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Rational functions with given ramification

in characteristic p

Brian Osserman

Abstract

Using limit linear series and a result controlling degeneration from separable maps to
inseparable maps, we give a formula for the number of rational functions (up to auto-
morphism of the target) on the projective line with ramification to order ei at general
points Pi, in the case that all ei are less than the characteristic. Unlike the case of charac-
teristic 0, the answer is not given by Schubert calculus, nor is the number of maps always
finite for distinct Pi, even in the tamely ramified case. However, finiteness for general Pi,
obtained by exploiting the relationship to branched covers, is a key part of the argument.

1. Introduction

We work throughout over an algebraically closed field k of characteristic p. For convenience, and
because our results will be trivial in the case p = 2, we assume p > 2 throughout. The question we
wish to address in this paper is simply the following.

Question 1.1. Fix n points Pi on P
1 and integers ei � 2, with

∑
i(ei − 1) = 2d − 2, and ei � d for

all i. How many separable self-maps of P
1 of degree d are there which ramify to order ei at the Pi,

counted modulo automorphism of the image P
1?

Here, note that the ramification points are fixed on the source, and not on the target.
The condition that

∑
i(ei − 1) = 2d− 2 implies, by the standard characteristic-p Riemann–Hurwitz

formula, that there are no solutions if any of the ei are not prime to p, so we will assume throughout
that all ei are prime to p unless we specify otherwise.

In characteristic 0, the number of maps is always finite, and when the Pi are general, this
number is given combinatorially in terms of Schubert calculus (see, e.g., [Oss03]). In characteristic p,
neither of these statement holds in general, and we explore the situation in a complete range of
characteristics, showing that the situation can be particularly pathological in low characteristics
regardless of whether the ramification is tame or wild, and ultimately solving the problem in mid-
range and higher characteristics (see Definition 1.3 below). Immediate motivation for this paper
was given by surprising applications to logarithmic connections with vanishing p-curvature on P

1,
and consequently Frobenius-unstable vector bundles on curves of genus 2, as well as the geometry
of the generalized Verschiebung. Specifically, in [Oss04d], logarithmic connections on rank 2 vector
bundles on P

1 with vanishing p-curvature are related via study of their subsheaf of horizontal
sections to the rational functions studied here. In [Oss04a], degenerations are used to phrase certain
questions about rank 2 Frobenius-destabilized vector bundles on genus 2 curves in terms of the
connections on P

1 analyzed in [Oss04d], and this in turn is used to study the action of pullback under
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Frobenius on the moduli space of rank 2 bundles and trivial determinant in [Oss04b]. However, the
main question addressed is sufficiently fundamental that a range of applications may be expected;
in characteristic 0, a still-open generalization of this question to a higher-dimensional target is
applicable to the solution of the AN Bethe equation of XXX type (see [MV02]). In addition, the
results and techniques of this paper lead to a number of new results on the existence and non-
existence of branched covers of the projective line; see [Oss05b].

There is considerable literature on our main question and its natural generalizations in charac-
teristic 0, from Eisenbud and Harris’ original solution in the case of P

1 in [EH83, Theorem 9.1], to
combinatorial formulas in the same cases by Goldberg [Gol91] and Scherbak [Sch02], to formulas in
the higher genus case of Logan [Log03, Theorem 3.1] and the author [Oss03]. However, the present
work appears to be the first attempt to approach the problem for positive characteristics.

Our basic technique is an adaptation of the limit linear series degeneration argument of [Oss03],
solving the problem first in the case of three points, and then repeatedly letting ramification points
come together to reduce inductively to this case. The main obstruction to carrying this argument
through is controlling potential degeneration of separable maps to inseparable maps.

We now give some notation and terminology leading up to the statement of our main theorem.

Notation 1.2. When the answer to Question 1.1 is finite, we denote it by N({(Pi, ei)}i). We denote
by Ngen({ei}i) the value of N({(Pi, ei)}i) for general Pi.

Definition 1.3. We distinguish three ranges of characteristic. We will refer to the high charac-
teristic range to mean those characteristics for which p > d, as well as characteristic 0. The mid
characteristic range will be characteristics for which p � d, but ei < p for all i. Finally, the
low characteristic range will be characteristics for which p � ei for some i.

We will see that high characteristics are uniformly well-behaved with respect to our question,
while low characteristics can be extremely pathological, and the mid characteristics seem to be
reasonably well-behaved, but are considerably subtler than the high characteristics.

Theorem 1.4. In the mid and high characteristics, we have the following complete solution to our
main question:

Ngen(e1, e2, e3) =

{
1 p > d

0 otherwise
(1.1)

Ngen({ei}i) =
∑

d − en−1 + 1
d − en + 1

� d′ � d
p + d − en−1 − en

Ngen({ei}i�n−2, e), with e = 2d′ − 2d + en−1 + en − 1. (1.2)

Equivalently, for n > 3, Ngen({ei}i) is given as the number of (n − 3)-tuples of positive integers
e′2, . . . , e

′
n−2 such that any consecutive triple e, e′, e′′ of the sequence

e1, e2, e
′
2, e3, e

′
3, . . . , en−2, e

′
n−2, en−1, en,

with e = e1 or some e′i, satisfies the following properties:

(i) the sum e + e′ + e′′ is odd, and less than 2p;

(ii) the triple e, e′, e′′ satisfies the triangle inequality: i.e., e � e′ + e′′, e′ � e + e′′, and e′′ � e + e′.

Further, for general points Pi all of the relevant maps have no non-trivial first-order deformations.

Remark 1.5. We make a few observations about the recursive formula: first, as the degree d′ is always
no greater than d, high characteristic will remain high under recursion. Similarly, adding the two
inequalities on the right, we find e = 2d′−2d+en+en−1−1 � d+(p+d−en−1−en)−2d+en+en−1−1 =
p − 1, so mid characteristic is also preserved (or becomes high) under iteration.
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Note that in the high characteristic range, we always have p > d, so the answer becomes
independent of characteristic: this is visibly true for the n = 3 formula, and is true for the
recursive formula because the inequality d′ � p + d − en−1 − en is subsumed by the inequality
d′ � e = 2d′ − 2d + en + en−1 − 1, or equivalently d′ � 2d− en−1 − en + 1, which is necessary for the
number of maps Ngen({ei}i�n−2, e) to be non-zero. Unsurprisingly, this characteristic-independent
formula is also the answer in characteristic 0.

Finally, we remark that although the recursive formula reflects the degeneration used in the
proof of the theorem, the second formula is easier to analyze combinatorially, and in particular it is
easier to use this form to prove positivity for a given choice of ei. This may also be pictured in terms
of a degeneration, to a chain of smooth rational curves with a total of three ramification points or
nodes on each component, but it seems difficult to prove the main theorem directly in terms of this
degeneration.

We also remark that chronologically, the direct approach here was not the first proof discovered
of our formulas. That was obtained via correspondence with certain logarithmic connections on P

1

together with a theorem of Mochizuki, as outlined in [Oss04e]. The key step of the direct argument
presented here, the analysis of separable maps degenerating to inseparable maps, was derived via a
careful study of the corresponding situation with connections.

