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We develop the formalism of the first-order near-axis expansion of the magnetohydro-
dynamic equilibrium equations described by Garren & Boozer (Phys. Fluids B, vol. 3,
issue 10, 1991, pp. 2805–2821) and Plunk et al. (J. Plasma Phys., vol. 85, issue 6, 2019; J.
Plasma Phys., vol. 87, issue 6, 2021) for the case of a quasi-isodynamic, N-field-period,
stellarator-symmetric, single-well magnetic field equilibrium. The importance of the
magnetic axis shape is investigated, and we conclude that control of the curvature and
torsion is crucial to obtain omnigenous configurations with finite aspect ratio and low
effective ripple, especially for a higher number of field periods. For this reason a method is
derived to construct classes of axis shapes with favourable curvature and torsion. Solutions
are presented, including a three-field-period configuration constructed at an aspect ratio
of A = 20, with a maximum elongation of e = 3.2 and an effective ripple under 1 %,
which demonstrates that high elongation is not a necessary feature of quasi-isodynamic
stellarators.
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1. Introduction

In recent years, the W7-X experiment has demonstrated that intricately optimised
stellarators can be successfully built and operated (Pedersen et al. 2018; Beidler et al.
2021). Stellarators have attractive qualities, such as little net toroidal current and capacity
for steady-state operation, that make them suitable for reactors. However, unlike in
tokamaks, confinement is not inherently good due to the three-dimensional geometry of
the magnetic field. Stellarator magnetic fields need to be designed carefully to ensure
neoclassical transport is sufficiently low. A sufficient condition for good orbit confinement
in a stellarator is that of omnigenity,∫

(vd · ∇ψ) dt = 0, (1.1)

where vd is the total drift, and the integration is done over the bounce time of a trapped
particle. Magnetohydrodynamic (MHD) equilibria for which trapped particle motion
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fulfils (1.1) have collisionless orbits that are radially confined. A subset of omnigenous
magnetic fields are those that satisfy quasi-symmetry, in which the strength of the
magnetic field is symmetric (axially, helically or poloidally) in magnetic coordinates.
An example of omnigenous fields that are not quasi-symmetric are those called
quasi-isodynamic (QI), which have poloidally closed contours of the magnetic field
strength, as well as vanishing bootstrap currents at low collisionality (Helander &
Nührenberg 2009; Helander 2014). The present work concerns this class of stellarators.

Identification of good configurations, e.g. those with low neoclassical transport and
easily buildable coils, is traditionally done through a two-step optimisation procedure. In
the first step, a plasma boundary is deformed and the physical properties of the resulting
equilibrium are assessed using various codes until the desired plasma properties have
been found. Then, in a second optimisation process, coils that reproduce the desired
plasma boundary are sought.1 The equilibrium optimisation procedure requires the use
of computationally expensive codes in each step and an initial plasma boundary to be
prescribed (Henneberg et al. 2021b). Such optimisation procedures generally identify
local minima (Henneberg, Helander & Drevlak 2021a), and it is therefore possible that
other, lower, minima may be found elsewhere in the parameter space. In addition, QI
optimisation often results in highly shaped plasma boundaries. In order to generate such
plasma shapes, complicated coils may be necessary, which are difficult and expensive to
build. It is not clear whether this complexity is inherent to particular QI equilibria or if it
may be overcome by a more exhaustive or differently initialised search of parameter space.
The near-axis approach, pursued here, has the potential to do just this.

This method, first introduced by Garren & Boozer (1991) and revitalised by Landreman
& Sengupta (2018) and Landreman, Sengupta & Plunk (2019), allows the construction of
omnigenous solutions of the MHD equations at first order in the distance from the axis,
using Boozer coordinates. Starting with an axis shape and a set of functions of the toroidal
angle, this near-axis expansion (NAE) allows the systematic and efficient construction of
plasma boundaries corresponding to omnigenous equilibria. Different procedures apply
for the case of QI and for quasi-symmetry, with the latter described in Landreman et al.
(2019) and used successfully combined with an optimisation procedure in Giuliani et al.
(2022). The case of quasi-isodynamicity was first discussed by Plunk, Landreman &
Helander (2019) and is described in greater detail in § 2.

In § 3 we derive all the constraints on the input functions for the case of a
stellarator-symmetric, single-magnetic-well2 solution with multiple field periods. We then
proceed to find expressions for the geometric functions required as input for the near-axis
construction and show that, for this particular case, the number of free parameters is
reduced.

Exactly omnigenous fields are necessarily non-analytic as shown by Cary & Shasharina
(1997). Hence, omnigenity must necessarily be broken to achieve analytical solutions.
In the NAE we do this in a controlled way, through the careful definition of one of the
geometrical input functions, α(ϕ). A new way to express this function, more smoothly
than done previously by Plunk et al. (2019), is proposed in § 4.

Very recently, single-field-period QI configurations with excellent confinement
properties have been found by optimising within the space of these NAE solutions in
Jorge et al. (2022). Configurations with more field periods have proved challenging to
find, even when using the optimiser.

1The MHD equilibrium of a toroidal plasma with simply nested flux surfaces is determined by the shape of the
boundary and the pressure and current profiles (Kruskal & Kulsrud 1958; Helander 2014).

2By a ‘magnetic well’ we do not refer to the concept from MHD stability theory, but, instead, to a trapping domain
defined by the strength of the magnetic field along. Thus, a ‘single magnetic well’ implies one maximum and one
minimum in B per field period.
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Stellarator-symmetric quasi-isodynamic magnetic configurations 3

To investigate the causes of this difficulty, we analyse possible choices of the magnetic
axis shape. In contrast to traditional optimisation, where a plasma boundary is the starting
point and a magnetic axis has to be found as part of the equilibrium calculation, the NAE
requires the magnetic axis shape as input. In § 5 we discuss the freedom in the shape of
the axis and its mathematical description. We shed some light on the difficulties associated
with finding closed curves compatible with the NAE, specifically the need to find closed
curves with points of zero curvature at prescribed locations, as well as the role curvature
and torsion play on the quality of the approximation. We then describe a method for
generating stellarator-symmetric axis shapes with points of zero curvature and torsion at
prescribed orders.

A common problem encountered when constructing NAE solutions is the tendency
that the boundary cross-section becomes highly elongated. Indications that increasing
elongation of the plasma boundary leads to increasingly complex coils have been found
by Hudson et al. (2018). Another argument for reducing elongation is the fact that very
elongated cross-sections result in small plasma volume, as seen from the ellipse area
dependence on the elongation e, when fixing the major axis a, A = πab = πa2/e. A
reduction of plasma volume results in increasing transport losses and construction costs
per unit plasma volume. The relation between elongation and the relevant NAE parameters
is discussed in § 5, in particular the effect of torsion on shaping.

In § 6 we show how the NAE method can be used to construct a two-field-period
solution that closely approximates omnigenity, and we discuss its geometric properties
and neoclassical transport as measured by the effective ripple εeff. The particular case
of a family of solutions with axes of constant torsion and increasing number of field
periods is analysed in § 7 to show the effect of torsion on the quality of the near-axis
approximation. Finally, in § 8, a three-field-period equilibrium is constructed around an
axis shape specially designed to have low torsion in order to illustrate the importance of
the axis shape in controlling transport and elongation.

2. Near-axis expansion

The NAE, as described by Garren & Boozer (1991), solves the equilibrium MHD
equations by performing a first-order Taylor expansion about the magnetic axis in
pseudo-Cartesian coordinates (Kuo-Petravic & Boozer 1987). When using Boozer
coordinates (ψ, θ, ϕ) the general form of the magnetic field at first order in the distance
from the axis is given by

B(ε, θ, ϕ) ≈ B0(ϕ)+ εB1(θ, ϕ) = B0(ϕ) (1 + εd(ϕ) cos[θ − α(ϕ)]) , (2.1)

with the expansion parameter

ε =
√
ψ � 1, (2.2)

being a measure of the distance from the axis. As a consequence, these solutions will only
be valid in the large aspect ratio limit. The first-order correction to the magnetic field B1
has the general form of an analytical function close to the axis. At this order, the solutions
correspond to the vacuum case and magnetic surfaces are always guaranteed, as discussed
in Jorge, Sengupta & Landreman (2020).

At first order, the spatial position is given by

x ≈ r0 + ε (X1ns + Y1bs) , (2.3)

where r0 describes the position of the magnetic axis, a space curve characterised by its
torsion τ and signed curvature κ s. The signed Frenet–Serret frame, (t,ns, bs), of this curve
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is used as an orthonormal basis to describe the coordinate mapping. The tangent vector t
is identical to that of the traditional Frenet–Serret apparatus, and the normal and binormal
signed vectors, ns, bs, as well as the signed curvature change signs at points where κ = 0.

