following crucial estimate.

Proposition 4.4. Let P =MU be a proper standard parabolic. There exists a continuous
seminorm µ on C(U(A);KU ) such that for any f ∈ C(U(A);KU ) and a ∈Ac we have∑

γ∈U(Q)

|f(a−1γa)|6 µ(f)δP (a)

and ∑
γ∈κs(U(Q))

|f(a−1γa)|6 µ(f)δP (a) max
ξ∈ΞP

a−ξ (9)

for any s ∈M(Q) ∩G(Q)well.

Proof. Let u =
⊕d

i=1 Vj be a decomposition of u into AdM -invariant subspaces such that
ui :=

⊕i
j=1 Vj , i= 1, . . . , d, are the Lie algebras of the ascending central series U1 = Z(U)⊆

· · · ⊆ Ud = U of U . Each Vj further decomposes according to the roots of T0. Choose bases of Vj
consisting of T0-eigenvectors and let e1, . . . , en be the ensuing basis of u. Let u =

⊕
β∈R(TM ,U) uβ

be the decomposition of u into eigenspaces of TM . For each β ∈R(TM , U), the space uβ is spanned
by the basis vectors ei contained in it. The first inequality follows immediately from the previous
corollary. For the second part, let α ∈∆0\∆P

0 . By Lemma 2.3, vα 6⊆ (1−Ad s)(u) and hence
there exists β ∈R(T0, Vα) such that uβ 6⊆ (1−Ad s)(u). Thus, ei ∈ uβ\(1−Ad s)(u) for some i.
It follows from the previous corollary that∑

γ∈κs(U(Q))

|f(a−1γa)|6 µ(f)δP (a)a−β.

Since α ∈∆0\∆P
0 was arbitrary, the estimate (9) follows. 2

5. The elliptic contribution

In this section we will prove Theorem 1 for the elliptic part. Let A be a closed connected subgroup
of AG and set fA(g) =

∫
A f(zg) dz. The essential step is the following assertion.

Proposition 5.1. Let w ∈W , Q(w) =Q= LV and ξ ∈ a∗0,Q+. Then∫
U0(A)/Uw(A)

∫
U0(A)

∫
Ac

∫
M0(A)1

fA(a−1u2nwau1m)a−ξ dm da du1 du2 (10)

is a continuous linear form on C(G(A);K).

Proof. By Corollary 3.5, it suffices to show that there exists a continuous seminorm µ on
C(G(A);K) such that (10) is bounded by µ(f) for any non-negative right K-invariant f ∈
C∞c (G(A);K). Applying the argument of Lemma 3.3 to AG/A, it is enough to consider the
case A=AG. We write (10) as∫

U0(A)/Uw(A)

∫
Uw−1 (A)\U0(A)

∫
Uw−1 (A)

∫
Ac

∫
M0(A)1

fAG(a−1u2nwau
′
2vm)a−ξ dm da du′2 dv du2.
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Conjugating u′2 over nwa, we get∫
U0(A)/Uw(A)

∫
Uw−1 (A)\U0(A)

∫
Uw(A)

∫
Ac

∫
M0(A)1

fAG(a−1u2u
′
2nwavm)a−ξδM0;Uw−1 (a)−1 dm da du′2 dv du2

=
∫
U0(A)

∫
Uw−1 (A)\U0(A)

∫
Ac

∫
M0(A)1

fAG(a−1unwavm)a−ξδM0;Uw−1 (a)−1 dm da dv du

=
∫
Uw−1 (A)\U0(A)

∫
Ac

(Ff )AG(a−1nwav)a−ξδw−1(a) da dv.