We begin in § 2 by translating the problem into a question on intersection of Schubert cycles in
a Grassmannian. We exploit the relationship between ramified maps and branched covers in § 3 to
obtain some basic finiteness results including a ramified Brill–Noether-type theorem for g1

d on P
1

with specified ramification. We then apply this in § 4 to solve the base case of three ramification
points. Section 5 appears at first blush to be merely a couple of eccentric observations, including
the pathology that when exactly one ei is greater than p, the number of maps can never be finite,
but these observations play key roles in § 6, where we give a precise analysis of when a family of
separable maps can degenerate to an inseparable map, and in § 7, where we finally prove our main
theorem via the degeneration argument using limit linear series. Finally, in § 8 we explore some
examples and further questions, and in the Appendix we construct a scheme representing maps
between a pair of fixed curves, with at least a certain specified ramification, but at points which
are allowed to move; this scheme is the key idea in the proof of the Brill–Noether-type result of § 3,
and is also used to generalize this result in [Oss05a].

The contents of this paper form a portion of the author’s 2004 PhD thesis at MIT, under the
direction of Johan de Jong.

2. Translation to Schubert cycles

In this section, we translate Question 1.1 into a question on intersection of Schubert cycles on the pro-
jective Grassmannian G(1, d), and pin down some related notation. The translation is easy enough:
a map (up to automorphism of the image) may be represented explicitly by a two-dimensional
space of polynomials of degree d. Following standard linear series notation, we will refer to a point
of our Grassmannian as a ‘g1

d’. It is then easy to see that a ramification condition of order e at a
point P corresponds to a Schubert cycle of codimension e− 1, which we denote by Σe−1(P ). As we
assumed

∑
i(ei − 1) = 2d− 2, and our Grassmannian has dimension 2d− 2, the expected dimension

of the intersection is therefore 0. Pieri’s formula will now give us the intersection product of our
cycles, yielding a hypothetical formula for the answer to our question. However, there are several
substantive issues to address.

The first major issue is whether or not the Schubert cycles will actually intersect transversely,
even for general choice of the Pi. Vakil [Vak03, Corollary 2.7(a)] and Belkale [Bel06, Theorem 0.9]

435

https://doi.org/10.1112/S0010437X05001946 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001946


B. Osserman

have recently independently shown that if the Schubert cycles are general, they will intersect trans-
versely, but it is not the case that general points on P

1 will correspond to general Schubert cycles
in G(1, d), so we cannot hope to apply such general results. In fact, they correspond to osculating
flags of the rational normal curve in P

d. In characteristic 0, properness of the intersection (that is,
having the expected dimension) for any choice of distinct Pi is straightforward, and we will repro-
duce the argument below in order to analyze its implications in characteristic p. Transversality for
a general choice of Pi in characteristic 0 is known, but more involved (see [EH83, Theorem 9.1]),
and means that Pieri’s formula actually yields the correct number for general choice of Pi. However,
all of these statements fall apart in characteristic p, as we will see shortly.

The second issue to face is that of base points: points of G(1, d) with base points correspond
to lower degree maps padded out by extra common factors in the defining polynomials. It is easy
to see by Riemann–Hurwitz that base points cannot occur for separable maps. In particular, in
characteristic 0, or when p > d, the intersection of our Schubert cycles always actually corresponds
to the desired g1

d’s. On the other hand, in general inseparable maps can and will occur, frequently
contributing an excess intersection. For instance, in the case d > p, ei < p, the Frobenius map will
always contribute a P

d−p to the intersection, with one point in G(1, d) for every choice of a degree
d − p base point divisor.

These are the two issues which must be addressed in order to give an answer to the question.
However, except in the base case of three points, we will not address them directly, as would be
required by an intersection-theoretic approach. We will rather take a different tack, looking at
moduli of g1

d’s with specified ramification for certain degenerating families. Before continuing, we
summarize as follows.

Proposition 2.1. The answer to Question 1.1 is given by the number of points corresponding to
separable maps inside the intersection

⋂
i Σei−1(Pi) ⊂ G(1, d) of the Schubert cycles Σei−1(Pi).

Warning 2.2. The equivalences between maps and linear series tend to become misleading in fam-
ilies; in particular, if we have a linear series which develops base points in a special fiber, there is
no way to remove them globally to actually produce a morphism. For our arguments, whenever we
are working over a base other than a field, we will always be dealing with linear series, even if
we describe it as a ‘family of maps’. For the appropriate definitions (albeit in an overly generalized
context), see [Oss04c].

3. Finiteness results

We begin with a proposition whose argument is well-known in characteristic 0:

Proposition 3.1. In any characteristic, if
∑

i(ei−1) = 2d−2−c for some c � 0, then any component
of

⋂
i Σei−1(Pi) having dimension greater than c must meet the inseparable locus. In particular, in

high characteristics,
⋂

i Σei−1(Pi) always has the expected dimension c.

Proof. By Riemann–Hurwitz, if we had
∑

i(ei−1) > 2d−2, then
⋂

i Σei−1(Pi) must consist entirely
of inseparable maps. One can then induct on c, with a base case of c = −1, and the induction step
consisting of imposing a simple ramification condition at a new point P . This is a codimension 1
condition, and we claim it meets every positive-dimensional component of

⋂
i Σei−1(Pi): indeed,

the condition it imposes inside G(1, d) is that the lines meet a given (d − 2)-plane in P
d, and any

positive-dimensional subscheme of G(1, d) corresponds to a variety of dimension at least 2 in P
d, so

at least one line in the variety meets the (d− 2)-plane. Thus, each component of dimension at least
c + 1 produces a component of dimension at least c in the case of expected dimension c − 1, so by
induction, both components contain inseparable maps.
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The case c = 0 is simply the full specification of a tame ramification divisor, so we restate as
follows.

Corollary 3.2. In high characteristics, there are only finitely many self-maps of P
1 with specified

tame ramification divisor.

The finite generation of fundamental groups of curves, together with some generalities on
existence of moduli spaces of maps with certain ramification behavior, gives us a more substan-
tive finiteness result than the previous proposition.

Theorem 3.3. Let ei be prime to p, and suppose that
∑

i(ei − 1) = 2d − 2. Then for a general
choice of points Pi, we have that the set of maps from P

1 to P
1 ramified to order ei at Pi, modulo

automorphism of the image:

(i) is finite;

(ii) has no elements mapping any two of the Pi to the same point.

Proof. By Theorem A.6, we have a moduli scheme MR = MRd(P1, P1, {ei}i), with ramification and
branching maps down to (P1)n, and actions of Aut(P1) on both sides, with the action on the domain
being free. It is well-known that given any specified tame branch locus, up to automorphism of the
cover there are only finitely many covers with the given degree and branching: this follows, for
instance, from the finite generation of the tame fundamental group of P

1 minus the branch points.
Thus, each fiber of the branch morphism branch : MR → (P1)n has only finitely many Aut(P1)

orbits, and is therefore of dimension at most dimAut(P1) = 3. We conclude that the dimension
of MR is at most n + 3. This immediately implies that a general fiber (in the sense of a fiber
above a general point of (P1)n, making no hypotheses on dominance) of the ramification morphism
ram : MR → (P1)n can have dimension at most 3. By the freeness of the Aut(P1)-action on this
side, this completes the proof of part (i).