When imposing the conditions for omnigenity in the NAE, as done by Plunk et al.
(2019) and Plunk et al. (2021), an approximate plasma boundary corresponding to a QI
magnetic equilibria can be described by

X1 = d(ϕ)
κ s

cos [θ − α(ϕ)] (2.4)

Y1 = 2κ s

B0(ϕ)d(ϕ)
(sin [θ − α(ϕ)] + σ(ϕ) cos [θ − α(ϕ)]) , (2.5)

where B0 is the on-axis magnetic field strength, which must vary with ϕ because, as also
shown by Plunk et al. (2019), at first order, constant on-axis magnetic field is incompatible
with the omnigenity conditions. The functions α(ϕ) and d(ϕ) need to be prescribed and
are required to satisfy specific conditions to correspond to omnigenous solutions as will
be discussed in more detail later in this work. The function σ(ϕ) appearing in (2.5) can be
seen to relate to the elongation of the boundary cross-section.

The problem of constructing QI magnetic equilibria is then transformed into the
problem of specifying an on-axis magnetic field strength B0, an axis shape, two functions
α(ϕ) and d(ϕ), and solving a differential equation for the quantity σ(ϕ)

σ ′ + ( ι − α′)
(
σ 2 + 1 + B2

0d̄4

4

)
− G0d̄2 (τ + I2/2) = 0, (2.6)

which must be solved self-consistently with the rotational transform on axis ι. Here G0
and I2 are related to the first non-zero terms of the poloidal and toroidal current functions
on axis, respectively, as expanded in Garren & Boozer (1991), and d̄(ϕ) = d(ϕ)/κ s(ϕ).
Primes represent derivatives with respect to the toroidal angular coordinate ϕ. In the case
of stellarator symmetry, σ(0) = 0.

In order to mathematically formulate the omnigenity conditions required on α(ϕ) and
d(ϕ), a certain coordinate mapping described in Cary & Shasharina (1997) was used in
Plunk et al. (2019). For each magnetic well in the on-axis magnetic field, trapping domains
are delimited by the maxima defining the well. This is divided into a right-hand domain
DR and a left-hand domain DL, depending on which side of the minimum of the well the
points lie. For each point ϕ in a right-hand domain we identify its corresponding bounce
point ϕb(ϕ) in the left-hand domain by the condition

B0(ϕ) = B0(ϕb(ϕ)), (2.7)

and vice versa. It is clear from this construction that

ϕb(ϕb(ϕ)) = ϕ. (2.8)

The angular distance between an arbitrary point ϕ and its corresponding bounce point is
given by


ϕ(ϕ) ≡ ϕ − ϕb(ϕ). (2.9)

Plunk et al. (2019) provided a way to construct the functions d(ϕ) and α(ϕ) in DR, giving
their dependency in DL, to guarantee omnigenity. This is done by equating the near-axis
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and the omnigenous forms of B1

B0(ϕ)d(ϕ) cos (θ − α(ϕ)) = −F1(θ, ϕ)B′
0(ϕ), (2.10)

where F1(θ, ϕ), that comes from the expansion of the Cary–Shasharina mapping, is
a small perturbation added to a zeroth-order quasi-symmetric magnetic field to satisfy
omnigenity, and hence preserves the following symmetry:

F1(θ, ϕ) = F1(θ − ι
ϕ(ϕ), ϕb(ϕ)), for ϕ ∈ DR. (2.11)

Solving (2.10) for F1 and plugging it into (2.11) we obtain the following set of conditions:

d(ϕ) = ϕ′
b(ϕ)d(ϕb(ϕ)), for ϕ ∈ DR (2.12)

α(ϕ) = α(ϕb(ϕ))+ ι
ϕ(ϕ), for ϕ ∈ DR. (2.13)

In addition, d must vanish at all extrema of the on-axis magnetic field B0, as seen from
(2.10). The curvature of the magnetic axis κ s needs to have zeros of the same order as d
at these points for the plasma boundary to be well described, i.e. so that X1 and Y1, which
are proportional to d/κ s and κ s/d, respectively, remain non-zero and bounded.

It is important to note that periodicity cannot be enforced if the condition (2.13) on α(ϕ)
is satisfied and the rotational transform ι is irrational. We can see this from evaluating
(2.13) at the maximum ϕ = 2π,

α(2π)− α(0) = 2π ι. (2.14)

However, continuity of B1, X1 and Y1 requires

α(2π)− α(0) = 2πM, (2.15)

with M defined as the number of times the axis curvature vector ns rotates during one
toroidal transit. Thus, (2.14) is generally in conflict with (2.15) and omnigenity is only
consistent with continuity for integer values of ι. Plunk et al. (2019) resolved this conflict
by introducing small matching regions around ϕ = 0 and ϕ = 2π, where omnigenity is
abandoned and α is defined to guarantee periodicity. A different approach to solving
this problem, as well as the form these conditions take for a single-well, N-field-period,
stellarator-symmetric configuration is discussed in the following sections.

3. N-field periods and stellarator symmetry

A magnetic field is said to be stellarator-symmetric if it is invariant, except for sign
change, under a 180◦ rotation (the operations In defined in the following) around a set
of axes. It is conventional to take these axes to lie within the x–y plane, passing through
the origin, and regularly spaced in the toroidal angle. This type of symmetry was defined
formally by Dewar & Hudson (1998), who introduced a symmetry operator I0 by

I0F (ψ, θ, ϕ) = F (ψ,−θ,−ϕ), (3.1)

with θ and ϕ being angular coordinates. We say that a vector F possesses stellarator
symmetry if

I0[Fψ,Fθ ,Fϕ] = [−Fψ,Fθ ,Fϕ], (3.2)
where Fj = ∂x/∂j · F , with j = {ψ, θ, ϕ}, are the covariant components of F . For the case
of a scalar quantity, for instance |F|, stellarator symmetry implies

I0|F| = |F|. (3.3)

If the vector field F possesses N-fold discrete symmetry about the z-axis, then stellarator
symmetry also exists about the cylindrical inversion symmetry operation with respect
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to the half-line {φ = 2iπ/N,Z = 0}, with i = 1, 2, . . . , (N − 1), and with respect to
the half-line in the middle of each field period {φ = (2i − 1)π/N,Z = 0}, with i =
1, 2, . . . ,N. These symmetry operators will be referred to as I2i and I2i−1, respectively.

Let us now consider the case of a stellarator-symmetric N-field-period QI configuration,
and focus on the case of one magnetic well per field period.3 This symmetry is not
a necessary condition but is used to reduce the complexity of the problem and is
conventionally assumed in QI designs.

In order to be stellarator symmetric, the magnetic field strength B needs to fulfil

B(θ, ϕ(i)min + δϕ) = B(−θ, ϕ(i)min − δϕ), (3.4)

which is obtained by invoking the symmetry operator I2i−1. The angular position of the ith
minimum, ϕ(i)min is located on the rotation axis, and is given by

ϕ
(i)
min = (2i − 1)π

N
, for i = 1, . . . ,N (3.5)

whereas the ith maximum is

ϕ(i)max = 2(i − 1)π
N

, for i = 1, . . . ,N. (3.6)

The trapping domain in each period is labelled with the subscript i, shown in figure 1, and
the left- and right-hand domains are defined as

DiL(ϕ), for
2π(i − 1)

N
� ϕ � (2i − 1)π

N

DiR(ϕ), for
(2i − 1)π

N
� ϕ � 2πi

N

⎫⎪⎪⎬
⎪⎪⎭ (3.7)

Now, (2.9), which gives the distance between bounce points, can be written as


ϕ(ϕ) = 2(ϕ − ϕ
(i)
min), (3.8)

and the bounce points can be found using

ϕb(ϕ) = ϕ −
ϕ(ϕ) = 2ϕ(i)min − ϕ. (3.9)

Using this new notation, we can write the symmetry operator I2i−1 as

Iϕi
min

f (ψ, θ, ϕ) = f (ψ,−θ, ϕb). (3.10)

Let us now focus on the condition for omnigenity on the function d(ϕ), which is shown
in (2.12). We substitute ϕb from expression (3.9) and note that ϕ′

b = −1, to find

d(ϕ) = −d(ϕb) = −d(2ϕ(i)min − ϕ), for ϕ ∈ DiR. (3.11)

As a consequence, d(ϕ) must necessarily be an odd function about ϕ(i)min, the bottom of the
well. Note that ϕ′

b(ϕ) is generally negative near bounce points for ϕ ∈ DiL, even without

3For simplicity, we assume a single-well form of B0, so that B′
0 is zero at only two points per field period, i.e. at the

minimum and maximum.
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FIGURE 1. One-well magnetic field strength example, plotted over a single toroidal field period.
The right- and left-hand domains, DiR and DiL, are indicated. The angular position of the
minimum and maxima of the well are labeled by ϕi

min and ϕi
max, respectively.

requiring stellarator symmetry, so the order of the zeros of d must always be odd, and
therefore the same is true for those of κ s.