Using Mellin inversion, we can write this as∫
Ac

∫
Uw−1 (A)\U0(A)

∫
λ∈(aG0 )∗C:Re λ=λ0

ϕ(λ)(nwv)a−ξδw−1(a)δ0(a−1waw−1)
1
2a(w−1−1)λ dλ dv da

=
∫
Ac

∫
Uw−1 (A)\U0(A)

∫
λ∈(aG0 )∗C:Re λ=λ0

ϕ(λ)(nwv)a−(1−w−1)λ−ξ dλ dv da

for any λ0 ∈ (aG0 )∗, where we used Lemma 2.1. Suppose that λ0 − ρ0 lies in the positive Weyl
chamber. We claim that the integral is then absolutely convergent as a triple integral. Indeed,
replacing ϕ(λ) by |ϕ(λ)| ∈ I(λ0) and interchanging the order of integration, we get∫

Re λ=λ0

∫
Ac

m(w−1, λ0)|ϕ(λ)(e)|a−(1−w−1)λ0−ξ da dλ.

Since ϕ(λ)(e) is rapidly decreasing, the integral over λ converges. On the other hand, by
Lemma 2.2 and the assumption on ξ, (1− w−1)λ0 + ξ is a positive linear combination of the
elements of ∆0. Hence, the integral over a converges as well, justifying our claim.

Returning to the original integral, we can now rewrite it by interchanging the order of
integration as∫

Re λ=λ0

∫
Ac

m(w−1, λ)ϕ(λ)(e)a−(1−w−1)λ−ξ da dλ

= vol(aG0 /Z∆̂∨0 )
∫

Re λ=λ0

∏
$∨∈∆̂∨0

c−〈ξ+(1−w−1)λ,$∨〉

〈ξ + (1− w−1)λ, $∨〉
m(w−1, λ)ϕ(λ)(e) dλ.

Our assertion follows now from Lemmas 3.7, 3.6 and Proposition 3.1 (with V = aG0 , µ0 = ρ0 and
S = ∆0 ∩ Φw−1). 2

Remark 2. Note that the argument above does not apply directly to f ∈ C(G(A);K)
(cf. Remark 1). For G= GL(2), a direct argument valid for any f ∈ C(G(A);K) was given
in [FL11]. However, it seems harder to pursue this approach in the higher rank case.

We are now ready to prove the elliptic part of Theorem 1. Our point of departure will be
Proposition 5.1. Fix w ∈W and let Q=Q(w) = LV and ξ ∈ a∗0,Q+ be as above. We proceed in
several steps. In what follows, we will constantly use Corollary 3.5 so that we can assume that
f > 0.

We first apply Lemma 3.3 to M0 to conclude that∫
U0(A)/Uw(A)

∫
U0(A)

∫
Ac

∑
m∈M0(Q)

fA(a−1u2nwau1m)a−ξ da du1 du2,
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obtained from (10) by replacing the integral over M0(A)1 by the sum over M0(Q), is also a
continuous linear form on C(G(A);K). Using (2), we can write this as∫

UL0 (A)/ULw (A)

∫
ULw (A)/ULw (Q)

∫
U0(A)

∫
Ac

∑
m∈M0(Q)

fA(a−1u2vmnwau1)a−ξ da du1 dv du2,

since the integral over a and u1 does not depend on v. Combining v and u2, we write this as∫
UL0 (A)/ULw (Q)

∫
U0(A)

∫
Ac

∑
m∈M0(Q)

fA(a−1umnwau1)a−ξ da du1 du

or, as ∫
UL0 (A)/UL0 (Q)

∫
U0(A)

∫
Ac

∑
m∈M0(Q)

∑
u2∈UL0 (Q)/ULw (Q)

fA(a−1uu2mnwau1)a−ξ da du1 du,

or, if we wish, as ∫
UL0 (Q)\UL0 (A)

∫
UL0 (A)

∫
V (A)

∫
Ac

∑
m∈M0(Q)

∑
u2∈UL0 (Q)/ULw (Q)

fA(a−1u−1u2mnwau1u3)a−ξ da du1 du3 du.

