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Abstract

In 2006, Kenyon and Okounkov Kenyon and Okounkov [12] computed the moduli space of Harnack curves of

degree d in CP2. We generalise their construction to any projective toric surface and show that the moduli space

HΔ of Harnack curves with Newton polygon Δ is diffeomorphic to R<−3 × R=+6−<≥0
, where Δ has m edges, g

interior lattice points and n boundary lattice points. This solves a conjecture of Crétois and Lang. The main result

uses abstract tropical curves to construct a compactification of this moduli space where additional points correspond

to collections of curves that can be patchworked together to produce a curve in HΔ . This compactification has a

natural stratification with the same poset as the secondary polytope of Δ .

1. Introduction

Harnack curves are real algebraic plane curves inside a projective toric surface, introduced by

Mikhalkin [16], with several remarkable properties. By definition, they have the maximum possible

number of connected components for a given Newton polygon, and these components are arranged in

a particular and unique way (see Theorem 2.1). Their amoebas are particularly special, since they are

precisely the ones with maximal area [18]. Because of this, they have found applications in physics,

where the dimer model is used to study crystal surfaces (see [13] for details). In this model, the limit of

the shape of a crystal surface is given by the amoeba of a Harnack curve.

These curves are named after Axel Harnack, who constructed them in the projective plane to show

that his upper bound on the number of connected components of a plane real algebraic curve is

attained [9]. In the projective plane, the space of Harnack curves of degree 3 modulo the action of the

torus (C∗)2 ⊆ CP2 was studied by Kenyon and Okounkov [12] to better understand the dimer model

(equivalently, this is the space of amoebas of Harnack curves modulo translation). They show that this

moduli space has global coordinates given by the areas of holes of the amoeba and the distances between

consecutive tentacles. Therefore it is diffeomorphic to R
(3+4) (3−1)/2
≥0

. Crétois and Lang [3] generalised

some of the techniques used in [12] to Harnack curves in any projective toric surface. They showed

that given a lattice polygon Δ , the moduli space HΔ of Harnack curves with Newton polygon Δ is

path connected, and they conjectured that it is also contractible.1 We confirm this belief and further

generalise the results of [12] to compute HΔ :

Theorem 1. Let Δ be a lattice <-gon with 6 interior lattice points and = boundary lattice points. Then

the moduli space HΔ of Harnack curves of Newton polytope Δ is diffeomorphic to R<−3 × R=+6−<≥0
.

1The conjecture appears as Remark 4.4 in the preprint version of [3]; the published version already cites our results.
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The interior of HΔ corresponds to the smooth Harnack curves with transversal intersections with the

axes of -Δ . In the boundary, ovals may contract to double points, or the curves may not intersect with

the axes transversally.

We further show that HΔ admits a compactification similar in spirit to the Deligne–Mumford

compactification of M6,=. This compactification consists of what we call Harnack meshes. A Harnack

mesh (see Theorem 5.4) consists of a regular subdivision of Δ and a Harnack curve with Newton

polytope Δ 8 for each facet Δ 8 of the subdivision, with some gluing conditions that allow for the curves to

be patchworked (using Viro’s method [22]) to produce a curve in HΔ . The space of Harnack meshes is

naturally stratified into cells according to which regular subdivision is used in the patchworking recipe.

The foregoing can be summed up in the following:

Theorem 2. The space HΔ has a compactification HΔ consisting of all Harnack meshes over Δ .

Moreover, HΔ has a cell complex structure whose poset is isomorphic to the face poset of the secondary

polytope Sec
(
Δ ∩ Z2

)
.

The structure of the paper is as follows. In section 2, we set notation and recall some background

results on Harnack curves. Sections 3 and 4 are dedicated to proving Theorem 1 (Theorem 4.3), and

section 5 is dedicated to proving Theorem 2 (Theorem 5.11).

Most of the proofs consist of showing that there are different parameters that can be taken as global

coordinates for Harnack curves. In section 3 we consider the following diagram:




Rational

Harnack

curves



↩→




Roots of

rational

parametrisation



/PSL2 (R)

d̃
→




Positions of

amoeba

tentacles



/R2.

On the left we have the moduli space of rational Harnack curves, which we denote H0,Δ ; in the middle

we have parametrisations q : CP1 → -Δ of Harnack curves modulo the action of PSL2(R) on CP1; and

on the right we have the positions of the tentacles of the amoeba modulo translations of the amoeba.

The main result of section 3 is that the map d̃ is a smooth embedding when restricted to the image of

the first map.

In section 4 we show that the following are diffeomorphisms:




Harnack curves

with fixed

tentacle positions



↔




Bounded

Ronkin

intercepts



↔




Areas of

holes of

the amoeba



. (1)

By putting together the two diagrams, we have

HΔ ↩→
{Tentacle positions}/R2

×{Bounded intercepts} →
{
All Ronkin

intercepts

}
/R3 → M

trop
6,= ,

where the R3 action in the the third space refers to translations of the graph of the Ronkin function. The

first map is a smooth embedding by putting together the two previous diagrams.

In section 5 we look at the last two maps. The second map is a linear bijection between tentacle

positions and unbounded Ronkin intercepts. The last map is given by what we call the expanded spine.

Since M
trop
6,= is not a manifold (it is a tropical variety), this map can no longer be a diffeomorphism.