For the case of α(ϕ), we first define a quantity 
α in the same fashion as (2.9)


α(ϕ) ≡ α(ϕ)− α(ϕb(ϕ)). (3.12)

By replacing α by expression (2.13) in the previous definition, we obtain


α(ϕ) = ι
ϕ(ϕ), (3.13)

and using expression (3.8) we get


α(ϕ) = 2 ι(ϕ − ϕ
(i)
min). (3.14)

We see that α needs to have a part proportional to ι
ϕ(ϕ), to guarantee the right form of

α, and an even part αe such that

αe(ϕ) = αe(ϕb(ϕ)). (3.15)

Accordingly, we write α as

α(ϕ) = 1
2 ι
ϕ(ϕ)+ αe(ϕ). (3.16)

In order to find αe, we note that the first-order correction to the magnetic field, given
in (2.1),

B1 = B0(ϕ)d(ϕ) cos (θ − α(ϕ)) (3.17)

needs to possess stellarator symmetry. We know from (3.11) that d(ϕ) is an odd function
and, by construction, that B0 is an even function. Therefore, cos (θ − α(ϕ)) must be odd
under the symmetry operation defined in (3.10). In particular, this requires

cos (θ0 − α(ϕi
min)) = 0, (3.18)

at the stellarator symmetry point (θ0 = 0, ϕi
min), which is valid for any integer ni such that

α(ϕi
min) = π(ni + 1

2). (3.19)
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Evaluating (3.16) at the minimum, we find

αe = π(ni + 1
2), (3.20)

so that α takes the form

α(ϕ) = ι(ϕ − ϕ
(i)
min)+ π(ni + 1

2). (3.21)

Now let us impose a necessary (but not sufficient) condition for periodicity of B from one
field period to the next, i.e.

α(ϕi+1
max)− α(ϕi

max) = 2πm, (3.22)

where m is the number of times the signed curvature vector ns rotates per field period.
This ensures that the poloidal angle θ is periodic and increases by 2π after a full toroidal
rotation. The addition of the term 2πm to α compensates the poloidal rotation of the
axis (measured by m) because α effectively behaves as a phase shift on θ . The previous
expression translates into a relation for ni

π(ni+1 + 1/2)− π(ni + 1/2) = 2πm, (3.23)

which can also be written as

ni+1 = 2im + n1. (3.24)

Without loss of generality we can choose n1 = 0, and inserting this result in (3.21) we
obtain an expression for α(ϕ) satisfying omnigenity and N-fold periodicity

α(ϕ) = ι(ϕ − ϕi
min)+ π(2im + 1

2). (3.25)

The shape of the boundary must also be made periodic, which can be achieved in the
same way as done in Plunk et al. (2019), by introducing so-called buffer regions around the
maxima of B0. In these regions, α is not calculated using (3.25), but is instead chosen to
give a periodic plasma boundary. The function in the buffer region needs to be constructed
carefully to make sure the function itself and its derivatives are continuous and smooth in
order to avoid numerical difficulties in equilibrium solvers such as VMEC (Hirshman &
Whitson 1983).

We note that although we have some freedom in the choice of n1 and, hence, in the value
of α, the term entering (2.6) and defining the equilibria is α′(ϕ), which is independent of
the choice of n1. The only freedom left in the choice of α(ϕ) is on how omnigenity is
broken to impose continuity of the solutions.

4. Smoother α(ϕ)

In order to avoid the problems derived from defining α(ϕ) as a piecewise function, we
propose a different approach, namely by adding an omnigenity-breaking term to (3.25)
that allows periodic solutions

α(ϕ) = ι(ϕ − ϕi
min)+ π(2 mi + 1

2)+ a(ϕ − ϕi
min)

2k+1. (4.1)

The last term in this expression goes to zero at the bottom of the well as long as k � −1/2
and, hence, makes the solution omnigenous for deeply trapped particles. The parameter a
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FIGURE 2. Behaviour of the function α(ϕ) over one period, for the case m = 0. The dotted line
shows the fully omnigenous case, which is non-continuous at ϕmax. Solid lines correspond to α
given by (4.6) with values for the parameter k ranging from 1 to 8.

can be chosen in such a way that periodicity of α(ϕ) is guaranteed. A first requirement is
continuity at ϕ(i)max, i.e.

lim
ϕ→ϕ

(i+1)−
max

α(ϕ) = lim
ϕ→ϕ

(i+1)+
max

α(ϕ), (4.2)

where we are considering the ith well when approaching from the left and the well labelled
i + 1 when approaching from the right. Hence, we obtain

ι(ϕ(i+1)
max − ϕ

(i)
min)+ a(ϕ(i+1)

max − ϕ
(i)
min)

2k+1

= ι(ϕ(i+1)
max − ϕ

(i+1)
min )+ a(ϕ(i+1)

max − ϕ
(i+1)
min )

2k+1 + 2πmi, (4.3)

and when inserting the values of ϕ(i)max and ϕ(i)min

ι (−π/N)+ a (−π/N)2k+1 + 2πm = ι (π/N)+ a (π/N)2k+1 , (4.4)

we find an expression for a

a = π (m − ι/N)
(π/N)2k+1

, (4.5)

which finally gives us a form of α that breaks omnigenity in a smooth and controlled way

α(ϕ) = ι(ϕ − ϕi
min)+ π

(
2 mi + 1

2

)
+ π (m − ι/N)

(
ϕ − ϕi

min

π/N

)2k+1

. (4.6)

In figure 2, we can see the effect the choice of the parameter k has over the shape of α(ϕ)
for an axis shape with m = 0. It is clear that increasing k results in a function closer to
that required for omnigenity but at the cost of a sharp behaviour around ϕmax to preserve
periodicity.

https://doi.org/10.1017/S0022377822000812 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000812


10 K. Camacho Mata, G.G. Plunk and R. Jorge

The equilibrium constructed using this α will be approximately omnigenous as long as
the last term in (3.25) is small relative to the first term, i.e.∣∣∣∣∣π (m − ι/N)

(
ϕ − ϕi

min

π/N

)2k+1
∣∣∣∣∣ �

∣∣∣ ι (
ϕ − ϕ

(i)
min

)∣∣∣ , (4.7)

which can be further simplified and rearranged as

⎛
⎝

∣∣∣ϕ − ϕ
(i)
min

∣∣∣
π/N

⎞
⎠

2k

� 1
|Nm/ ι − 1| . (4.8)

The left-hand side of this expression includes |ϕ − ϕ
(i)
min|, which is always smaller than

π/N in a well. Hence, the condition for omnigenity being achieved closely everywhere in
the well, i.e. also for ϕ − ϕmin ≈ π/N, reduces to

|Nm/ ι − 1| � 1. (4.9)

This implies Nm ∼ ι, which, as expected can only be satisfied for nearly rational ι.
Although a rational value of ι is inconsistent with confinement, it may be advantageous
to seek nearly rational values as a strategy for finding almost omnigenous configurations.
We also note that the m = 0 case, in which (4.9) is not technically satisfied, is however
interesting because the limit of small ι implies that the absolute size of α will remain
small, as required for approximate omnigenity.

A yet smoother choice of the function α(ϕ)with continuous derivatives up to third order
at ϕmax can be achieved by adding an extra term,

αII(ϕ) = ι(ϕ − ϕi
min)+ π(2 mi + 1

2)+ a(ϕ − ϕi
min)

2k+1 + b(ϕ − ϕi
min)

2p+1. (4.10)

For the configurations shown in this work we use α(ϕ) as described in (3.25), which
appears sufficiently smooth for the cases we have studied, but more details about αII(ϕ)
are discussed in Appendix A.

5. Axis shape

The shape of the magnetic axis is perhaps the most important input for the construction
of stellarator configurations since the axis properties seem to strongly affect the success of
the construction, as measured by the accuracy of the approximation at finite aspect ratio.

The need to have an axis with points of zero curvature has already been discussed,
but, in addition, low-curvature axes are attractive because they improve the accuracy of
the near-axis approximation (indeed, the original work of Garren and Boozer defined the
expansion parameter in terms of the maximum curvature of the magnetic axis), and are
also associated with a low-amplitude first-order magnetic field

B1 = B0d̄κ s cos(θ − α), (5.1)

where the definition of d̄ has been substituted in (3.17). Note that d̄ cannot be made too
small without causing large elongation, and therefore minimising κ s is an effective strategy
for improving omnigenity at finite ε.