The proof of part (ii) proceeds similarly: one sees that the locus MR′ of maps in MR sending
any two ramification points to the same branch point has dimension at most n − 1 + 3 = n + 2,
and the fibers of MR′ under the ramification morphism are still Aut(P1)-orbits, so we conclude
that a general fiber of the ramification morphism cannot contain any points of MR′, completing the
proof.

Remark 3.4. This finiteness theorem may be considered a first case in positive characteristic of
a Brill–Noether theorem with prescribed ramification, as in [EH86, Theorem 4.5]. We show via
deformation theory of covers in [Oss05a] that one can generalize further in the r = 1 case, which
gives in particular an intrinsically algebraic and characteristic-p proof of the previous theorem.

4. The case of three points

While the general problem we wish to study becomes rather subtle in characteristic p, the special
case where we only have three ramification points is more tractable. This is fortuitous, as this case
will form the base case of our general induction argument. We begin by observing that in this case,
as each ramification index must be at most d, all three ramification points must map to distinct
points. We can also show the following via elementary observations.

Lemma 4.1. The intersection
⋂

i Σei−1(Pi) for three points is scheme-theoretically isomorphic to
P

m for some m � 0.

Proof. Set P1 = 0, P2 = ∞, and P3 = 1, and simultaneously fix bases (F,G) (up to simultaneous
scaling) for our g1

d’s by requiring that F vanish at 0, G vanish at ∞, and F (1) = G(1). We may
then verify the assertion directly by looking at the conditions imposed on the coefficients of F
and G by the ramification conditions.
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We now show the following.

Theorem 4.2. Let P1, P2, P3 be three distinct points of P
1, and e1, e2, e3 positive integers.

Then we have the following.

(i) In any characteristic, N({(Pi, ei)}i) is finite, and is in fact always 0 or 1, being 0 if and only
if there is some inseparable g1

d of degree d with the required ramification. Moreover, when
N({(Pi, ei)}) = 1, the intersection is actually given scheme-theoretically by a single reduced
point.

(ii) Whenever e1 and e2 are less than p and d � p, we have N({(Pi, ei)}i) = 0. Whenever d < p,
we have N({(Pi, ei)}i) = 1.

Proof. We first deduce (ii) from (i): the second claim of (ii) is trivial, as if d < p, there can be
no inseparable map of degree d. For the first claim, because e1 and e2 are both less than p, any
inseparable map will satisfy the required ramification conditions at P1 and P2, and if we choose our
map to be Frobenius, we can check directly that by adding base points at P3 we can satisfy the last
ramification condition as well.

For the proof of (i), we begin by noting that the intersection product in question is always 1:
indeed, as all of the Schubert cycles in question are special, this follows immediately by applying
Pieri’s formula and then the complementary-dimensional cycle intersection formula (see [Ful98,
Duality theorem, p. 271]). Next, the separable locus must be finite, as for three points on P

1 there
are no moduli, so we can apply Theorem 3.3. Finally, by Lemma 4.1, our intersection is a P

m, and
is in particular connected. If it is zero-dimensional, we are done, as we get a single reduced point
which must clearly correspond to either a separable or inseparable map. On the other hand, if it is
positive dimensional, by the closedness of the inseparable locus and the finiteness of the separable
locus, we find that all the maps are inseparable.

To rephrase a slightly special case of the second part of the theorem, we have the following.

Corollary 4.3. Suppose we are in the situation of the preceding theorem, and e1, e2 < p. Then a
separable map of the specified ramification exists if and only if d < p.

Remark 4.4. This corollary certainly does not hold if we drop the hypothesis that at least two
ramification indices be less than p, as may be seen by considering the example of xn.

5. Some theorems and pathologies

In this section, we make observations on what happens when some ei are replaced by p − ei, and
we also find that when exactly one ei is greater than p, there can never be a finite number of maps
with the specified ramification.

Notation 5.1. Let f be a separable map f between smooth proper curves C and D. Then the
different δ of f is defined to be the divisor on C associated to the skyscraper sheaf obtained as
the cokernel of the natural map f∗Ω1

D ↪→ Ω1
C .

We have the following amusing and occasionally useful lemma.

Lemma 5.2. Fix ei all less than p, and points Pi on P
1. Given an f ramified to order ei at Pi, and

with f(P1) �= f(P2), we can associate an f̂ ramified to order p− ei at Pi for i = 1, 2 and ei at Pi for
i > 2, and with f̂(P1) �= f̂(P2). This association is defined uniquely on equivalence classes modulo
automorphism of the image P

1, and induces a bijection on such equivalence classes.

In particular, if e′i are any integers obtained from the ei by repeatedly replacing pairs of indices
ei, ej with p − ei, p − ej while holding the others fixed, we have Ngen({ei}i) = Ngen({e′i}i).
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Proof. For convenience, we assume that f is unramified at infinity. By composing f with an automor-
phism of the image P

1, we may write it (uniquely up to scalar) as F/G = (x−P1)e1F ′/(x−P2)e2G′.
If we multiply through by (x − P2)p/(x − P1)p, we get the new function f̂ = (x − P2)p−e2F ′/
(x−P1)p−e1G′. As we obtained it from the old function by multiplying by an inseparable function,
one checks that the different is unaffected away from P1 and P2. As we assumed all ei < p, it fol-
lows that the new function and old function have the same ramification away from P1 and P2, and
a priori infinity. On the other hand, it is clear that the ramification at P1 and P2 is now p− e1 and
p− e2, and it is easy to check that the new degree of the function allows for no new ramification at
infinity. This operation is visibly invertible and well-defined up to automorphism equivalence, and
in particular gives the desired bijection.

For the second statement, we just induct on pairs of ei, ej , making use of the fact that by
Theorem 3.3, for Pi general, none of our maps for either of the two relevant choices of ramification
indices send any two of the Pi to the same point.

The main usefulness of this rather eccentric fact is summarized in the following, to be applied
later on.

Corollary 5.3. To calculate Ngen({ei}i) completely in the mid and high characteristic range, it
suffices to do so either when all but at most one of the ei are less than p/2, or when all the ei are
odd. Moreover, it suffices to prove Theorem 1.4 in only either of these two cases.

Proof. The first statement follows trivially from the previous corollary. The second is simply a
matter of noting that for any given number of points, the parity of the sum of the ei is determined
by the integrality of d. All the ei being odd always gives the correct parity, and if any ei are even,
an even number of them must be.

To get the final assertion, we have to show that the formulas proposed in Theorem 1.4 are
unaffected by replacing a pair ei and ej with p− ei and p− ej. We will show this by induction, with
n = 3 as the base case. For convenience, we repeat the formulas in question:

Ngen({ei}i) =
∑

d − en−1 + 1
d − en + 1

� d′ � d
p + d − en−1 − en

Ngen({ei}i�n−2, e), with e = 2d′ − 2d + en−1 + en − 1

Ngen(e1, e2, e3) =

{
1 p > d

0 otherwise.

We begin with the three point case. Taking into account the additional inequalities ei � d for
all i, if we substitute d = (e1 + e2 + e3 − 1)/2, we find our inequalities may be rewritten as:

e1 − e2 + 1
e2 − e1 + 1

� e3 � e1 + e2 − 1
2p − 1 − e1 − e2.