However, we show that it is a piecewise linear embedding. We also show how Harnack meshes can

be similarly embedded into the closure of the embedding HΔ ↩→ M
trop
6,= , allowing us to construct the

compactification HΔ .

We end the paper by suggesting some directions for future research in section 6. In particular, we

conjecture that HΔ is a regular CW-complex and we suggest a possible smooth structure on HΔ as a

manifold with generalised corners [11].
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2. Preliminaries

2.1. Notation

We fix the following notation for the rest of the paper. As is usual in toric geometry, " � # � Z2

are the lattices of characters and 1-parametric subgroups of the algebraic 2-dimensional torus (C∗)2,

respectively. (See [2] as a general reference for toric varieties.)

Let Δ ⊂ " ⊗ R be a convex lattice polygon. We write mΔ for the boundary of Δ and int(Δ) for the

interior of Δ . We write Δ" for the lattice points in Δ – that is, Δ" = Δ ∩" . We use = and 6 to denote

the number of lattice points in mΔ and int(Δ), respectively, and < for the number of edges of Δ . For

any positive integer : , [:] denotes the set {1, . . . , :}. We denote by Γ8 , 8 = 1, . . . , <, the edges of Δ in

cyclic anticlockwise order. Let 31, . . . , 3< be their respective integer lengths (i.e., 38 = |Γ8 ∩ " | − 1).

We say that a vector is primitive if it is the smallest integer vector in that direction. Similarly, we call a

segment primitive if it does not contain integer points in its interior – that is, if orienting it produces a

primitive vector. Let D8 ∈ # be the primitive inner normal vector of Γ8 . We have the following equation:

<∑
8=1

3:D8 = 0. (2)

To each E = (E1, E2) ∈ " there is an associated Laurent monomial GE := G
E1

1
G
E2

2
. The Newton polygon

of a Laurent polynomial 5 (G) =
∑

E ∈"
2EG

E is the convex hull of {E ∈ " | 2E ≠ 0}. For any subset

Δ ′ ⊆ Δ , we write 5 |Δ′ (G) :=
∑

E ∈Δ′
"

2EG
E .

Given a lattice polygon Δ , there is an associated projective toric surface -Δ whose geometry reflects

the combinatorics ofΔ . It contains a dense copy of the torus (C∗)2 where coordinate-wise multiplication

extends to an action on all of -Δ . For each edge Γ8 of Δ , there is a corresponding irreducible divisor !8
in -Δ which is invariant under the action of the torus. We call these divisors the axes of -Δ . Two axes

intersect in a point if and only if they correspond to consecutive edges of Δ . We denote the real part of

-Δ as R-Δ .

2.2. Harnack curves

Let 5 be a Laurent polynomial with real coefficients and Newton polygon Δ . The zeros of 5 define a

curve �◦ ⊂ (C∗)2. The closure of �◦ in -Δ is a compact algebraic curve �. If � is smooth, its genus

is equal to 6 [14]. The intersection of � with R-Δ is a real algebraic curve R�. The intersection of �

with an axis !8 is given by the restriction of 5 to Γ8 , which is, after a suitable change of variable, a

polynomial of degree 38 . Therefore !8 ∩ � consists of exactly 38 points counted with multiplicities.

Definition 2.1 ([16, Definition 2]). Let Δ be a lattice polygon with 6, < and the 38s as already defined.

A smooth real algebraic curve R� ⊆ R-Δ is called a smooth Harnack curve if the following conditions

hold:

◦ The number of connected components of R� is 6 + 1.

◦ Only one component of R� intersects !1 ∪ · · · ∪ !<. This component can be subdivided into <

disjoint arcs, \1 . . . \<, in that order, such that � ∩ !8 = \8 ∩ !8 .

The components that are disjoint from !1 ∪ · · · ∪ !< are called ovals.

Harnack curves were originally described as being in ‘cyclically maximal position’ in [16]. In the

literature these curves are sometimes called ‘simple Harnack curves’. However, following [18, 13, 12]

we omit the adjective ‘simple’ when referring to them (see [17, Remark 6.6]).

These curves are named after Axel Harnack because he showed in 1876 that smooth curves of

genus 6 in the real projective plane have at most 6 + 1 connected components. To show that the bound

was tight, he constructed the eponymous curves [9]. Curves which attain the maximum number of
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components are called "-curves. These are the topic of the first part of Hilbert’s 16th problem, which

seeks to classify all possible topological types of "-curves. When R-Δ = RP2, Harnack curves are the

"-curves such that only one component intersects the axes, and it does so in order. Mikhalkin proved

that for any given Δ , if R� is a Harnack curve with Newton polygon Δ , then the topological type of

(R-Δ ,R�,R!1∪, . . . ,∪R!=) is unique [16, Theorem 3].

Recall that a singular point in R� is an ordinary isolated double point if it is locally isomorphic to

the singularity of G2
1
+ G2

2
= 0.

Definition 2.2 ([18, Definition 3]). A (possibly singular) real algebraic curve R� ⊆ -Δ is a Harnack

curve if

◦ the only singularities of R� are ordinary isolated double points away from the torus invariant

divisors and

◦ replacing each singular point of R� by a small oval around it yields a curve R� ′ such that

(R-Δ ,R� ′,R!1∪, . . . ,∪R!=) has the topological type of smooth Harnack curves.