It is also desirable to limit axis torsion, which enters directly into (2.6) for σ , as will be
clear in the following discussion. At first order, the cross-sections of the plasma boundary
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at constant ϕ are elliptical, with elongation e defined as the ratio between the semi-major
and semi-minor axes. Landreman & Sengupta (2018) derived an expression for elongation
in terms of X1 and Y1 (B 4). Using (2.4) and (2.5), we obtain an expression for e dependent
on the input parameters of the construction, namely d̄, B0 and σ ,

e(ϕ) = B0d̄2

4
+ 1

B0d̄2
(1 + σ 2)+

√(
B0d̄2

4

)2

+ (σ 2 − 1)
2

+
(

1
B0d̄2

(1 + σ 2)

)2

. (5.2)

We can simplify the previous expression by introducing

ē(ϕ) = B0d̄2

2
, (5.3)

leading to

e = ē
2

+ 1
2ē
(1 + σ 2)+

√
ē2

4
+ (σ 2 − 1)

2
+ (1 + σ 2)

4ē2
. (5.4)

One particular interesting limit is the idealised case of constant elongation. This can be
achieved by choosing σ constant. Given that, due to stellarator symmetry, σ(0) = 0 then
σ must be zero everywhere, which transforms (5.4) into

e = 1
2ē
(ē2 + 1 + ∣∣ē2 − 1

∣∣), (5.5)

this will result in a plasma boundary with constant elongation as long as ē is independent
of the toroidal angle ϕ. Finding plasma equilibria with constant elongation can be achieved
by choosing d(ϕ) appropriately so that it cancels the toroidal dependence of ē, namely

d̄(ϕ) ∝
√

2
B0(ϕ)

. (5.6)

Now, we can introduce the conditions that lead to constant elongation in (2.6)

( ι − α′) (1 + ē) = 2G0ē
B0

τ, (5.7)

where we have specialised to the case of vanishing current density on axis, I = 0, the
standard situation for QI stellarators (Helander & Nührenberg 2009; Helander, Geiger &
Maaßberg 2011). As omnigenity requires ι − α′ ≈ 0 (see (3.25)), (5.7) implies that τ ≈ 0
is necessary for solutions with constant elongation. This shows that axes with low torsion
are compatible with simple equilibrium boundary shapes.

The possibility of low elongation, in particular, may be unexpected, given what has been
found with traditional QI optimisation, and also from considerations of basic geometry on
the magnetic axis, where the identity

nκ = ∇⊥ ln B (5.8)

follows from force balance and Ampere’s law, noting that ∇p = 0 at ψ = 0, and defining
∇⊥ = ∇ − tt · ∇ (Landreman & Sengupta 2018). This expression seems to imply that
plasma volumes that are compressed in the direction of the curvature (normal) vector,
i.e. high-elongation configurations, will exhibit only weak variation of the field strength
in the perpendicular direction, and therefore in θ . This logic, although rough, is reflected
in the near-axis construction of QI configurations, where it is typical to find elongated
solutions. In § 8, we show how this tendency can be overcome by choice of axis torsion.
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5.1. Axis construction
A space curve’s shape is entirely determined by its curvature κ and torsion τ . From these
two quantities, it is possible to calculate the tangent, normal and binormal vectors (t,n, b)
using the Frenet–Serret formulae

dt
ds

= κ(s)n,

dn
ds

= −κ(s)t + τ(s)b,

db
ds

= −τ(s)n,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.9)

where s is the arc length, used for parametrising the curve. Then, numerical integration of
the tangent vector, t = dr/ds, yields the curve described by r. Unfortunately, prescribing
periodic κ and τ is not sufficient for finding closed curves. A parameter scan is thus needed
to find curves that can be used as magnetic axes. This is the approach used to find the axes
curves described in § 7.

Although a Frenet description seems optimal for controlling torsion and curvature
precisely, a truncated Fourier series is advantageous for its simplicity, smoothness and
the fact that such curves are automatically closed. Smoothness is especially important for
obtaining solutions that remain accurate at lower aspect ratio. Note that sharp derivatives
d/dϕ ∼ 1/ε invalidate the NAE, which is a limit that is especially felt at high field period
number. A method for generating simple axis curves, represented by a relatively small
number of Fourier coefficients, is briefly outlined here and described in greater detail in
Appendix B.

We represent the magnetic axis in cylindrical coordinates as

x = R̂R(φ)+ ẑz(φ). (5.10)

The usual Fourier representation for a stellarator-symmetric axis is

R(φ) =
nmax∑
n=0

Rc(n) cos(nNφ), (5.11)

z(φ) =
nmax∑
n=1

zs(n) sin(nNφ). (5.12)

A local form is used to establish conditions on the derivatives of these functions about a
point of stellarator symmetry (also coinciding with an extrema of B0(φ)), that can be then
used to generate a linear system of equations for the Fourier coefficients.

Conditions on torsion and curvature, specifically zeros of different orders, are imposed
locally and converted into constraints on the derivatives of the axis components R and
z, and then applied to a truncated Fourier representation. This results in a set of linear
conditions on the Fourier coefficients that can be solved numerically, or by computer
algebra. The orders of the zeros, together with the set of Fourier coefficients, define a
space that can be used for further optimisation.

As a very simple example of curves with points of vanishing curvature at multiples of
π/N, one may consider a symmetric class of curves, as in Plunk et al. (2019)

R = 1 + Rc(2) cos(2Nφ), (5.13)
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(a) (b)

FIGURE 3. Torsion behaviour with decreasing value of zs(2): (a) singularity in torsion at points
of stellarator symmetry as zs(2) approaches zero; (b) maximum torsion at different values of
zs(2).

z = zs(2) sin(2Nφ). (5.14)

Owing to the fact that only the even mode numbers are retained (zs(1) = Rc(1) = 0),
the condition for zeros of curvature at first order need only be applied at φ = 0, i.e.
d2R/dϕ|0 = R(0), and the result is

Rc(2) = − 1
4N2 + 1

, (5.15)

which matches (8.3a) of Plunk et al. (2019) for the case N = 1. The coefficient Zs(2)
is free to be adjusted to satisfy other desired requirements. Note that additional Fourier
modes may be retained to define a near-axis QI optimisation space, as done by Jorge et al.
(2022).

5.2. Controlling torsion
Noting that a curve of zero torsion lies within a plane, it would seem straightforward to
realise a stellarator-symmetric axis shape of low torsion by simply reducing the magnitude
of its z component, thereby constraining the curve to lie close to the x–y plane. We can do
this with the single-parameter curve defined by (5.13)–(5.14), by letting the parameter zs(2)
tend to zero. Unfortunately this limit is not well-behaved, as shown in figure 3. Although
torsion goes to zero almost everywhere, it tends to infinity in the neighbourhood of the
zeros of curvature.

Another approach to minimising torsion is, somewhat paradoxically, to take the limit
of large zs(2). Such elongated axis shapes are nearly planar around the points of zero
curvature, and have their torsion peaked midway between these points. The torsion is,
however, small in magnitude due to the large values of curvature around such points. As
figure 4 confirms, the lowering of torsion by this method is accomplished only at the cost
of raising the maximum value of curvature. Furthermore, the maximum value of torsion
obtained at a fixed value of maximum curvature (max(κ) = 3) grows linearly with field
period number, as shown in the second panel of figure 4. Requiring the maximum value
of curvature to remain bounded when increasing the number of field periods results in the
maximum of torsion increasing, as shown in figure 5. Finding closed curves with torsion
and curvature remaining under a certain value gets more difficult when increasing the
number of field periods. This might be a reason why finding good solutions with N > 1 is
challenging for the optimisation procedure described in Jorge et al. (2022).
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(a) (b)

FIGURE 4. (a) Maximum torsion versus maximum curvature for N = 2, 4, 8 (blue, orange,
green). Curvature and torsion are individually maximised over φ for fixed values of zs(2). Values
used correspond to large-zs(2) regime, zs(2) � 0.4/N2. (b) Maximum torsion versus N for zs(2)
chosen such that maxϕ(κ) = 3.

(a) (b)

FIGURE 5. (a) Curvature and (b) torsion versus φ for different field period numbers,
N = 2, 4, 6, 8, 10. Here zs(2) is chosen such that maxϕ(κ) = 3.