Replacing any two ei by p − ei will simply permute these inequalities.
Next, as the proposed recursive equation is not visibly symmetric in the ei, there are three cases

to consider: first, i = n − 1, j = n; second, i, j < n − 1; and, finally, i < n − 1, j � n − 1. We first
note that when we replace ei, ej by p − ei, p − ej , the degree d changes to d + p − ei − ej .

In the first case, one checks that under the substitutions, the inequalities for d′ are simply
permuted, and e remains unchanged. For the second and third cases, we will want to write the
inequalities for d′ as equivalent inequalities for e. We find

en − en−1 + 1
en−1 − en + 1

� e � en + en−1 − 1
2p − 1 − en−1 − en.
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In particular, these inequalities depend only on en and en−1, and not on d. Hence, in the second
case e ranges through the same values after substituting for ei and ej , so we only need to use the
induction hypothesis to conclude the desired result.

Finally, in the third case we assume for convenience that i < n−1 and j = n. In this case, when
we substitute into our inequalities for e, we get

p − en − en−1 + 1
en−1 + en + 1 − p

� e � p − en + en−1 − 1
p − 1 − en−1 + en

which then gives us that p − e satisfies precisely the same inequalities that e did originally. Thus,
each term in the new recursive formula corresponds to a unique term in the old formula by replacing
e with p − e and ei by p − ei, so once again the induction hypothesis gives us the desired result.

It remains only to note that the reducedness assertion of Theorem 1.4 is preserved as well when
ei, ej are replaced by p − ei, p − ej . This follows from the observation that the construction in
the preceding lemma works equally well over k[ε], so lack of non-trivial first-order deformations is
preserved.

We end with a rather surprising observation illustrating that even tame ramification can have
very pathological behavior in low characteristics.

Proposition 5.4. Suppose that e1 > p but still prime to p, and ei < p for all i > 1. Then if one
map exists with ramification ei at Pi, infinitely many do. In particular, if the Pi are general, no
maps exist with ramification ei at Pi.

Proof. Without loss of generality, we may assume that P1 is the point at infinity, and that our
function maps infinity to infinity, so that it is given by F/G, with deg F −deg G = e1. Now consider
the family of functions F/G− txp, where t ∈ k. As e1 > p, the ramification at infinity is unaffected.
On the other hand, since xp is regular away from infinity and inseparable, the different is unchanged
on the affine part, and as we assumed that all ei < p for i > 1, we find that the ramification is
unaffected everywhere, giving us an infinite family of maps, clearly not related by automorphism,
all with the same ramification. For Pi general we know that there can be at most finitely many
maps with specified tame ramification by Theorem 3.3, so we conclude that there cannot be any
such maps at all.

The following corollary will not be used later, but seems worth mentioning.

Corollary 5.5. Suppose that the Pi are general, and we have a map f with ei < p for all i > 1,
but e1 = mp wild with m > 1. Then the order of the different of f at P1 is greater than 2(m− 1)p.

Proof. If we again put P1 at infinity and write f = F/G, subtracting off some multiple of xmp

will force the degree to drop, and leave all ei for i > 1 unchanged. The index e1 may not drop
(this can only happen if the degree of F drops at least mp below the degree of G), but if it remains
wild we can iterate, and as the degree drops each time, e1 must eventually become tame. By our
proposition, this new tame index, which we denote by e′1, would have to be less than p. If we denote
the new degree by d′, one sees that d − d′ > (m − 1)p, considering separately the cases that the
degree of F remained greater than G or dropped below that of G. The corollary then follows from
Riemann–Hurwitz.

Example 5.6. To demonstrate that the statement of Proposition 5.4 is not vacuous, we note that it
is not difficult to write down a concrete example. Indeed, the family of functions xp+2 + txp + x is
easily seen to satisfy our requirements.
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Remark 5.7. In standard examples of linear series existing only for special configurations in
characteristic 0, the space of linear series with the prescribed ramification is supported over a
maximal-dimensional subspace of Mg,n or, equivalently, for a general configuration where such
a linear series exists, there are only finitely many of them. In particular, in none of the standard
examples is the expected dimension non-negative. It is not clear whether or not this must always be
the case in characteristic 0, but here we have an example where this fails to hold in characteristic p.

6. Specialization to inseparable maps

The ultimate goal will be to solve the map-counting problem in mid and high characteristics by
repeatedly letting points come together. The main obstacle to this is understanding when a family
of separable maps can have an inseparable map as its limit. We provide an answer to this question
which may seem unmotivated, and indeed arose from careful examination of the situation in the
very different and at first glance totally unrelated setting of certain connections with vanishing
p-curvature, as discussed in [Oss04e].

Our main result is the following.

Theorem 6.1. Let A be a discrete valuation ring containing its residue field k and with uniformizer
t, and ft be a family of maps of degree d from P

1 to P
1 over SpecA (more precisely, a linear series

on P
1
A) whose generic fiber is tamely ramified along sections Pi with all ei < p, and whose special

fiber is inseparable. We further assume that the Pi stay away from infinity. Then if the limit of the
Pi in the special fiber is denoted by P̄i, we have the following.

(i) If the P̄i are distinct, they are in a special configuration allowing the existence of separable
maps of degree d + m − 1 ramified to order ei at P̄i, and 2m − 1 at infinity.

(ii) If P̄j = P̄j′ with ej +ej′ < p, and the other P̄i distinct, then the P̄i are in a special configuration
allowing separable maps of degree d + m− 1− b, ramified to order ei at the P̄i for i �= j, j′, to
ej + ej′ − 2b − 1 at P̄j = P̄j′ , and to 2m − 1 at infinity.

In either case, m is some integer with p � m � d, and in the second case b is a non-negative integer
less than (ej + ej′ − 1)/2.

Proof. The main idea of the proof is not dissimilar to the basic operation of applying fractional
linear transformations to be able to factor out a power of the uniformizer if one is given a family
of maps degenerating to a constant map. However, in this case we will apply a fractional linear
transformation with inseparable coefficients; this will behave similarly, but will not preserve the
degree of the map, and also does not appear to work readily in nearly the generality of the constant
case.

We work for the most part explicitly with pairs of polynomials and their differents, only dealing
with common factors at the end to translate to rational functions and ramification indices. We can
write ft as F/G, with F,G ∈ A[x], and have no common factors. We denote by F0 and G0 the poly-
nomials obtained from F and G by setting t = 0, and by F̄0 and Ḡ0 the inseparable polynomials
obtained by canceling the common factors of F0 and G0; as F,G represent a linear series of dimen-
sion 1, we may further assume that they were chosen so that F0, G0 defines a non-constant function.
Then let H1 and H2 be inseparable polynomials of degree strictly less than F̄0 and Ḡ0, respectively,
such that F̄0H2 − Ḡ0H1 = 1 (this is possible by dividing the exponents F̄0 and Ḡ0 by p, applying
Euclid’s algorithm in k[x], and multiplying all exponents by p). We now construct a new family
F̃ /G̃ over SpecA as follows: if we denote by ν the map from A[x] to itself which simply factors out
common powers of t, then F̃ := ν(FḠ0 − GF̄0), and G̃ := FH2 − GH1. It is easy to check that
applying an inseparable fractional linear transformation to F/G will change (dF )G−F (dG) by the
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determinant of the transformation, so it follows that (dF̃ )G̃− F̃ (dG̃) is the same as (dF )G−F (dG),
but with a positive power of t factored out.