We write a= aLa
L, where aL ∈AL and aL ∈AL0 . Conjugating u1 over aL, we obtain∫

UL0 (Q)\UL0 (A)

∫
UL0 (A)

∫
V (A)

∫
Ac

∑
m∈M0(Q)

∑
u2∈UL0 (Q)/ULw (Q)

fA(a−1u−1u2mnwaLu1a
Lu3)a−ξ da du1 du3 du.

Next, we claim that∫
UL0 (Q)\UL0 (A)

∫
V (A)

∫
Ac

∑
u3∈UL0 (Q)

∑
m∈M0(Q)

∑
u2∈UL0 (Q)/ULw (Q)

fA(a−1u−1u2mnwaLu1u3ua
L)a−ξδPL0 (a)−1 da du1 du,

obtained by replacing the integral over u3 ∈ UL0 (A) by a sum over a translate of (aL)−1UL0 (Q)aL

and dividing by δPL0 (a), is continuous. This follows from Proposition 4.4 applied to the parabolic
subgroup PL0 =M0U

L
0 of L, the element aL ∈ALc and the functions f(gũ−1 · ũ) on UL0 (A),

where ũ= (aL)−1uaL. For this, we use Lemma 3.2 and the fact that ũ ranges in a compact set
because aL ∈ALc and u can be integrated over a compact fundamental domain for UL0 (Q)\UL0 (A).
Conjugating u1 back, we obtain∫

UL0 (Q)\UL0 (A)

∫
V (A)

∫
Ac

∑
u3∈UL0 (Q)

∑
m∈M0(Q)

∑
u2∈UL0 (Q)/ULw (Q)

fA(a−1u−1u2mnwaLu3ua
Lu1)a−ξδPL0 (a)−1 da du1 du

and, since aL commutes with UL0 (A), we obtain∫
UL0 (Q)\UL0 (A)

∫
V (A)

∫
Ac

∑
u3∈UL0 (Q)

∑
m∈M0(Q)

∑
u2∈UL0 (Q)/ULw (Q)

fA(a−1u−1u2mnwu3uau1)a−ξδPL0 (a)−1 da du1 du.
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We can rewrite this as∫
UL0 (Q)\UL0 (A)

∫
V (A)

∫
Ac

∑
m∈BL

w

fA(a−1u−1muau1)a−ξδPL0 (a)−1 da du1 du.

We conclude that∫
UL0 (Q)\UL0 (A)

∫
V (Q)\V (A)

∫
V (A)

∫
Ac

∑
m∈BL

w

fA(a−1u−1v−1mvuau1)a−ξδPL0 (a)−1 da du1 dv du

is continuous, since the integral over a and u1 is independent of v. In particular,∫
UL0 (Q)\UL0 (A)

∫
V (A)

∫
V (Q)\V (A)

∫
Ac

∑
m∈Ew

fA(a−1u−1v−1mvuau1)a−ξδPL0 (a)−1 da dv du1 du

is continuous. The next step is to show the continuity of∫
UL0 (Q)\UL0 (A)

∫
V (Q)\V (A)

∫
Ac

∑
m∈Ew

∑
u1∈κm(V (Q))

fA(a−1u−1v−1mu1vua)δ0(a)−1 da dv du

=
∫
U0(Q)\U0(A)

∫
Ac

∑
m∈Ew

∑
u1∈κm(V (Q))

fA(a−1u−1mu1ua)δ0(a)−1 da du.

In other words, we want to replace the integral over u1 ∈ V (A) by the sum over a translate of
a−1κm(V (Q))a and divide by δQ(a)a−ξ. For this, we apply Proposition 4.4 and Lemma 3.2 to
the functions f(gũ−1 · ũ), where ũ= a−1vua, taking into account that ũ ranges in a compact set
because a ∈Ac and u and v can be integrated over compact fundamental domains. By Lemma 3.2,
we conclude the continuity of∫

K

∫
U0(Q)\U0(A)

∫
M0(Q)\M0(A)1

∫
Ac

∑
m∈Ew

u1∈κm(V (Q))

fA((uask)−1mu1(uask))δ0(a)−1 da ds du dk

by considering fsk(·) = f((sk)−1 · sk) for any s ∈M0(Q)\M0(A)1 and k ∈K and using the
compactness of M0(Q)\M0(A)1.