Notice that any singular Harnack curve can be approximated by smooth Harnack curves. To see this,

let 5 be a polynomial that vanishes on R� and define 6(G, H) := 5 (_G, _H) for a real number _ close to

1 but different from 1, so that the singular points of 5 and 6 are close but do not coincide. Then 5 − n6
vanishes on a smooth Harnack curve which approaches R� when n tends to 0.

Let R[Δ" ] be the vector space of real polynomials with Newton polygon contained in Δ . Since

scaling all coefficients of 5 by the same constant does not change the curve R�, we can identify the

space of real curves with Newton polygon contained in Δ with P(R[Δ" ]). The action of the torus (R∗)2

on R-Δ induces an action on P(R[Δ" ]) given by 5 (G1, G2) ↦→ 5
(
A−1

1
G1, A

−1
2
G2

)
.

Definition 2.3. The moduli spaceHΔ of Harnack curves is the subspace of P(R[Δ" ])/(R∗)2 consisting

of all (possibly singular) Harnack curves with Newton polygon Δ modulo the action of (R∗)2.

Given a curve R� ∈ HΔ , we say that a polynomial vanishes on R� if its zero locus is in the

equivalence class given by R�.

Remark. The notation HΔ was used in [3] to note the space of Harnack curves without taking them

modulo the action of (R∗)2. It was defined with a more algebro-geometric language as follows: the space

of curves with Newton polygon contained in Δ can be identified with the complete linear system |�Δ |
of the Cartier divisor �Δ of -Δ associated to Δ . Since -Δ is a complete normal toric variety, |�Δ | can

be identified with the projectivisation of the space of global sections of the line bundle associated to Δ .

Therefore HΔ can be defined as the subspace of |�Δ | of Harnack curves, modulo the action of the torus

(R∗)2 on R-Δ . We emphasise that when we write HΔ , it is always modulo the torus action.

The case when Δ is the 3th dilation of the unimodular triangle corresponds to degree 3 curves in

RP
2, and the moduli space is diffeomorphic to the closed orthant R

(3+4) (3−1)/2
≥0

[12, Corollary 11].

2.3. Amoebas and the Ronkin function

Amoebas, which are essential to understanding Harnack curves, were defined in [7, Chapter 6], where

details about them can be found.

Definition 2.4. Let Log : (C∗)2 → R2 be the map

Log(I1, I2) := (log |I1 | , log |I2 |) .

The amoeba of an algebraic curve � is A(�) := Log(�◦).

The amoebas of Harnack curves are specially well behaved:

https://doi.org/10.1017/fms.2021.37 Published online by Cambridge University Press
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Proposition 2.5 ([18]). Let R� be a real algebraic curve with Newton polygon Δ and A = A(�) be its

amoeba. The following are equivalent:

1. R� is Harnack curve.

2. The map Log |�◦ is at most 2-to-1.

3. area(A) = c2 area(Δ).

For arbitrary curves, area(A) ≤ c2 area(Δ) [20], so Harnack curves have amoebas with maximal area.

Smooth Harnack curves are also characterised by having maximal curvature and by having totally real

logarithmic Gauss maps [16, 19]. However, there are more general singular curves whose logarithmic

Gauss maps are also totally real [15].

Each connected component of the complement of an amoeba is convex and has a point in Δ"

naturally associated to it, as we now show. Let 5 : R2 → R be a Laurent polynomial. The Ronkin

function ' 5 : R2 → R of 5 , defined in [21], is

' 5 (G) :=
1(

2c
√
−1

)2

∫
Log−1 (G)

log | 5 (I1, I2) |
I1I2

3I13I2.

The Ronkin function is convex [20]. Its gradient vector ∇' 5 = (a1, a2) is given by

a8 (G) =
1(

2c
√
−1

)2

∫
Log−1 (G)

I8mI8 5 (I1, I2)
I1I2 5 (I1, I2)

3I13I2.

For any G ∈ R2 we have ∇' 5 (G) ∈ Δ . If two points are in the same connected component of R2 \A,

then their preimages under Log are homologous cycles in (C∗)2 \�◦. This implies that ∇' 5 is constant

in each component, and it has integer coordinates by the residue theorem. Therefore, ∇' 5 (G) induces

an injection from the components of R2 \A to Δ" . The value that ∇' 5 takes in a component of R2 \A
is called the order of that component, and we write �E for the component of order E if it exists. For

details of this construction, see [5].

To better understand amoebas, we review some facts about their behaviour [7, Section 6.1]. The

component �E is bounded if and only if E is in the interior of Δ . For each vertex E of Δ , �E exists and

contains a translation of − cone(D8 , D8+1), where D8 and D8+1 are the inner normal vectors of the edges

adjacent to E. If E is a lattice point in the relative interior of an edge Γ8 , �E is unbounded only in the

direction −D8 . Parts of the amoeba extend to infinity in between the unbounded components of R2 \A,

in direction D8 for some 8. These are called the tentacles of the amoeba. Figure 1 serves as an illustration

of what typical amoebas of Harnack curves look like.

For each E ∈ Δ" such that �E exists, let �E : R2 → R be the affine linear function that coincides

with ' 5 in �E . The spine of a curve � as defined in [20] is the corner locus of max �E , where max

is taken over all �E that exist. Notice that scaling 5 by a a constant only changes ' 5 by an additive

constant, so the spine of � is well defined.