At t = 0, we note that as we had F̄0H2 − Ḡ0H1 = 1, G̃ is made up precisely of the common
factors of F0 and G0, of which there can be at most d − deg f0 � d − p. As we removed a positive
power of t from (dF )G − F (dG), if we still have an inseparable limit, we can repeat the process
as many times as necessary to remove all the powers of t and obtain a separable limit. Each time
we do, the degree of the denominator at t = 0 clearly remains at most d − p. We thus end up
with a family F̃ /G̃ which over the generic fiber has the same different as F/G away from infinity.
If we let K be the fraction field of A, we also note that we must have that the ideal generated
by F̃ , G̃ in K[x] is the same as that generated by F,G. As F,G had no common factors over K,
it follows that F̃ , G̃ have no common factors either. Now, as we have no common factors, we find
by considering differents that away from t = 0 (that is, at the generic fiber), F̃ /G̃ has the same
ramification as F/G except possibly at infinity, as all the ei were specified to be less than p.

Denote by F̃0, G̃0 the polynomials obtained from F̃ , G̃ at t = 0. We claim that the different of
(F̃0, G̃0) away from infinity is the limit of the different of ft, and in particular has degree 2d − 2.
Indeed, this follows from our hypothesis that the Pi stay away from infinity, because when the limit
is separable, the limit of the different is the different of the limit, with orders adding when points
come together. Next, from our hypotheses, the different in the limit has order less than p except
at infinity, and we need not worry about wild ramification. Denote by e∞ the ramification index of
F̃0/G̃0 at infinity, and suppose that p|e∞. In this situation, we can replace F̃0 by subtracting off an
appropriate multiple of xe∞G̃0, which will decrease e∞ without affecting the ramification away from
infinity. Repeating as necessary, we can require that F̃0/G̃0 be tamely ramified at infinity (hence
everywhere), without changing its behavior away from infinity, or the degree of G̃0.

If we denote the greater of the degrees of F̃0, G̃0 by d̃, we then have that

2d̃ − 2 = 2d − 2 + e∞ − 1.

We find in particular that d̃ � d, so as the degree of G̃0 was strictly less than d, it follows that d̃
is simply the degree of F̃0, and e∞ = d̃ − d0, where d0 is the degree of G̃0. Write d0 = d − m for
some m, where from our earlier bound on the degree of our denominators, we know that m � p.
We then find that d̃ = d + m − 1, and e∞ = 2m − 1 > p.

Finally, we translate back into the language of maps, by removing common factors. As vanishing
indices cannot drop under specialization, and the different of the limit is the limit of the different,
it then follows that at any point P , we can acquire base points only if more than one ramification
section converges to P , which is to say only if P = P̄j = P̄j′ . In this situation, we let b be the
number of common factors of F̃0, G̃0 at P̄j = P̄j′ . It now follows immediately that removing these
common factors, we have constructed a function as claimed in the statement of the theorem.

Putting the theorem together with Proposition 5.4, and noting that there are only finitely many
possibilities for m and b, we conclude as follows.

Corollary 6.2. In the situation of the preceding theorem, if the P̄i are general, there cannot be
any ft as described, having an inseparable limit.

7. The degeneration argument

We complete the proof of Theorem 1.4 in this section via a degeneration argument. The basic
situation we will consider is the family arising as follows.

Inside of P
1 × P

1, take the family of hyperbolas given in affine coordinates by xy = t, degen-
erating at t = 0 to the union of the x-axis and y-axis. For each t �= 0, we get a smooth P

1, and
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P1

Pn−2

PnPn−1P

...

Figure 1. An explicit family of smooth rational curves degenerating to a node, with n sections.

fix isomorphisms between them by projecting to the y-axis. Choose an isomorphism between our
abstract P

1 and the y-axis sending P to the node; we can now speak of P1, . . . , Pn−2 as well as P as
fixed points on the y-axis and simultaneously on all the smooth fibers of our family; they are (con-
stant) sections of our family. Now, choose any two points P 0

n−1 and P 0
n on the x-axis away from 0,

and define sections P t
n−1 and P t

n similarly via projection from our family to the x-axis rather than
the y-axis. Under our fixed trivialization of the smooth fibers of the family, these sections both tend
towards the section defined by P (see Figure 1). We will consider this as a family X over Speck[t],
and write Xt for the associated local family over Spec k[t](t).

We briefly review the main concepts of the theory of limit linear series as it relates to our
situation. See [Oss04c] for general definitions and, where applicable, proofs. On any non-singular
fiber of our family, we know that a map to P

1 (modulo automorphism of the image) corresponds to a
g1
d on that fiber; we see that given a g1

d on the family away from the special fiber, we can obtain a g1
d

on either the x- or y-axis simply by projecting all fibers to the appropriate choice of axis. This pair
gives the associated Eisenbud–Harris limit series on the nodal fiber; we have vanishing sequences
ax

i and ay
i for i = 0, 1 at the node, and the degree of the induced map on the x-axis (respectively,

y-axis) is at most d − ax
0 (respectively, d − ay

0), with the ramification index of the map at the node
given by ax

1 − ax
0 (respectively, ay

1 − ay
0). We have the inequalities ax

0 + ay
1 � d, ax

1 + ay
0 � d; the data

of a pair of g1
d’s on the components with vanishing sequences satisfying these inequalities is, in fact,

the definition of an Eisenbud–Harris limit series, and we say that a given limit series is refined if
these are both equalities.

Considering the ramification imposed on the induced maps on the x-axis and y-axis together,
we find that we have∑

i

(ei−1)+(ax
1−ax

0−1)+(ay
1−ay

0−1) � (2d−2)+(2d−2ax
0−2ay

0−2) = (2(d−ax
0 )−2)+(2(d−ay

0)−2).

Hence, by Riemann–Hurwitz, if the limits are separable, we immediately conclude that we must have
equality, so the limit forms a refined limit series. Furthermore, the maps cannot have any additional
base points or ramification, so the corresponding maps must have degrees precisely d−ax

0 and d−ay
0,

with ramification index ax
1 − ax

0 = ay
1 − ay

0 at the node.
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Given these observations, our general theory, and specifically [Oss04c, Theorem 5.3], gives us
the following.

Theorem 7.1. Associated to our families X and Xt, and any choice of ramification indices ei such
that

∑
i(ei − 1) = 2d − 2, are schemes G1

d := G1
d(X, {(Pi, ei)}i) and G̃1

d := G1
d(Xt, {(Pi, ei)}i), with

the latter obtained from the former by base change, and the fibers parametrizing (limit) linear series
with the required ramification on the fibers of X and Xt. We also have open subschemes G1,sep

d and

G̃1,sep
d parametrizing limit series which are separable when restricted to every component of every

fiber. Over t = 0, G1,sep
d (equivalently, G̃1,sep

d ) parametrizes simply Eisenbud–Harris limit series, and
contains only refined limit series.