6. QI construction, two-field-period example

The construction of a two-field-period configuration is now described. The axis shape
was chosen using (5.15) for the case N = 2, yielding

R = 1 − 1
17 cos (4φ), (6.1)

z = 0.3921 sin (2φ)+ 4.90 × 10−3 sin (4φ). (6.2)

The z-coefficients were chosen to limit the curvature and torsion to tolerable levels. The
normal vector ns does not complete any full rotation around the axis, hence m = 0. This
curve contains points of zero curvature as shown in figure 6. The location of these points
coincide with the extrema of the on-axis magnetic field strength, which is chosen as

B0 = 1 + 0.15 cos (2ϕ). (6.3)

In general, the values of the toroidal coordinates ϕ, the Boozer angle, and φ, the
cylindrical angle, are not the same. However, thanks to stellarator symmetry, they coincide
at the extrema points of B0(ϕ), which thus also correspond to the zeros of the axis
curvature.
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FIGURE 6. Unsigned curvature κ (solid), torsion τ (dashed) and on-axis magnetic field intensity
B0 (dotted) profiles for one field period of the axis described by (6.1) and (6.2). The curvature
has zeros at points of extrema of B0 as required by the theory.

The choice of d(ϕ) has an important effect on the elongation of the plasma boundary as
can be seen from (2.4). We observed that keeping it proportional to κ s(ϕ) helped to reduce
the elongation to manageable levels. For this example it was chosen as d(ϕ) = 1.03 κ s. The
parameter k entering (4.6) controls the deviation from omnigenity and was set to k = 2.

To construct numerical solutions, we first find the signed Frenet–Serret frame quantities
of the axis: κ s, τ and (t,ns, bs). Then, the relation ϕ(φ), as well as G0, need to be found
along the axis. This is done by iteratively solving (8.1) of Plunk et al. (2019)

dϕ
dφ

= B0

|G0|
∣∣∣∣ dr
dφ

∣∣∣∣ , |G0| = 1
2πN

∫ 2π

0
dφ B0(ϕ(φ))

∣∣∣∣ dr
dφ

∣∣∣∣ . (6.4a,b)

We then proceed to solve (2.6), self-consistently with ι, for one field period, i.e. in the
region ϕ ∈ [0, 2π/N].

A boundary is constructed with aspect ratio A = 10, where A can be expressed in terms
of the distance from the axis as

A =
√

B0

2
Rc(0)
ε

, (6.5)

where B0 is the average value of B0. This boundary is then used to find a fixed-boundary
magnetic equilibrium with the code VMEC. The strength of the magnetic field on the
boundary is shown in figure 7. The rotational transform profile obtained with VMEC
is shown in figure 8 and coincides with the value calculated numerically from (2.6)
ι = 0.107. The maximum elongation of the flux surface cross-sections (taken at φ =
const.), as defined by (5.4) is emax = 4.4.

The effective ripple, εeff, is a simple and convenient parameter that characterises
low-collisionality neoclassical transport of electrons (Beidler et al. 2011). We calculate
it using the procedure described by Drevlak et al. (2003) in 16 radial points, and find an
εeff below 1 % up to mid-radius and lower than 2 % everywhere in the plasma volume, see
figure 8.

The boundary shape was generated for different aspect ratios, i.e. different distances
from the axis. A comparison between the contours of constant magnetic field strength
obtained from the NAE (2.1) and those obtained from the VMEC calculation and
transformed to boozer coordinates using BOOZ_XFORM (Sanchez et al. 2000) is shown
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(a) (b)

FIGURE 7. Intensity of the magnetic field on the plasma boundary for a two field period,
A = 10 configuration: (a) side view and (b) top view.

(a) (b)

FIGURE 8. (a) Rotational transform, ι , and (b) effective ripple, εeff, for an N = 2, A = 10
configuration.

in figure 9. The difference between both results decreases with increasing the aspect ratio,
as expected because the expansion is performed in the distance from the axis. For the
largest aspect ratio, 160, the difference is almost imperceptible. The root-mean-squared
difference between both magnetic fields is calculated for each aspect ratio and the results
are shown in figure 10. The scaling with the aspect ratio is as expected from a first-order
expansion, proportional to 1/A2.

7. A family of constant torsion QI solutions

As illustrated by the previous example, we are capable of directly constructing QI
equilibria with low electron neoclassical transport, as measured by εeff, at aspect ratios
comparable to existing devices. Performing an optimisation procedure in the space of
QI solutions described by the NAE has led to the discovery of N = 1 configurations
with excellent confinement properties as shown in Jorge et al. (2022). However, finding
configurations with more than one field period and good confinement has proved
challenging, even when using optimisation procedures. In order to explore the role of the
axis shape in causing this behaviour, we choose a family of axis shapes with N = 2, 3, 4,
constant torsion and equal per-field-period maximum curvature. Constant torsion was
chosen for simplicity in order to obtain smooth solutions for σ from (2.6).

https://doi.org/10.1017/S0022377822000812 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000812


Stellarator-symmetric quasi-isodynamic magnetic configurations 17

(a) (b)

(c) (d)

(e) ( f )

FIGURE 9. Contours of the magnetic field intensity on the plasma boundary, B, are shown for
increasing values of aspect ratio, starting at A = 20 (a,b). Dotted lines are the contours obtained
from the construction and solid lines from VMEC and BOOZ_XFORM. Contours on (b,d, f )
correspond to the first-order correction to B and (a,c,e) to the total magnetic field.

The axis shapes chosen are closed curves with minimal bending energy and constant
torsion as described in Pfefferlé et al. (2018). Their curvature and torsion are

τ = 4X( p)K( p)N/L, (7.1)

κ2(s) = κ2
0

[
1 − sn2

(
κ0

2p
(s − 0.5L), p

)]
, (7.2)

where sn(a, b) is the Jacobi elliptic sine function, L the curve length, N the number of
field periods, p a parameter yet to be chosen and κ0 the maximum curvature. Here K( p) is
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FIGURE 10. Root-mean-squared difference between the magnetic field from the construction
and that calculated by VMEC, for different aspect ratios. The dashed line shows the expected
scaling ∝ 1/A2.

(a) (b)

FIGURE 11. (a) Curvature, κ , and torsion, τ , with respect to the toroidal angle φ of the magnetic
axes used in the construction of the different N field-period solutions. Here κ(ϕ) and τ(ϕ) are
given by (7.2) and (7.1). The maximum curvature, κ0 = 1.6, is the same for the three cases. (b)
The σ profiles obtained by solving (2.6) for each of the curves described by κ and τ on the left.

the complete elliptical integral of first kind and X2( p) = 2E( p)/K( p)− 1, where E( p) =
E(π/2, p) is the incomplete elliptic integral of the second kind.

The maximum curvature is chosen as κ0 = 1.6 for all cases. Given a number of field
periods N, the parameter p is scanned until a closed curve is found. We find p2 = 0.4527,
p3 = 0.5927 and p4 = 0.6580, for two, three and four field periods, respectively. The
curvature per field period has the same maximum and similar toroidal dependence for
all three cases and has zeros at multiples of π/N, as required by the construction.
The necessary torsion for a closed curve increases with N as seen in figure 11. The
Frenet–Serret formulae (5.9) are then used to find the curve described by these values
of κ and τ , as described in § 5. For the three curves, m = 1.

Using these curves as axis shapes, three configurations were constructed following the
method described in § 6. All per-period parameters and functions used in the construction
are kept the same as in § 6; d(ϕ) = 1.03κ s, the parameter k entering (4.6) was set as k = 2,
and the magnetic field on axis as

B0 = 1 + 0.15 cos(Nϕ). (7.3)
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(a) (b) (c)

FIGURE 12. Contours of the magnetic field intensity on the plasma boundary, B, are shown for
increasing values of N, the number of field periods, starting at (a) N = 2, (b) N = 3 and (c)
N = 4. Dotted lines show the contours obtained from the construction and solid lines those from
the calculation with VMEC and BOOZ_XFORM. Aspect ratio was set to A = 40 for all cases.

The main differences between these configurations is the value of the torsion τ and
the number of field periods. As we are solving (2.6) for σ in a single period, we can
compare the per-field-period solutions with respect to a scaled angular variable ϕ/N, as
seen in figure 11(b). The solution for σ in one field period for each of these cases is very
similar and only deviates in those regions where the curvature values differ, as expected.
Consequently, the values found for the per-period rotational transform, ιN = ι/N, are also
very similar: ι2 = 0.4565, ι3 = 0.4674 and ι4 = 0.4707.

The resulting boundary shape is used to find the magnetic field strength on the boundary
using the MHD equilibrium code VMEC and BOOZ_XFORM. The result is compared
with the magnetic field from the construction (2.1), and shown for A = 40 in figure 12,
where it is clear that the approximation deteriorates with increasing number of field
periods.

In the same manner as in the previous section, we calculate the root-mean-square
difference between the intensity of B(θ, ϕ) in the boundary as calculated by VMEC and as
expected from the construction. This calculation is done for each configuration at different
aspect ratios, and is shown in figure 13. The scaling for all cases is proportional to 1/A2, as
expected, but the magnitude of the difference increases with the number of field periods,
indicating a deterioration of the approximation with increasing N. The same behaviour
is observed in the effective ripple, getting significantly worse for the case with four field
periods and being optimal, below εeff = 8 × 10−3, for two field periods, as is evident from
figure 14.