The spine varies continuously for smooth curves. However, if �E vanishes for E ∈ int(Δ), then the

spine changes abruptly. Fortunately, for Harnack curves there is an easy work-around. By the definition

of singular Harnack curves, for each E ∈ int(Δ) ∩" such that �E = ∅, there is an isolated double point

?E in R� such that there is a smooth Harnack curve R� ′ arbitrarily close to R� with a component near

?E with order E. Therefore, ∇' 5 (Log(?E )) = E. Let �E be the tangent plane of ' 5 at Log(?E ).

Definition 2.6. Let R� be a Harnack curve. We call the corner locus of the piecewise affine linear

convex function max
E ∈Δ"

�E the expanded spine of � and denote it with Υ(�).

The expanded spine and the usual spine coincide if and only if R� is a smooth Harnack curve.

The expanded spine varies continuously for Harnack curves, even singular ones. It has a cycle for each

https://doi.org/10.1017/fms.2021.37 Published online by Cambridge University Press
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Figure 1. The amoeba (blue), spine (black) and Newton polygon (green) of a Harnack curve.

E ∈ int(Δ) ∩ " . The bounded part of the expanded spine is a planar graph of genus 6. This definition

will be crucial in Section 5.2.

By definition, the expanded spine is a tropical plane curve. The intercepts 2E of the affine functions

�E are the coefficients of the tropical polynomial that vanishes on the expanded spine – that is,

Υ(�) = trop

(⊕
E

2E ⊙ G⊙E
)
.

We call the numbers 2E the Ronkin intercepts. We call a Ronkin intercept 2E bounded if E ∈ int(Δ) and

unbounded if E ∈ mΔ . In other words, we say 2E is bounded if and only if whenever �E exists, it is

bounded.

2.4. Regular subdivisions

We review the basic definitions of regular subdivisions that are relevant to us; for more details, we refer

the reader to [4].

A subdivision of Δ is a collection S of subsets of Δ" such that they satisfy the following:

◦ Δ =
⋃
�∈S

conv(�).
◦ If � ∈ S and � is a face of conv(�), then � ∩ � ∈ S.

◦ If �, �′ ∈ S, then relint(conv(�)) ∩ relint(conv(�′)) = ∅.

If the union
⋃

S of all elements of S is equal to Δ" , we call S full.

We are interested only in a particular kind of subdivision, which can be obtained with the following

construction. Consider a function ℎ : Δ" → R, which we call a height function. The 3-dimensional

polyhedron

% = conv({(E, C) | E ∈ Δ" C ≥ ℎ(E)}) ⊆ "R × R

is unbounded only in the (0, 0, 1) direction. For any face � of %, let �� := {E ∈ Δ" | (E, ℎ(E)) ∈ �}
be the collection of points in Δ" which are lifted to lie in �. The regular subdivision of Δ" induced

by ℎ is S(ℎ) := {�� | � face of '}.
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Given a regular subdivision S, consider the cone

f(S) :=
{
ℎ ∈ RΔ"

�� S = S(ℎ)
}
.

If @ is the restriction of any affine function R2 → R to Δ" , then S(ℎ + @) = S(ℎ). This implies that

this fan has a linearity space of dimension 3. The collection of all cones f(S) is a complete fan in RΔ"

called the secondary fan of Δ" (see [7, Chapter 7]). The secondary fan happens to be the normal fan

of a polytope Sec(Δ) ⊆ RΔ" , called the secondary polytope of Δ" .

Faces of the secondary polytope are naturally in bijection with cones in the secondary fan, which in

turn are in bijection with regular subdivision. The dimension of the secondary polytope is |Δ" | − 3,

since the linearity space of the secondary fan is 3-dimensional. More generally, given a face �S of

Sec(Δ" ) corresponding to a subdivision S, we have dim(�S) = |Δ" | − dim(f(S)). The dimension of

f(S) can be computed in the following way.

Given a height function ℎ : Δ" → R, we can obtain another polyhedral complex S
∗(ℎ) which is

a subdivision of #R and is said to be a dual subdivision of S(ℎ) of Δ . Two points D1, D2 ∈ #R are in

the same cell of S∗(ℎ) if the linear functionals (D1, 1) : "R × R → R and (D2, 1) : "R × R → R are

minimised in % by the same face of %. We should remark that we are considering S
∗(ℎ) as a set of open

polyhedra inside #R, as opposed to S(ℎ), which is a set of labels – that is, subsets of Δ" – and that

taking a different function ℎ′ ∈ f(S) may yield a different dual subdivision S
∗(ℎ′).

The 1-skeleton of S
∗(ℎ) is a tropical curve, and its bounded part is a planar metric graph. The

combinatorics of this graph depend only on S; disregarding its embedding into #R, we call it the graph

dual to S and denote it by �S. Vertices + (�S) correspond to facets of S, the edges � (�S) correspond

to interior edges of S and the bounded facets � (�S) correspond to interior points in S.

If S is full, a height function in f(S) is determined by the length of the bounded edges of S∗(ℎ)
up to an affine transformation (adding an affine transformation to ℎ affects S∗(ℎ) only by translation).