Proof. Most of this is immediate from [Oss04c, Theorem 5.3]. The fact that G1,sep
d parametrizes

Eisenbud–Harris series on the special fiber follows from [Oss04c, Corollary 6.8] together with the
assertion that the only separable Eisenbud–Harris limit series are refined, which we observed above.

Given this language, we can readily apply [Oss04c, Corollary 6.12] to obtain the following.

Corollary 7.2. With the notation of the above theorem, if P1, . . . , Pn−2 and P are chosen gen-
erally, and en−1 + en < p, then G̃1,sep

d is finite etale over Spec k[t](t). In particular, it has the same

number of points, all reduced, in the geometric generic and special fibers, and the fibers of G1,sep
d

have the same number of points at general t as at t = 0.

Proof. First, the assertion on the fibers of G1,sep
d for general t follows immediately from the statement

on G̃1,sep
d , together with the fact that G̃1,sep

d is obtained from G1,sep
d simply by localization of the

base around t = 0.
Next, to obtain the desired statement on G̃1,sep

d , we need only verify that the conditions (I)–(III)
of [Oss04c, Corollary 6.12] are satisfied: first, that every separable Eisenbud–Harris limit series on
the special fiber is refined; second, that the scheme of separable Eisenbud–Harris limit series on the
special fiber consists of a finite number of reduced points; and third, that if A is a DVR, any
A-valued point of G̃1

d mapping flatly to Spec k[t](t) and being separable at the generic point is also
separable on the closed point. Condition (I) is satisfied even without the generality hypothesis, as
stated in the above theorem.

Condition (III) is for the most part simply an application of Corollary 6.2; indeed, given an
A-valued point of G̃1

d flat over Spec k[t](t), projection to the y-axis would give a family of g1
d’s on

P
1 with ramification sections specializing to the P1, . . . , Pn−2, P , which are general by hypothesis.

Then Corollary 6.2 says that if the family is generically separable, it must remain separable on the
special fiber. It remains to see that the same holds if we project to the x-axis. For this, considering
the different we note that the vanishing sequence on the y-axis at the node will satisfy ay

0 +ay
1 −1 =

en−1 + en − 2, and in particular ay
1 < p. On the other hand, ax

0 + ay
1 � d, so as ax

0 is the number of
base points acquired on the x-axis, the degree on the x-axis is less than or equal to d−ax

0 � ay
1 < p,

and we also cannot have an inseparable limit along the x-axis, giving condition (III).
Lastly, we prove the validity of condition (II) by induction on n. The basic observation is because

the space of refined Eisenbud–Harris limit series may be viewed simply as a disjoint union over all
vanishing sequences satisfying ax

i + ay
1−i = d of the products of the schemes parametrizing g1

d ’s
with appropriate ramification on each component, it suffices to see that these latter are made up of
reduced points. It is easy to see that as the vanishing sequences vary, if we simply remove the base
points ax

0 and ay
0, we will have the same ramification index e at the node on each component, the

degrees on each component will be such that the expected dimension (taking e into account as well as
the ei) will be zero, and e will vary arbitrarily given this constraint, together with the constraint that
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the degrees on each component be at most d. In particular, it suffices to see that for points chosen
generally, the scheme of separable g1

d ’s in the (n− 1)-point and three-point cases always consist of a
finite number of reduced points, and by induction on the statement of our corollary, it is enough to
see this in the three-point case, which we have conveniently already handled in Theorem 4.2.

We are now ready for the proof of Theorem 1.4.

Proof of Theorem 1.4. First, the second form of the n > 3 case is easily checked by induction to be
equivalent to the recursive formula. Also, we already have the n = 3 formula from Theorem 4.2.

For the recursive formula, we may assume that en−1 + en < p, thanks to Corollary 5.3.
By Corollary 7.2, for all our points chosen generally, and a general choice t, G1,sep

d has the same
number of points over that particular t as it does over t = 0. This sets up a simple recursion formula
to calculate Ngen({ei}i): the number will be given by the number over the special fiber, which is the
sum over all choices e of ramification index at the node of Ngen(e, en−1, en)Ngen({ei}i<n−1, e).

We recall that the formula we wanted to prove for Theorem 1.4 was

Ngen({ei}i) =
∑

d − en−1 + 1
d − en + 1

� d′ � d
p + d − en−1 − en

Ngen({ei}i�n−2, e), with e = 2d′ − 2d + en−1 + en − 1

and that in the proof of Corollary 5.3 we saw that the above inequalities for d′ were equivalent to
the following inequalities on e:

en − en−1 + 1
en−1 − en + 1

� e � en + en−1 − 1
2p − 1 − en−1 − en

.

We first show that the above inequalities for e are precisely the range for which Ngen(e, en−1, en)
= 1. However, with Theorem 4.2 at our disposal, this is a trivial observation, as en − en−1 + 1 � e,
en−1 − en +1 � e, and e � en + en−1 − 1 are precisely the inequalities insuring that the ramification
indices are less than the degree of the map, and e � 2p − 1 − en−1 − en insures that the degree
is less than p. Finally, we need to know that the degree on the three-point component will be
less than d. This degree will be given by (e + en−1 + en − 1)/2, so we find that a priori, we need
e � 2d−en−1−en+1. However, we note that the right-hand side is actually 2d′−e, so this inequality
is equivalent to e � d′, and we need not include it with the conditions, as if it is violated we will
have Ngen({ei}i�n−2, e) = 0, and there will be no contribution to the sum. This completes the proof
of our main theorem.

8. Examples and further questions
We first apply our main theorem in the case of four points. For a given d′ as in Theorem 1.4,
Ngen(e1, e2, e) = 1 if e1, e2, e � d′ and p > d′, and Ngen(e1, e2, e) = 0 otherwise. Rewriting this
condition in terms of d′, we get the bounds e1 � d′, e2 � d′, d′ � 2d − e3 − e4 + 1, d′ � p − 1, and
including these bounds for d′ along with those of Theorem 1.4, simply by substracting the various
bounds for possible values of d′ we obtain the following.

Corollary 8.1. The number Ngen({ei}i) of self-maps of P
1 of degree d in characteristic p, ramified

to orders e1, . . . , e4 at four general points, with each ei < p and 2d − 2 =
∑

i(ei − 1), and counted
modulo automorphism of the image, is given by the formula

Ngen({ei}i) = min{{ei}i, {d + 1 − ei}i, {p − ei}i, {p − d − 1 + ei}i},
or equivalently,

Ngen({ei}i) = min{{ei}i, {d + 1 − ei}i} − max{0, d + 1 − p}.
Further, all of these maps are without any non-trivial first-order deformations.
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Example 8.2. We explore an example which demonstrates all the basic behaviors we have described
so far, and may be solved explicitly: maps of degree 3, with four simple ramification points. We may
assume without loss of generality that P1 = 0, P2 = ∞, P3 = 1, and we let P4 be a general
parameter λ. We see immediately that our four ramification points must have distinct images, so we
may further specify that our maps fix P1 and P2, from which we deduce that they are of the form
f = x2(ax+ b)/(x+ c), with a, b, c all non-zero. As we did not specify that P3 be fixed, we have one
remaining degree of freedom, and may set b = 1. Now, if we consider the zeroes and poles of df , we
can calculate directly that our possible maps satisfy 2c = 2aλ and 1 + 3ac = −(1 + λ)2a, which in
characteristic other than 2 means c is determined by a and λ, and a satisfies 3λa2+2(1+λ)a+1 = 0.
In characteristic 3, we get a unique (separable) solution, while in characteristics 0 or p > 3, we get
two solutions for general λ. We find that these solutions come together when 1−λ+λ2 = 0. Finally,
in characteristic 3, we also see that the unique solution f = (x3+(1+λ)x2)/((1+λ)x+λ) specializes
to an inseparable solution when λ goes to −1.