Finally, by the Bruhat decomposition and (4), the sum of these expressions for all w ∈W is∫
K

∫
U0(Q)\U0(A)

∫
M0(Q)\M0(A)1

∫
Ac

∑
γ∈G(Q)well

fA((uask)−1γ(uask))δ0(a)−1 da ds du dk

=
∫
AGP0(Q)\Sc

∑
γ∈G(Q)well

fA(g−1γg) dg, (11)

which is therefore continuous.
Taking A=AG, the elliptic part of Theorem 1 now follows from the reduction-theoretic

inequality (3) and the fact that G(Q)ell ⊆G(Q)well.

Remark 3. For the regular elliptic contribution, the argument simplifies: only w for which L=G
contribute and we do not need to use (9).

6. The semisimple terms

For any semisimple γ ∈G(Q), let M(γ) be the centralizer of the split part of the center of
C0
G(γ). Thus, M(γ) is the smallest Levi subgroup (not necessarily standard) defined over Q
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containing C0
G(γ). It is clear that M(g−1γg) = g−1M(γ)g for any g ∈G(Q). Also, since C0

G(γ) is
reductive, any parabolic subgroup containing C0

G(γ) will also contain M(γ). Denote by P (γ) the
smallest standard parabolic containing C0

G(γ). By the proof of Lemma 2.3, P (γ) is equivalently
the smallest standard parabolic P =MU containing γ such that CU (γ) = 1. It follows that

{u−1γu : u ∈ U(Q)}= γU(Q). (12)

Clearly, P (p−1γp) = P (γ) for any p ∈ P0(Q). For any standard parabolic P , let M(Q)rell = {γ ∈
M(Q) : P (γ) = P} ⊆M(Q)well. We recall the notation aP , HP :G(A)→ aP and the characteristic
functions τP , τ̂P (e.g. [Art05, §§ 4–6]).

Observe that if f > 0 then for any standard parabolic P =MU we have∫
Sc
f(g) dg 6

∫
K

∫
SMc

∫
U(A)

f(muk)τP (HP (m)− T ′P ) du dm dk, (13)

where T ′ ∈ a0 is such that 〈α, T ′〉= log c for all α ∈∆0.

Lemma 6.1. Let T ∈ a0. Then

f 7→
∫
AGP0(Q)\Sc

∑
γ∈G(Q)ss

fAG(x−1γx)τ̂P (γ)(TP (γ) −HP (γ)(x)) dx (14)

is continuous on C(G(A);K).

Proof. As always, we can assume that f > 0. Using (12), we can write (14) as the sum over
standard parabolic subgroups P =MU of∫

AGP0(Q)\Sc

∑
γ∈G(Q)ss:P (γ)=P

fAG(x−1γx)τ̂P (TP −HP (x)) dx

=
∫
AGP0(Q)\Sc

∑
γ∈M(Q)rell

∑
u∈U(Q)

fAG(x−1γux)τ̂P (TP −HP (x)) dx

=
∫
AGP0(Q)\Sc

∑
γ∈M(Q)rell

∑
u∈U(Q)

fAG(x−1u−1γux)τ̂P (TP −HP (x)) dx

=
∫
AGP

M
0 (Q)\Sc

∑
γ∈M(Q)rell

fAG(x−1γx)τ̂P (TP −HP (x)) dx.