However, every bounded facet of �S constitutes a cycle of edges and hence gives two relations (one for

the G-coordinate and another for the H-coordinate) on the space of possible lengths of bounded edges of

S
∗(ℎ). These relations are in fact independent and sufficient. So dim(f(S)) = |� (�S) | − 2|� (�S) | + 3.

If S is not full, then the heights of the missing points can be arbitrary, so long as they are sufficiently

high. In general, we have

dim(f(S)) = |� (�S) | − 2|� (�S) | +
���Δ" \

⋃
S

��� + 3. (3)

2.5. Patchworking

We now give a basic overview of patchworking of real algebraic curves, a powerful tool developed by

Viro [22] to construct curves with a prescribed topology.

The ingredients for (real) pathworking are a regular subdivision S = S(ℎ) of a polygon Δ and a real

polynomial 5 ∈ R[Δ" ]. Let Δ1, . . . ,ΔB be the facts of S. Then the polynomial 5 |Δ8
defines a real curve

R�8 ⊆ -Δ8
. Suppose that every curve R�8 is smooth and intersects transversally the axes of -Δ8

–that

is, R�8 intersects each axis in 3 different points, where 3 is the integer length of the corresponding edge

of Δ 8 . Define

5C (G) :=
∑

E ∈Δ"

Cℎ (E)0EG
E

and let R�C ⊆ -Δ be the vanishing locus of 5C . The patchworking theorem by Viro [22] says that there

exists C0 > 0 small enough that for every C ∈ (0, C0], the topological type of R�C can be computed

from the topological type of each R�8 by gluing them in a certain way. We say R�C is the result of

patchworking the curves R�8 . Given the curves R�8 , there exist different 5 s such that 5 |Δ8
vanishes on

R�8 . However, the topological type of the resulting curve R�C depends only on the signs of each 5 |Δ8

(real polynomials with the same zero locus differ only by scaling by a constant in R∗).
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We do not show in general how to do this computation; see [22] for that. We do, however, mention

some important facts regarding Harnack curves. First, Mikhalkin showed that Harnack curves can

be constructed using patchworking [16, Appendix]. There it is shown that Harnack curves are )-

curves – that is, curves whose topological type can be obtained from patchworking using regular

unimodular triangulations as regular subdivision. In that case, the signs of each coefficient of 5 contain

all the relevant information, and this is known as combinatorial patchworking [10]. Consider the

sign configuration Δ" → {−1, 1} given by E ↦→ (−1)E1E2 . No matter the triangulation chosen, the

result from patchworking with this sign configuration will always be a Harnack curve [16, Apendix].

Moreover, it is essentially (up to Z2
2
) the only sign configuration whose patchwork is invariant under the

chosen unimodular triangulation. These statements follow directly from the discussion in [7, Chapter 11

Section 5C].

Another important fact is that for any regular subdivision S, if each curveR�8 is a Harnack curve, then

there exists a choice of 58 such that the result from patchworking is a Harnack curve (see Theorem 5.6).

2.6. Cox coordinates

We now review Cox coordinates for toric surfaces, since it will help us understand the parametrisations

of rational Harnack curves. For details, see [2, Chapter 5]. They are a generalisation of homogeneous

coordinates in the projective space CP3 =
(
C
3+1 \ {0}

)
/C∗.

Let Δ be a Newton polygon and recall that D1, . . . , D< are the primitive inner normal vectors of Δ .

Let U : (C∗)< → (C∗)2 be the group homomorphism

(I1, . . . , I<) ↦→
(

<∏
8=1

I
D81
8
,

<∏
8=1

I
D82
8

)
.

We have that ker(U) is a subgroup of (C∗)<. Let / be the subset of C< with at least three coordinates

equal to 0 or at least two coordinates not cyclically consecutive that are equal to 0.

Proposition 2.7 ([2, Theorem 5.1.11]). Let Δ be a lattice polygon. All ker(U)-orbits of C< \ / are

closed, and the quotient (C< \ /)/ker(U) is isomorphic to -Δ as an algebraic variety.

We write [I1 : · · · : I<]Δ to denote the point in -Δ corresponding to the orbit of (I1, . . . , I<) ∈ C<\/
under the action of ker(U). We have

!8 = {[I1 : · · · : I<]Δ ∈ -Δ | I8 = 0}

and

R-Δ = {[I1 : · · · : I<]Δ ∈ -Δ | I8 ∈ R ∀8} .

Example 2.8. Let Δ be any rectangle with edges parallel to the R2 axes. The map U : " → Z4 is given

by the matrix

(
1 0 −1 0

0 1 0 −1

)
.