Remark 8.3. In the context of covers with prescribed branching, there is a very general result on
lifting to characteristic 0; see [BLR98, Ch. 11, Proof of Proposition 5.1]. One can use this and
the three-transitivity of Aut(P1) to prove a similar result for lifting g1

d’s on P
1 with prescribed

ramification at three points, and one might be tempted to conjecture that one can generalize to
arbitrary numbers of points and tame ramification on P

1. However, Proposition 5.4 shows that such
a statement cannot hold even in this case, as by virtue of Corollary 3.2 only finitely many of the
infinitely many constructed maps would be able to lift to characteristic 0. However, it may still be
true that one can prove such a statement in the high and mid characteristic ranges. Indeed, we are
able to prove this in more generality in [Oss04c, Corollary 5.5], subject to an expected-dimension
hypothesis. In particular, in our case of self-maps of P

1, we can conclude thanks to Theorem 3.3 that
lifting to characteristic 0 is always possible for tame ramification indices and general ramification
points, or in high characteristic and arbitrary ramification points, and we have reduced the mid-
characteristic case down to the question of finiteness for arbitrary distinct ramification points.

We conclude with some further questions. We could reasonably start with remaining questions
about the case of P

1, including the following.

Question 8.4. Is it true that for a given d and ei, the number of maps is either always finite or always
infinite as the Pi are allowed to move? Can we prove that it is always finite in the mid-characteristic
case?

Question 8.5. What happens in low characteristic when more than one ramification index is greater
than p?

Question 8.6. What can we say about the dimension of spaces of wildly ramified maps? When do
wildly ramified maps exist for general ramification points?

This first question is partially answered by applying results of Mochizuki in [Oss04e], and similar
arguments may be expected to give a complete affirmative answer. The last question is explored
further in [Oss05a]. We briefly examine some examples of the second question. The following lemma
is trivial.

Lemma 8.7. Let f, g be rational functions on a smooth curve C, and P ∈ C a point where both f
and g are defined. Then f + g has ramification index at P at least as large as f if and only if the
ramification index of g at P is at least as large as that of f .

In particular, in the case that C = A
1 and f is a tamely ramified polynomial of degree d, with

d > p and prime to p, we have that f+g is another polynomial of degree d, with the same ramification
as f , if and only if g is an inseparable polynomial of degree less than d, and with ramification index
greater than that of f at every point of A

1.
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Example 8.8. We conclude that if e1 = d is strictly between 2p and 3p, for some choices of ei we have
a positive-dimensional family of maps with the given ramification, while for others we only have
finitely many such maps. For instance, if we have p < e2 < 2p, but ei < p for all i > 2, we obtain a
unique inseparable polynomial (up to fractional linear transformation) of degree 2p ramified to order
2p at P2, which gives us a one-dimensional family of maps with the desired ramification. However, if
e2 > 2p, or if e3 is also between p and 2p, no inseparable polynomial of the specified form exists, so
our separable map is necessarily unique. Furthermore, these examples are non-vacuous: examples of
the first and second may be obtained simply by xd −xe2, for e1 − e2 �= p, while 2x2p+1 −x2p −2xp+1

is an example of the third.

Lastly, one could ask the same questions about maps from higher-genus curves to P
1. These have

been answered in the case of characteristic 0 in [Oss03], and the argument there would also apply
in characteristic p given an appropriate generalization of Theorem 6.1 to control the possibility of
separable maps specializing to inseparable maps. The case of higher-dimensional linear series is still
open as well, even in characteristic 0.

Appendix. Moduli schemes of ramified maps

The goal of this appendix is to construct moduli schemes of maps of curves required to have at least
given ramification, but at unspecified points. Before we begin, we recall the well-known corollary of
Grothendieck’s work on the Hilbert scheme.

Theorem A.1. Given X and Y two smooth, projective, geometrically connected curves over a
locally Noetherian scheme S and a positive integer d, then the functor Mord

S(X,Y ) parametrizing
degree d morphisms from X to Y over S is representable by a quasi-projective scheme. In particular,
AutS(X) = Mor1

S(X,X) is representable.

Proof. Without the degree hypothesis, the functor is constructed in [Gro61, pp. 221–220] (where it
is called Hom) as an open subscheme of the Hilbert scheme via the graph associated to a morphism.
Now, if L and M are ample line bundles on X and Y , and f a morphism of degree d, one checks
that the Hilbert polynomial of the graph under the projective imbedding of X ×S Y induced by
π∗

1L⊗ π∗
2M is uniquely determined by d, so the Mor scheme is naturally a disjoint union over all d

of schemes representing Mord, each of which is quasi-projective.
In order to see that AutS(X) = Mor1

S(X,X), we first note that for any d > 0, Mord
S(X,Y )

consists entirely of scheme-theoretically surjective morphisms. Indeed, given f ∈ Mord, one checks
by the criterion on flatness and fibers (see [GD66, Theorem 11.3.10]) that f is faithfully flat, which
implies scheme-theoretic surjectivity. Now, to see that AutS(X) = Mor1

S(X,X), it suffices to note
that in our situation, one can check whether f is a closed immersion on each fiber fs (see [GD61,
Proposition 4.6.7]), so the desired assertion follows from the well-known case of smooth curves over
S = Spec k (see, for instance, [GD61, Corollary 4.4.9]).

We also have the following.

Proposition A.2. With the notation of the preceding theorem, there exists an open subscheme
Mord,sep

S (X,Y ) of Mord
S(X,Y ) parametrizing morphisms which are separable on every fiber.

Proof. Let M := Mord
S(X,Y ), XM and YM be the pullbacks of X and Y to M , f̃ : XM → YM be

the universal morphism of degree d, defined over M ; we get an induced map f̃∗Ω1
YM/M → Ω1

XM/M of

line bundles on XM , with the cokernel giving the locus on XM where f̃ is ramified. The complement
is an open set, and its image in M is clearly the locus of separable maps; as X is flat and of finite
type over S, XM is flat and of finite type over M , and in particular open, so we have constructed
an open subscheme of M corresponding to separable maps, as desired.
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We also recall a standard construction involving the jet bundle, or bundle of principal parts Pn
X/S ,

associated to an S-scheme X. The terminology and notation is not standard, however.

Definition A.3. We define the nth cotangent bundle Υn
X/S to be the kernel of the natural map

Pn
X/S → OX ; explicitly, consider OX ⊗OS

OX as an OX -module via left multiplication, and consider
the natural map to OX sending a⊗ b to ab. Then if we denote the kernel of this map by IX/S , with
the induced OX-module structure, Υn

X/S := IX/S/In+1
X/S .