The only apparent significant differences between the solutions constructed in this
section are the number of field periods and the value of the torsion. Stellarator designs
constructed through conventional optimisation have N = 4, 5, 6 and larger, including
W7-X, a QI design (very approximately) with 5 field periods. This indicates there should
be no fundamental obstacle to obtaining a good approximation to QI fields at larger values
of N. Thus, with the hope to find such fields with the near-axis framework, we are further
motivated to explore magnetic axes with low torsion.

8. A three-field-period, low-torsion-axis example

Following the discussion at the beginning of § 5, and also the results of the previous
section, we are motivated to consider axis curves with low torsion to both control
elongation and better approximation to QI at larger N. Using the procedure described
in § 5, we therefore investigate closed curves with N = 3 and zeros of first order in the
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FIGURE 13. Root-mean-squared difference between the magnetic field from the construction
and that calculated by VMEC for configurations with N = 2, 3, 4 and different values of A. The
dashed lines show the expected scaling ∝ 1/A2.

FIGURE 14. Effective ripple, εeff, profiles for configurations with N = 2, 3, 4 field periods.

curvature at extrema of B(ϕ), and zeros of torsion at second order at ϕi
min. We choose one

axis shape from this class that fulfils

maxϕ(τ ) < maxϕ(κ) (8.1)

for all toroidal points. The Fourier coefficients describing this axis are

R = 1 + 9.07 × 10−2 cos (3φ)− 2.06 × 10−2 cos (6φ)

− 1.11 × 10−2 cos (9φ)− 1.64 × 10−3 cos (12φ), (8.2)

z = 0.36 sin (3φ)+ 2.0 × 10−2 sin (6φ)+ 1.0 × 10−2 sin (9φ). (8.3)

Its curvature and torsion are shown as functions of the toroidal angle φ in figure 15, and
m = 0.

Using this axis, an N = 3, QI boundary was constructed for A = 20, with a magnetic
field on-axis given by

B0 = 1 + 0.25 cos (3ϕ), (8.4)
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FIGURE 15. Curvature κ (solid), torsion τ (dashed) and magnetic field on-axis B0 (dotted)
with respect to the toroidal angle φ of the magnetic axis used in the construction of an N = 3
equilibria. Curvature has zeros of first order at multiples of π/3, corresponding to extrema of B0.
Torsion has a second-order zero at minima of B0, ϕi

min.

(a) (b)

FIGURE 16. Intensity of the magnetic field on the plasma boundary for a three field period,
A = 20 configuration: (a) side view and (b) top view.

d(ϕ) = 1.03κ s and the parameter k entering equation (4.6) set to 2. The resulting plasma
boundary and the magnetic field strength on it as found by VMEC are shown in figure 16,
where we can observe straight sections around ϕmin, as a consequence of the axis choice.
Figure 17 shows the contours of |B| as calculated by VMEC and from the near-axis
construction in Boozer coordinates. At this aspect ratio most of the contours still close
poloidally, as necessary for quasi-isodynamicity. The magnetic field contours are less
straight around the point of maximum B0, which is expected because this is the region
where α(ϕ) deviates from a perfectly omnigenous form.

Zero torsion around the bottom of the magnetic well was chosen, together with d(ϕ), as
an attempt to reduce the elongation of the plasma boundary, as described in § 5. In figure 18
we see the cross-sections of the plasma boundary for different values of toroidal angle on
the left and the evolution of elongation with the toroidal angle. The maximum elongation
for this configuration is emax = 3.2, and includes regions where the elongation is nearly
e = 1, the case of a circular cross-section. We also observe that the elongation remains
low around the region where torsion vanishes. These facts seem to validate our approach
for controlling elongation, and demonstrate that high elongation is not a necessary sacrifice
for achieving good omnigenity in QI stellarators, as might be feared from previous results,
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FIGURE 17. Contours of the magnetic field intensity on the boundary, for N = 3, A = 20, as
calculated by VMEC (solid lines) and from the near-axis construction (dotted lines).

(a) (b)

FIGURE 18. (a) Cross sections of the plasma boundary for different values of the toroidal
angle φ, and (b) elongation with respect to the cylindrical toroidal angle φ.

for example W7-X (Grieger et al. 1992) with a maximum elongation around emax � 4.5, or
the NAE configuration described by Jorge et al. (2022) and QIPC (Subbotin et al. 2006),
both with maximum elongations higher than emax � 5.

The rotational transform profile obtained with VMEC is shown in figure 19(a) and
coincides with the value calculated numerically from (2.6), ι = 0.375. The effective
ripple, εeff, was found to be lower than 1 % throughout the plasma volume, another
indication of the closeness of the solution to omnigenity. The value at different distances
from the axis is shown in figure 19(b).

9. Conclusion

We have described in detail the NAE method to construct QI, stellarator symmetric,
single-magnetic-well equilibria with N � 1 field periods, valid at first order in the distance
from the magnetic axis. A new way of achieving better continuity and smoothness of these
configurations, as compared with the previous method of Plunk et al. (2019), has been
introduced and used to construct equilibria with N > 1.

The problem of finding axis shapes compatible with the NAE is discussed, in particular
the order of zeros in axis curvature, and the naturally arising increase of torsion for
increasing number of field periods, which we argue is an underlying reason for the
deterioration of the approximation at finite aspect ratio. A method to systematically
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(a) (b)

FIGURE 19. (a) Rotational transform, ι , and (b) effective ripple εeff

describe and construct closed curves with zeros of curvature and torsion, at different
orders, at toroidal locations of extrema of the magnetic field strength has also been
presented.

We have demonstrated the validity of the NAE method, with a two-field-period example,
by showing that the difference between the magnetic field as calculated by the NAE and
that obtained using the equilibrium code VMEC falls with increasing aspect ratio, and
scales as 1/A2, as expected from a first-order expansion. We describe the construction of
this two-field-period configuration, and find that it has good confinement, as shown by
εeff < 2 % throughout the plasma volume at aspect ratio A = 10.

We have also constructed a family of solutions, for N = 2, 3, 4, having axes with
constant torsion, and very similar per-field-period initial parameters. The approximate
omnigenity of these solutions deteriorates if the number of field periods is increased. This
example shows the importance of reducing the maximum torsion of the axis to achieve
equilibria close to omnigenity at low aspect ratio.

In the last section we have demonstrated how the choice of an axis with zero torsion
around the point of minimum magnetic field strength and constrained maximum torsion
enables us to find a three-field-period configuration with low elongation and small
neoclassical transport. The effective ripple remains at under 1 % for an aspect ratio A = 20,
and the maximum elongation emax = 3.2, demonstrating that low elongation is achievable
in QI stellarators.

These configurations demonstrate that the NAE method can be used to construct
magnetic equilibria with multiple field periods that maintain good confinement properties
at low aspect ratios. We emphasise that these examples were all obtained without the need
for numerically costly optimisation procedures.

Given the importance of the axis shape in the quality of the equilibrium, a natural next
step is to reintroduce an element of optimisation, as done for the one-field-period example
of Jorge et al. (2022), but appropriately restricting the search space. Specifically, we can
define an optimisation space according to classes of axis curves satisfying prescribed
conditions on the torsion and curvature, and search this space for configurations with
attractive properties. Another interesting analysis, which can be performed thanks to the
speedy calculation of solutions enabled by the NAE, is to systematically and exhaustively
map the space of QI solutions and its dependence on the input functions used for the
construction. Such exploration might allow physical insight to be gained into the structure
of the solution space and help explain certain difficulties associated with traditional
optimisation techniques.

In this work, as well as in Plunk et al. (2019), the focus has been on introducing
deviations to quasi-isodynamicity near the field maxima to target deeply trapped particles.
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Current work is being done on breaking omnigenity at other toroidal regions in order to
improve confinement of different classes of trapped particles.

The only shaping of the plasma boundary that enters at first order in the NAE is
the elongation of the elliptical cross-sections. Using solutions generated at higher order,
together with traditional optimisation procedures also seems a promising way for obtaining
configurations with better confinement properties and stronger shaping.
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Appendix A. Smoother α(ϕ)

The behaviour of α(ϕ) around ϕmax, where omnigenity is broken in a controlled way,
can have a detrimental effect on the smoothness of the QI solutions constructed using the
NAE.