Then U : (C∗)4 → (C∗)2 is given by (I1, I2, I3, I1) ↦→
(
I1I

−1
3
, I2I

−1
1

)
. The action of � consists of

coordinate-wise multiplications by vectors of the form (_1, _2, _1, _2), where _1, _2 ∈ C∗. The set /

consists of the points where I1 = I3 = 0 or I2 = I1 = 0. So in this case -Δ is isomorphic to CP1 × CP1.
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3. Rational Harnack curves

3.1. Parametrisations of rational Harnack curves

We start this section by describing a parametrisation of rational Harnack curves which was already used

in [12] for -Δ = CP2 and more generally in [3]. We rewrite it using Cox homogeneous coordinates. Real

rational curves in -Δ with Newton polygon Δ can be parametrised by q = [?1 : · · · : ?<]Δ , where each

?8 : CP1 → C is a homogeneous polynomial of degree 38 with real coefficients for 8 ∈ [<] and no two

polynomials have a common root. If the curve is Harnack, q
(
RP

1
)

is the 1-dimensional component of

R�. This implies that the roots of ?8 are real and are ordered in the cyclic way according to Theorem 2.1 –

that is, RP1 can be subdivided in< arcs \1, . . . , \< ordered that way such that \8 contains all the roots of

?8 . In fact, this condition is sufficient for R� to be a Harnack curve. This was shown in [12, Proposition

4] for -Δ = CP2, and it was noticed in [3, Equation (2)] that the same arguments work for any projective

toric surface. So Rq
(
CP

1
)

is a Harnack curve if and only if, for some chart of CP1, we have

q(C) =
[
11

31∏
8=1

(C − 01,8) : · · · : 1<

3<∏
8=1

(C − 0<,8)
]
Δ

, (4)

where all 08, 9 are real, all 18 are real different from zero and

01,1 ≤ · · · ≤ 01,31
< 02,1 ≤ · · · ≤ 02,3= < · · · < 0<,1 ≤ · · · ≤ 0<,3< . (5)

We call 01,1, . . . , 0<,3< the roots of q. Composing q with U yields a parametrisation for �◦ ⊂ (C∗)2:

U ◦ q(C) = ©«
<∏
8=1

1
D81
8

38∏
9=1

(
C − 08, 9

)D81 , <∏
8=1

1
D82
8

38∏
9=1

(
C − 08, 9

)D82ª®¬
.

Let H0,Δ be the subspace of HΔ consisting of rational Harnack curves. The following generalises [12,

Corollary 5]:

Proposition 3.1. Let Δ be a lattice polygon with< sides and = lattice points in its boundary. Then H0,Δ

is diffeomorphic to R<−3 × R=−<≥0
.

Proof. The parametrisation given is unique up to the action of the projective special linear group

PSL2(R) on the parameter C. This induces an action of PSL2(R) on the roots of q. More explicitely, for

k ∈ PSL2 (R) the function q ◦ k−1 also parametrises � and has roots k(01,1), . . . , k(0<,3< ). The roots

k(01,1), . . . , k(0<,3< ) are in the same cyclic order as in Eq. (5).

The action of (R∗)2 in R-Δ affects q by changing the constants 11, . . . , 1= but not the roots. The

same is true for choosing different representatives of the Cox homogeneous coordinates of -Δ in Eq. (4).

So every rational Harnack curve is equivalent in HΔ to a curve with 11 = · · · = 13 = 1. Therefore, the

elements of HΔ corresponding to rational curves are uniquely determined by the roots 01,1, . . . , 0<,3< ,

up to the action of PSL2(R) on them.

The action of PSL2(R) can be fixed, for example, by considering the unique Möbius transformation

k ∈ PSL2 (R) such that k(01,1) = 0, k(02,1) = 1 and k(03,1) = 2. The map

R� ↦→(k(04,1), . . . , k(0<,1))
×

(
k(01,2) − k(01,1), . . . , k

(
0<,3<

)
− k

(
0<,3<−1

) )
is a diffeomorphism between H0,Δ and R<−3 ×R=−<≥0

(by identifying copies of R with
(
q

(
08,38

)
, 0

)
for

8 ≥ 3). �

The roots of q are associated naturally to primitive segments of the edges of Δ . Theorem 3.1 says that

we can take as global coordinates of H0,Δ the difference between two consecutive roots corresponding

to the same edge of Δ , together with the first root of each edge except the first three edges.
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3.2. The positions of the tentacles

Following [12], we now make a useful change of global coordinates in H0,Δ . Instead of the roots of q,

we will use the positions of the tentacles of the amoeba which correspond to boundary points � \ �◦.
Let � : # → " be the 2 × 2 matrix that rotates vectors c/2 clockwise – that is, � =

(
0 1
−1 0

)
. Observe

that �D8 is a character, which maps [G1, . . . , G<]Δ ↦→ ∏<
:=1 G

D:∧D8
:

, where D 9 ∧D8 ∈ R is the determinant

of the 2× 2 matrix whose columns are D 9 and D8 in that order. In other words, D8 ∧ D 9 =
〈
�D 9 , D8

〉
. This

is not well defined over all -Δ . We take 00 = 1 by convention, so �D8 is well defined over !8 except the

torus invariant points. In fact, the ring of functions of !8 (without the torus invariant points) consists of

Laurent polynomials on �D8 .

Definition 3.2. Let R� be a rational Harnack curve parametrised by q as in Eq. (4). For 1 ≤ 8 ≤ < and

1 ≤ 9 ≤ 38 , the position of the (8, 9) tentacle of the amoeba is

log

���q (
08, 9

) �D8 ��� .
Explicitly,

log

���q (
08, 9

) �D8 ��� = <∑
:≠8

3:∑
;=1

D: ∧ D8
(
log|18 | + log

��08, 9 − 0:,; ��) .
Since the curve does not change with acting on the roots by PSL2 (R), the positions of the tentacles of

the amoeba do not change either. However, the tentacle positions are not invariant under the action of

(R∗)2 on R-Δ . Concretely, multiplying R� by A ∈ (R∗)2 translates the amoeba by Log|A |, thus changing

the position of the (8, 9) tentacle by 〈�D8 ,Log|A |〉. Thus, the (R∗)2 action on R-Δ induces an R2 action

on the position of the tentacles by translations of the amoeba.