By (13), this is bounded by the product of
∫
AG\AM τ̂P (TP −X)τP (X − T ′P ) dX and∫

K

∫
AMP

M
0 (Q)\SMc

∑
γ∈M(Q)rell

∫
U(A)

fAG(k−1u−1m−1γmuk) du dm dk

=
∫
AMP

M
0 (Q)\SMc

∑
γ∈M(Q)rell

(fP )AG(m−1γm) dm

6
∫
AMP

M
0 (Q)\SMc

∑
γ∈M(Q)well

(fP )AG(m−1γm) dm,

where

fP (m) =
∫
K

∫
U(A)

f(k−1muk) du dk.
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It remains to invoke the continuity of (11) with respect to M and A=AG and the easy fact that
the map f 7→ fP , C(G(A);K)→C(M(A);

⋂
k∈K Kk ∩M(A)) is continuous. 2

We can now finish the proof of Theorem 1. Let T0 be as in [Art05, (9.4)]. Suppose that M(γ)
is standard and that α(T − T0) > 0 for all α ∈∆0. For any x ∈G(A), let CTM(γ)(x) be the convex
hull in aM(γ) of w−1(TP ′ −HP ′(nwx)), where w ranges over the set W (M(γ)) of right WM(γ)-
reduced Weyl group elements such that M ′ = wM(γ)w−1 is standard and P ′ is the standard
parabolic subgroup with Levi M ′. Set

ψTM(γ)(x) =

{
1 if 0 ∈ CTM(γ)(x),

0 otherwise.

Alternatively,

ψTM(γ)(x) =
∏

w∈W (M(γ))

τ̂P ′(TP ′ −HP ′(nwx))

(cf. the proof of [Art05, Lemma 17.2]). Then the weight function vM(γ)(x) is equal to the volume
of the subset CT0

M(γ)(x) of aGM(γ) (cf. [Art05, pp. 62–63, 102]) and the semisimple part of the trace
formula can be written as∑

[γ]⊆G(Q)ss

∫
AMCG(γ,Q)\G(A)

fAG(x−1γx)vM(γ)(x) dx

=
∑

[γ]⊆G(Q)ss

∫
CG(γ,Q)\G(A)

fAG(x−1γx)ψT0

M(γ)(x) dx.

We claim that for any T as above we have∑
[γ]⊆G(Q)ss

∫
CG(γ,Q)\G(A)

fAG(x−1γx)ψTM(γ)(x) dx

=
∫
AGG(Q)\G(A)

∑
[γ]⊆G(Q)ss

∑
δ∈CG(γ,Q)\G(Q)

fAG(x−1δ−1γδx)ψTM(γ)(δx) dx

6
∫
AGP0(Q)\Sc

∑
γ∈G(Q)ss

fAG(x−1γx)τ̂P (γ)(TP (γ) −HP (γ)(x)) dx.

Indeed, suppose that ψTM(γ)(δx) = 1 for some δ ∈G(Q) and let Q= P (δ−1γδ) = LV . Then
δ−1M(γ)δ =M(δ−1γδ)⊆Q and, hence, since M(γ) and Q are standard, there exists w ∈
W (M(γ)) such that δ ∈ n−1

w Q(Q) and M ′ = wM(γ)w−1 ⊆ L. Thus, τ̂Q(TQ −HQ(x)) = τ̂Q(TQ −
HQ(nwδx)) = 1, since τ̂P ′(TP ′ −HP ′(nwδx)) = 1 by the assumption on δx.

Theorem 1 now follows from Lemma 6.1 upon substituting T = T0.
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Universitätsstr. 1, 40225, Düsseldorf, Germany

Erez Lapid erezla@math.huji.ac.il
Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel

802

https://doi.org/10.1112/S0010437X11004891 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=835041
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=2192011
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=0232893
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=2434856
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=0213362
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0092928
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
http://www.ams.org/mathscinet-getitem?mr=0088511
https://doi.org/10.1112/S0010437X11004891

	1 Introduction
	2 Preliminaries
	2.1 The setup
	2.2 Reduction theory
	2.3 Elliptic elements

	3 The space C (G(A);K)
	3.1 Fourier analysis
	3.2 Sobolev estimates
	3.3 Principal series and intertwining operators

	4 Lattice sums and integrals
	5 The elliptic contribution
	6 The semisimple terms
	Acknowledgements
	References