In order to avoid this problems, a form of α with continuous derivatives up to second
order is proposed

αII(ϕ) = ι(ϕ − ϕi
min)+ π(2 mi + 1

2)+ a(ϕ − ϕi
min)

2k+1 + b(ϕ − ϕi
min)

2p+1. (A1)

To find the coefficients a and b, we check for continuity at ϕi
max

lim
ϕ→ϕ

(i+1)−
max

αII(ϕ) = lim
ϕ→ϕ

(i+1)+
max

αII(ϕ), (A2)

which is equivalent to

ι (−π/N)+ a (−π/N)2k+1 + b (−π/N)2p+1 + 2πm

= ι (π/N)+ a (π/N)2k+1 + b (π/N)2p+1 , (A3)

and grouping terms we obtain

π
(

m − ι

N

)
= a (π/N)2k+1 + b (π/N)2p+1 . (A4)

From expression (A1), we note that all even derivatives of αII with respect to ϕ have
odd powers of (ϕ − ϕi

min), so d2nαII/dϕ2n is opposite in sign, for n � 1, at ϕi
max when

approaching from the left and from the right, hence continuity requires all even derivatives
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to be zero at this points. We now impose the following condition on the second derivative:

d2αII(ϕmax)

dϕ2
= 0,

a(2k + 1)(2k)(π/N)2k−1 + b(2p + 1)(2p)(π/N)2p−1 = 0,

⎫⎪⎬
⎪⎭ (A5)

and solve for b,
b = −aν(π/N)2k−2p = 0, (A6)

where ν is given by

ν = (2k + 1)(2k)
(2p + 1)(2p)

. (A7)

Next, we substitute this expression for b into (A4)

π
(

m − ι

N

)
= a (1 − ν)

(π

N

)2k+1
, (A8)

from where we find an expression for a

a = π
(

m − ι

N

) (
1

1 − ν

)(
N
π

)2k+1

, (A9)

and following the same process we obtain an expression for b

b = −π
(

m − ι

N

) (
ν

1 − ν

) (
N
π

)2p+1

. (A10)

For the case of odd derivatives of αII, we obtain even powers of (ϕ − ϕi
min), so all odd

derivatives are automatically continuous at ϕmax due to symmetry of the magnetic wells.
As a consequence, expression (A1) with a and b given by (A9) and (A10) is smooth and
continuous up to third-order derivatives.

Appendix B. Axis shapes

We use the Fourier axis representation as described in § 5. A local form is also needed
to establish conditions on the derivatives of these functions about points of stellarator
symmetry (also coinciding with an extrema of B0(φ)). A Taylor expansion is used as this
local form, and can be then used to generate a linear system of equations on the Fourier
coefficients. These points are given at φ = nπ/N for arbitrary integer n, but without loss
of generality we take the point to be φ = 0 (and perform any necessary shifts later)

R(φ) =
∑
i=0

R2i

(2i)!
φ2i, (B1)

z(φ) =
∑
i=0

z2i+1

(2i + 1)!
φ2i+1. (B2)

From the stellarator-symmetric forms of R and z, one significant fact should be noted:
the only stellarator-symmetric planar curves are those with z = 0 for all φ (excluding the
trivial ‘tilted’ one with N = 1). As we will see, stellarator-symmetric axis curves that are
consistent with omnigenity require z �= 0, and therefore must be non-planar, and possess
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finite torsion. (As experience shows, attempts to tune the axis shape for low torsion in one
region, result in large torsion elsewhere.)

The curvature and torsion of general parameterisation of a curve are given by

κ = |x′ × x′′|
|x′|3 , (B3)

τ = (x′ × x′′) · x′′′

|x′ × x′′|2 , (B4)

where primes denote differentiation with respect to φ. Noting dR̂/dφ = φ̂ and dφ̂/dφ =
−R̂, it is straightforward to compute these derivatives. Further substituting the expansions
for R and z, (B1)–(B2), the contributions to each derivative can be collected by their order
in φ, the following (possibly useful) properties can be confirmed:

R̂ ·
(

dnx
dφn

)
m

= 0, for odd n + m, (B5)

ẑ ·
(

dnx
dφn

)
m

= φ̂ ·
(

dnx
dφn

)
m

= 0, for even n + m. (B6)

where the subscript m denotes the order in φ.
We classify the zeros in curvature and torsion by the order of the first non-zero term in

the power series, for example,

κ = κmφ
m + κm+1φ

m+1 + · · · , (B7)

where it is assumed that φ > 0; this is necessary to fix the sign of the coefficients noting
that κ > 0 by convention. Likewise, the first non-zero term in the power series expansion
of τ determines its order:

τ = τnφ
n + κn+1φ

n+1 + · · · . (B8)

We can denote the two constraints by the pair (m, n) corresponding to the order of the
curvature and torsion zeros, respectively.

B.1. Conditions on curvature
Assuming that x′ is itself non-zero, the conditions on zeros in curvature are found by
requiring

x′ × x′′ = 0, (B9)

at each order in φ. At zeroth order, x′′ has its only non-zero component in the R̂ direction,
and the condition x′ × x′′ = 0 is satisfied by x′′ · R̂ = 0, which results in the condition

R0 − R2 = 0. (B10)

For reference, note that the full expression for curvature is obtained from (B3) as

lim
φ→0

κ = |R0 − R2|
R2

0 + z2
1
. (B11)

The curvature can be made zero to higher order by considering higher-order contributions
to x′′. At odd orders, these are contained in the φ̂ − ẑ plane and must be made parallel to

https://doi.org/10.1017/S0022377822000812 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000812


Stellarator-symmetric quasi-isodynamic magnetic configurations 27

Order Constraint

0 R2 = R0
1 z3 = 2z1
2 R4 = 5R0
3 z5 = 16z1
4 R6 = 61R0

TABLE 1. Conditions for zero curvature.

the zeroth-order contribution from x′, whereas at even orders, the even-order contribution
to x′′ must simply be zero. Thus, conditions at arbitrary order can be obtained, and a few
are listed in table 1.

As already noted, only odd-order zeros in curvature are consistent with omnigenity in
the NAE. Thus, we apply these conditions only up to and including some even order. Note
that planar curves (for which z = 0) are inconsistent with odd orders of zero in curvature,
which means non-zero torsion is required for the class of configurations being considered
here.

B.2. Conditions on torsion
We find curves with zero torsion to some order of accuracy in the local expansion about
points of stellarator symmetry. It is assumed that the curvature is zero to some order at
these points. This implies that curves of zero torsion, which are approximately planar
curves, fall into one of two classes: (1) curves lying within the plane perpendicular to
x̂ = R̂(0) and (2) curves lying within the plane perpendicular to a constant unit vector
n̂(t) = cos(t)ẑ + sin(t)ŷ, where ŷ = φ̂(0), and t is arbitrary.

The two classes arise in the expansion itself: let us inspect the first non-zero contribution
to the numerator and denominator of the expression for the torsion (assuming a first-order
zero of curvature, i.e. R2 = R0)

(x′ × x′′) · x′′′ ≈ 1
2 R0 (5R0 − R4) (2z1 − z3) φ

2, (B12)

|x′ × x′′|2 ≈ R2
0 (2z1 − z3)

2 φ2, (B13)

which assuming z3 �= 2z1 yields a result for the torsion at φ = 0

lim
φ→0

τ = 5R0 − R4

4R0z1 − 2R0z3
. (B14)

Thus, if the curvature is zero to first order, but not second order, we obtain a condition on
the torsion being zero, 5R0 = R4. The second class of curves with zero torsion is obtained
by repeating this calculation assuming z3 = 2z1 from the outset, but this is precisely the
condition that curvature is zero to second order; it is also the condition that the curve lies
within the described plane, and it can be derived independently by imposing the condition
n̂ · x′ = 0 to first order in φ. Even-order zeros, however, are not consistent with near-axis
QI configurations.

In the following we calculate the conditions for the torsion, order-by-order, assuming a
number of conditions are also satisfied related to curvature. The relevant cases included in
table 1 are first, third and fifth order zeros of curvature. The torsion constraints are given
in tables 2, 3 and 4.
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Order Constraint

0 R4 = 5R0
2 R6 = 61R0
4 R8 = 1385R0
6 R10 = 50521R0

TABLE 2. Conditions for zero torsion, assuming first-order zero in curvature.

Order Constraint

0 R6 = 61R0
2 R8 = 1385R0
4 R10 = 50521R0

TABLE 3. Conditions for zero torsion, assuming third-order zero in curvature.

Order Constraint

0 R8 = 1385R0
2 R10 = 50521R0
4 z7 = 272z1

TABLE 4. Conditions for zero torsion, assuming third-order zero in curvature.

B.3. Truncated Fourier representations of axis curves
The tabulated constraints on the derivatives of the axis components can be applied to a
truncated Fourier representation. Equations (5.11)–(5.12) are simply substituted into the
constraint equations with φ set to a location of stellarator symmetry (for instance, at
φ = 0,π/N in the first period). This results in a set of linear conditions on the Fourier
coefficients that can be solved numerically, or by computer algebra.