Consider the maps d8, 9 : R= d R given by

d8, 9 :=

=∑
:≠8

3:∑
;=1

D: ∧ D8 log
��08, 9 − 0:,; �� .

This is almost the position of the (8, 9) tentacle, except that we drop the log|18 | terms. The maps

d8, 9 are well defined on the space of roots satisfying Eq. (5). Together they form a map d : R= d R=

invariant under the PSL2 (R) action on the roots. Additionally, consider the action of R2 on the target

space R= of d given by translations of the amoeba – that is,

A · d8, 9 := d8, 9 + 〈�D8 , A〉. (6)

By construction, d descends to a map d̃ making the following diagram commutative:

R
=

R
=

R
=/PSL2(R) R

=−2.

d

d̃

The left downward arrow is the quotient of the space of roots by PSL2 (R), and the right downward arrow

is the quotient of R= by the action of R2 already described. By Theorem 3.1, we can identify H0,Δ with

the space of roots that satisfy Eq. (5) modulo the PSL2 (R) action, so d̃ is a well-defined map on H0,Δ .

The main objective of this section is to prove the following:

Theorem 3.3. The restriction d̃ |H0,Δ
is a smooth embedding.
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This is a generalisation of [12, Theorem 4], where the same statement is proven for the case where Δ

is a dilated unit triangle. To prove that d̃ |H0,Δ
is a diffeomorphism, we show that it is proper (Section 3.3)

and that the differential is injective (Section 3.4).

Before going to the proof, let us show a concrete diffeomorphism between the positions of the

tentacles and R<−3 × R=−<≥0
. For the semi-bounded components, consider the distance between two

parallel tentacles

d8, 9+1 − d8, 9 for 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ 38 − 1.

Notice that d8, 9+1 − d8, 9 is invariant under the R2-action of translating the amoeba. For the unbounded

components, take as coordinates

d̃8,1 for 4 ≤ 8 ≤ <,

where d̃8,1 is the position of the (8, 1)-tentacle after translating the amoeba, so that the positions of the

(1, 1)- and (2, 1)-tentacles are both 0. It is straightforward to see that the image satisfies

<∑
8=1

38∑
9=1

d8, 9 = 0 and d8, 9+1 − d8, 9 ≥ 0 for all 8, 9 . (7)

In particular, d̃3,1 is determined by the rest of the coordinates. The space described by the equation and

inequalities is simply connected. This is important, since we will use the following global diffeomor-

phism theorem, which was known by Hadamard. A proof of it can be found in [8].

Proposition 3.4. A local diffeomorphism between two manifolds which is proper and such that the

image is simply connected is a diffeomorphism.

3.3. Properness

To prove that d̃ |H0,Δ
is proper, we make use of the following lemma:

Lemma 3.5. Set G1, . . . , G=, H1, . . . , H= ∈ R such that G1 ≤ · · · ≤ G=,
=∑
8=1

H8 = 0 and there exists 9 such

that H8 < 0 for 8 < 9 and H8 ≥ 0 for 8 > 9 . Then

=∑
8=1

G8H8 ≥ 0.

Proof. We do induction on =. For = = 1 we have H1 = 0, so the sum is 0. Let = > 1 and suppose

the inequality holds for fewer than = terms. Subtract from the left-hand-side H= (G= − G=−1), which is a

nonnegative number. The result is

=−2∑
8=1

G8H8 + G=−1 (H=−1 + H=),

which is nonnegative by application of the induction hypothesis to G1, . . . , G=−1 and H1, . . . , H=−2,

H=−1 + H=. �

Proposition 3.6. The map d̃ |H0,Δ
is proper when the codomain is restricted to the quotient of the space

described by formula (7).

Proof. We want to show that the preimage of a compact set is a bounded set inH0,Δ � R
<−3×R=−<≥0

. First

we bound the parameters corresponding to the R=−<≥0
part of H0,Δ . These correspond to the difference

between roots along the same edge of Δ , which are trivially bounded from below by 0. Without loss of

https://doi.org/10.1017/fms.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.37


12 Jorge Alberto Olarte

generality, consider the roots 01, 9−1 and 01, 9 for 1 < 9 ≤ 31. We fix the PSL2 (R) action on the space

of roots by setting 01, 9−1 = −1, 02,1 = 0 and 0<,3< = 1. To show that 01, 9 − 01, 9−1 attains its upper

bound, we show that 01, 9 cannot be arbitrarily close to 02,1 = 0. By assumption, the difference between

the position of the tentacles

d1, 9 − d1, 9−1 =

=∑
8=2

38∑
:=1

D8 ∧ D1

(
log

��08,: − 01, 9

�� − log|08,: + 1|
)

(8)

is bounded. We have 01, 9 ∈ [−1, 0) and 08,: ∈ [0, 1] if 8 ≥ 2. The function log
��G − 01, 9

�� − log|G + 1| is

increasing in [0, 1]. On the other hand,

=∑
8=2

38∑
:=1

D8 ∧ D1 =

(
=∑
8=1

38D8

)
∧ D1 = 0

by Eq. (2). Notice that there exists : ∈ {2, . . . , =} such that D8 ∧ D1 ≥ 0 for 8 ≤ : and D8 ∧ D1 ≤ 0 for

8 > : (D8 ∧ D1 = 0 if and only if Γ8 is parallel to Γ1).