We recall the following proposition.

Proposition A.4. With notation as in the preceding definition:

(i) Υn
X/S is compatible with base change;

(ii) on affine opens U , IX/S is generated by elements of the form a ⊗ 1 − 1 ⊗ a, for a ∈ OX(U);
(iii) if X is smooth over S, Υn

X/S is locally free.

Proof. Compatibility with base change for Pn
X/S is [GD67, Proposition 16.4.5]; because Υn

X/S is
the kernel of a map (clearly compatible with base change) to OX , and OX is free, it follows that
Υn

X/S is compatible with base change. Part (ii) is [GD64, Lemma 0.20.4.4]. Finally, part (iii) follows
from the same statement for Pn

X/S , which is [GD67, Proposition 17.12.4], as Υn
X/S is the kernel of

a surjective map from Pn
X/S to OX (in fact, this is somewhat gratuitous, as the argument for Pn

X/S

works without modification for Υn
X/S).

We now specify in full detail the functor we wish to represent.

Definition A.5. Suppose that we are given a pair of smooth, projective, geometrically connected
curves X,Y over a locally Noetherian base S, as well as n integers ei, and d � 1. Then the functor
MRd

S(X,Y, {ei}i) associates to any scheme T over S the set of separable morphisms f from XT to
YT over T of degree d, together with a choice of n disjoint T -valued points Pi of XT , such that the
fiber of f(Pi) contains an eith-order thickening of Pi inside of XT for each i.

Conceptually, this functor is the functor of maps f of degree d between X and Y , together with
points Pi on X which are (at least) eith-order ramification points of f .

Our main result is the following.

Theorem A.6. The functor MR = MRd
S(X,Y, {ei}i) is representable by a scheme MR. We also

have the natural data of morphisms ram : MR → Xn and branch : MR → Y n and actions of the
group schemes Aut(X) and Aut(Y ) on MR over Y n and Xn respectively. Furthermore, Aut(Y ) acts
freely on MR.

Proof. First we note that all of the assertions other than representability can be verified simply
on the functor level: the morphism ram is the forgetful transformation which takes a point of
MR and remembers only the Pi; similarly, the morphism branch remembers the f(Pi), which are
sections of YT . A point g of Aut(Y ) act on points of MR by sending f to g ◦ f and leaving the
Pi fixed, and similarly g ∈ Aut(X) acts on MR by sending f to f ◦ g and the Pi to g−1Pi, which
fixes f(Pi). The freeness of the Aut(Y ) action follows easily from the statement that any point of
MR corresponds to a scheme-theoretically surjective map, noted in the proof of Theorem A.6.

Clearly, we have a forgetful map from MR to M = Mord,sep(X,Y ); as the latter is representable,
it will be enough to show that the map of functors is also representable. In fact, if we use the
convention that Xn

M denotes the product of n copies of XM over M , the sections in the definition of
our functor will allow us to describe MR as a closed subscheme of Xn

M with the pairwise diagonals
removed. We claim that it is enough to handle the case n = 1: suppose that we have done this case,
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and for each i let MRi be the resulting scheme; then if we imbed the product of the MRi as a closed
subscheme of Xn

M , and remove pairwise diagonals, we get the desired scheme.
As X and Y are smooth over S by hypothesis, Υe−1

X/S and Υe−1
Y/S are locally free, so the kernel

of any morphism f∗Υe−1
Y/S → Υe−1

X/S is representable by a closed subscheme of X over S, and the
following lemma completes the proof of our theorem.

Lemma A.7. Let f : X → Y be a morphism of separated S-schemes. Then there is a natural map
f∗Υe−1

Y/S → Υe−1
X/S such that for any T over S, and any section σ : T → XT we have (f∗Υe−1

Y/S →
Υe−1

X/S)σ(T ) = 0 if and only if the fiber of fT over fT (σ(T )) contains an eth order thickening of σ(T )
inside XT .

Proof. The map from f∗Υe−1
Y/S → Υe−1

X/S is simply that induced by f∗ ⊗ f∗ : f−1OY ⊗OS
f−1OY →

OX ⊗OS
OX . Our assertion is local, so we immediately reduce to affines, and consider the situation

that XT = SpecA, YT = SpecB, and T = SpecR. As X and Y are separated over S, a section
is a closed immersion, so we also denote by Iσ the ideal corresponding to σ(T ) in XT , and set
I ′σ := Iσ ⊗R A ⊂ A ⊗R A. Now, the fiber of f(σ(T )) is given by Spec(A/Iσ ⊗B A), cut out in XT

by the ideal of A generated by (f∗
T B) ∩ Iσ. The fiber contains an eth order thickening of σT if and

only if this ideal is contained in Ie
σ, which is to say, if and only if (f∗

T B) ∩ Iσ ⊂ Ie
σ. We claim that

this is equivalent to 1⊗ ((f∗
T B)∩ Iσ) ⊂ (I ′σ, A⊗ Ie

σ): indeed, this follows immediately from the fact
that (A ⊗R A)/(I ′σ , A ⊗ Ie

σ) ∼= A/Iσ ⊗ RA/Ie
σ
∼= A/Ie

σ.
On the other hand, (f∗Υe−1

Y/S → Υe−1
X/S)σ(T ) = 0 if and only if (f∗

T Υe−1
YT /T → Υe−1

XT /T )σ(T ) = 0,
by Proposition A.4(i), and this is equivalent to the assertion that f∗

TIYT /T is contained in the
ideal generated by I ′σ and Ie

XT /T . Thus, the proof of the lemma is reduced to the following two
assertions: first, that modulo I ′σ, we have f∗

TIYT /T = 1⊗((f∗
T B)∩Iσ); and second, that (I ′σ ,Ie

XT /T ) =
(I ′σ, A ⊗R Ie

σ). By Proposition A.4(ii), IXT /T and IYT /T are generated by elements of the form
a ⊗ 1 − 1 ⊗ a and b ⊗ 1 − 1 ⊗ b, respectively. The main observation is that because Iσ is the ideal
of a section, to generate these ideals it suffices to restrict to a with a ∈ Iσ, and to b with f∗

T b ∈ Iσ.
The latter immediately gives the first assertion. The second assertion also follows easily, as we then
have that Ie

XT /T is generated by products
∏

j�e(ij ⊗ 1− 1⊗ ij), which are equivalent modulo I ′σ to
elements of 1 ⊗ Ie

σ, as desired.

Remark A.8. The Aut(X) action is not free in general, often having a non-trivial finite sub-group
scheme stabilizing any given morphism. However, it is easy enough to see that the stabilizer of any
k-valued point f ∈ MR is in fact a finite group scheme. Indeed, in this case, we may as well set
S = Spec(k). As Aut(X) is a finite-type group scheme, the stabilizer will likewise be a finite-type
group scheme over k, and it thus suffices to show that it consists of only finitely many k̄-valued
points. Now, an automorphism of Xk̄ is determined on the generic point, and will have to fix K(Yk̄)
inside K(Xk̄) in order to fix f ; as K(Yk̄) is a finite subfield of K(Xk̄), the relevant automorphism
group is finite, and we conclude the desired assertion.
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