As a very simple example, one may consider a symmetric class of curves, as in Plunk
et al. (2019) and described in § 5.1.

Curve classes can, of course, also be defined without the above symmetry (retaining
odd harmonics), requiring derivative constraints to be applied separately at φ = 0 and
φ = π/N. For example, consider

R = 1 + Rc(1) cos(Nφ)+ Rc(2) cos(2Nφ)+ Rc(3) cos(3Nφ), (B15)

z = zs(1) sin(Nφ)+ zs(2) sin(2Nφ)+ zs(3) sin(3Nφ). (B16)

Then, applying R2 = R0 at both φ = 0 and φ = π/N, gives

Rc(1) = −Rc(3)
9N2 + 1
N2 + 1

, (B17)

Rc(2) = − 1
4N2 + 1

. (B18)
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These are just the simplest cases, with only a zeroth-order condition for curvature being
used. Note that different sets of derivative constraints can be applied to these two locations,
to get curves with different orders of zeros in torsion and curvature at the locations of
maximum and minimum magnetic field strength. The orders of the zeros, together with
the set of Fourier coefficients, define a space that can be used for further optimisation.

REFERENCES

BEIDLER, C., ALLMAIER, K., ISAEV, M., KASILOV, S., KERNBICHLER, W., LEITOLD, G.,
MAAßBERG, H., MIKKELSEN, D., MURAKAMI, S., SCHMIDT, M., et al. 2011 Benchmarking
of the mono-energetic transport coefficients—results from the international collaboration on
neoclassical transport in stellarators (ICNTS). Nucl. Fusion 51 (7), 076001.

BEIDLER, C., SMITH, H., ALONSO, A., ANDREEVA, T., BALDZUHN, J., BEURSKENS, M.,
BORCHARDT, M., BOZHENKOV, S., BRUNNER, K., DAMM, H., et al. 2021 Demonstration of
reduced neoclassical energy transport in Wendelstein 7-X. Nature 596 (7871), 221–226.

CARY, J.R. & SHASHARINA, S.G. 1997 Omnigenity and quasihelicity in helical plasma confinement
systems. Phys. Plasmas 4 (9), 3323–3333.

DEWAR, R. & HUDSON, S. 1998 Stellarator symmetry. Physica D 112 (1–2), 275–280.
DREVLAK, M., HEYN, M., KALYUZHNYJ, V., KASILOV, S., KERNBICHLER, W., MONTICELLO, D.,

NEMOV, V., NÜHRENBERG, J. & REIMAN, A. 2003 Effective ripple for the W7-X magnetic field
calculated by the PIES code. In 30th European Physical Society Conference on Plasma Physics and
Controlled Fusion. European Physical Society.

GARREN, D.A. & BOOZER, A. 1991 Magnetic field strength of toroidal plasma equilibria. Phys. Fluids B
3 (10), 2805–2821.

GIULIANI, A., WECHSUNG, F., CERFON, A., STADLER, G. & LANDREMAN, M. 2022 Single-stage
gradient-based stellarator coil design: optimization for near-axis quasi-symmetry. J. Comput. Phys.
459, 111147.

GRIEGER, G., LOTZ, W., MERKEL, P., NÜHRENBERG, J., SAPPER, J., STRUMBERGER, E., WOBIG, H.,
BURHENN, R., ERCKMANN, V., GASPARINO, U., et al. 1992 Physics optimization of stellarators.
Phys. Fluids B 4 (7), 2081–2091.

HELANDER, P. 2014 Theory of plasma confinement in non-axisymmetric magnetic fields. Rep. Prog. Phys.
77 (8), 087001.

HELANDER, P., GEIGER, J. & MAAßBERG, H. 2011 On the bootstrap current in stellarators and tokamaks.
Phys. Plasmas 18 (9), 092505.

HELANDER, P. & NÜHRENBERG, J. 2009 Bootstrap current and neoclassical transport in
quasi-isodynamic stellarators. Plasma Phys. Control. Fusion 51 (5), 055004.

HENNEBERG, S., HELANDER, P. & DREVLAK, M. 2021a Representing the boundary of stellarator
plasmas. J. Plasma Phys. 87 (5), 905870503.

HENNEBERG, S.A., HUDSON, S.R., PFEFFERLÉ, D. & HELANDER, P. 2021b Combined plasma-coil
optimization algorithms. J. Plasma Phys. 87 (2), 905870226.

HIRSHMAN, S.P. & WHITSON, J. 1983 Steepest-descent moment method for three-dimensional
magnetohydrodynamic equilibria. Phys. Fluids 26 (12), 3553–3568.

HUDSON, S., ZHU, C., PFEFFERLÉ, D. & GUNDERSON, L. 2018 Differentiating the shape of stellarator
coils with respect to the plasma boundary. Phys. Lett. A 382 (38), 2732–2737.

JORGE, R., PLUNK, G., DREVLAK, M., LANDREMAN, M., LOBSIEN, J., CAMACHO, K. & HELANDER,
P. 2022 A single-field-period quasi-isodynamic stellarator (submitted to the Journal of Plasma
Physics). arXiv:2205.05797.

JORGE, R., SENGUPTA, W. & LANDREMAN, M. 2020 Near-axis expansion of stellarator equilibrium at
arbitrary order in the distance to the axis. J. Plasma Phys. 86 (1).

KRUSKAL, M.D. & KULSRUD, R.M. 1958 Equilibrium of a magnetically confined plasma in a toroid.
Phys. Fluids 1 (4), 265–274.

KUO-PETRAVIC, G. & BOOZER, A. 1987 Numerical determination of the magnetic field line Hamiltonian.
J. Comput. Phys. 73 (1), 107–124.

https://doi.org/10.1017/S0022377822000812 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000812


30 K. Camacho Mata, G.G. Plunk and R. Jorge

LANDREMAN, M. & SENGUPTA, W. 2018 Direct construction of optimized stellarator shapes. Part 1.
Theory in cylindrical coordinates. J. Plasma Phys. 84 (6).

LANDREMAN, M., SENGUPTA, W. & PLUNK, G.G. 2019 Direct construction of optimized stellarator
shapes. Part 2. Numerical quasisymmetric solutions. J. Plasma Phys. 85 (1).

PEDERSEN, T.S., KÖNIG, R., KRYCHOWIAK, M., JAKUBOWSKI, M., BALDZUHN, J., BOZHENKOV,
S., FUCHERT, G., LANGENBERG, A., NIEMANN, H., ZHANG, D., et al. 2018 First results from
divertor operation in Wendelstein 7-X. Plasma Phys. Control. Fusion 61 (1), 014035.

PFEFFERLÉ, D., GUNDERSON, L., HUDSON, S.R. & NOAKES, L. 2018 Non-planar elasticae as optimal
curves for the magnetic axis of stellarators. Phys. Plasmas 25 (9), 092508.

PLUNK, G.G., LANDREMAN, M. & HELANDER, P. 2019 Direct construction of optimized stellarator
shapes. Part 3. Omnigenity near the magnetic axis. J. Plasma Phys. 85 (6).

PLUNK, G.G., LANDREMAN, M. & HELANDER, P. 2021 Direct construction of optimized stellarator
shapes. Part 3. Omnigenity near the magnetic axis–erratum. J. Plasma Phys. 87 (6).

SANCHEZ, R., HIRSHMAN, S., WARE, A., BERRY, L. & SPONG, D. 2000 Ballooning stability
optimization of low-aspect-ratio stellarators. Plasma Phys. Control. Fusion 42 (6), 641.

SUBBOTIN, A., MIKHAILOV, M., SHAFRANOV, V., ISAEV, M.Y., NÜHRENBERG, C., NÜHRENBERG,
J., ZILLE, R., NEMOV, V., KASILOV, S., KALYUZHNYJ, V., et al. 2006 Integrated physics
optimization of a quasi-isodynamic stellarator with poloidally closed contours of the magnetic field
strength. Nucl. Fusion 46 (11), 921.

https://doi.org/10.1017/S0022377822000812 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000812

	1 Introduction
	2 Near-axis expansion
	3 N-field periods and stellarator symmetry
	4 Smoother ()
	5 Axis shape
	5.1 Axis construction
	5.2 Controlling torsion

	6 QI construction, two-field-period example
	7 A family of constant torsion QI solutions
	8 A three-field-period, low-torsion-axis example
	9 Conclusion
	A Appendix A. Smoother ()
	B Appendix B. Axis shapes
	B.1 Conditions on curvature
	B.2 Conditions on torsion
	B.3 Truncated Fourier representations of axis curves

	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