So applying Theorem 3.5 to the sequences log
��08, 9 − 01, 9

�� − log
��08, 9 + 1

�� and D8 ∧ D1 (repeated 38
times), we get that d1, 9 − d1, 9−1 is nonnegative. More importantly, since D2 ∧ D1 < 0 < D= ∧ D1, we can

subtract

(
log

��0<,3< − 01, 9

�� − log
��0<,3< + 1

��) − (
log

��02,1 − 01, 9

�� − log|02,1 + 1|
)

= log
��1 − 01, 9

�� − log|2| − log
��01, 9

��
≥ − log|2| − log

��01, 9

��
from the right-hand side in Eq. (8), and again by Theorem 3.5 the result is still nonnegative. This implies

d1, 9 − d1, 9−1 ≥ − log|2| − log
��01, 9

��, which is arbitrarily large if 01, 9 is arbitrarily close to 0. Since we

assumed that d1, 9 − d1, 9−1 is bounded, 01, 9 is not arbitrarily close to 0.

Now we turn our attention to the R<−3 component, assuming < > 3. We choose a different repre-

sentative of the PSL2(R)-orbit on the roots by setting 01,1 = 0, 03,1 = 1 and 0<,3< = 2. We will show

that 02,1 cannot be arbitrarily close to 01,1 = 0. That implies that the paramater 02,1 has a minimum in

the preimage under d̃ of any compact set, and it attains it by continuity. Analogously, all other bounds

regarding the R<−3 component are achieved, and we conclude that the preimage is compact.

To fix theR2 action on the positions of the tentacles, we assume that the positions of the (1, 1)-tentacle

and the (<, 3<)-tentacle are both 0. This is translating the amoeba by the vector

F =
−d<,3<

D1 ∧ D<
D1 +

−d1,1

D< ∧ D1

D<.

We show that if the position of the second tentacle after this translation,

d̂2,1 = d2,1 − d<,3<

D1 ∧ D2

D1 ∧ D<
− d1,1

D< ∧ D2

D< ∧ D1

,

is bounded from below, then 02,1 is not arbitrarily close to 01,1 = 0.

By Theorem 3.5, d<,3< is nonpositive, since log|G − 2| is a decreasing function in [0, 2) and D< ∧ D8
is negative for the first values of 8 and positive for the latter. Since D1 ∧ D2 < 0 < D1 ∧ D<, we have that

−d= D1∧D2

D1∧D< is nonpositive.

In both d2,1 and d1,1 there is a log|08 | term which is arbitrarily large in absolute value if 02,1 is close

to 0. As 08, 9 > 1 if 8 ≥ 3, the only terms in d1,1 and d2,1 which can be arbitrarily large in absolute value

are those corresponding to 02, 9 and 01, 9 , respectively.
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In other words, the part that could grow arbitrarily large in absolute value in d1,1 is

32∑
9=1

D2 ∧ D1 log
��02, 9

�� ,
and in d2,1 it is

31∑
9=1

D1 ∧ D2 log
��02,1 − 01, 9

�� .
Notice that ��log

��02,1 − 01, 9

���� ≥ |log|02,1 | | ≥
��log

��02, 9

���� . (9)

Let 21 be the real number such that

31∑
9=1

D1 ∧ D2 log
��02,1 − 01, 9

�� = 21D1 ∧ D2 log
��02,1

�� .
By Eq. (9) we have 21 ≥ 31. Similarly, if 22 is such that

32∑
9=1

D2 ∧ D1 log
��02, 9

�� = 22D2 ∧ D1 log
��02,1

�� ,
then by Eq. (9), 22 ≤ 32. So the part of d̂2,1 which grows in absolute value is

21D1 ∧ D2 log
��02,1

�� − 22D2 ∧ D1 log
��02,1

�� D< ∧ D2

D< ∧ D1

= log
��02,1

�� D1 ∧ D2

D< ∧ D1

(21D< ∧ D1 + 22D< ∧ D2)

= log
��02,1

�� D1 ∧ D2 · D< ∧ (21D1 + 22D2)
D< ∧ D1

.

Notice that −31D1 − 32D2 is the inner normal vector of the third side of the triangle formed by Γ1 and

Γ2, so D< ∈ cone(−31D1 − 32D2, D1), since < > 3. Thus, D< ∧ (31D1 + 32D2) > 0. Because 21 ≥ 31

and 22 ≤ 32, we have 21D1 + 22D2 ∈ cone(D1, 31D1 + 32D2). As D< ∧ D1 is also positive, we have

D< ∧ (21D1 + 22D2) > 0. We conclude that

D1 ∧ D2 · D< ∧ (21D1 + 22D2)
D< ∧ D1

> 0,

which implies that d̂2,1 is negative and arbitrarily large in absolute value if 02,1 is arbitrarily close

to 0. �

3.4. The Jacobian of d

In this subsection we prove that d̃ |H0,Δ
is a local diffeomorphism.

From now on, we sightly change the notation we have used so far to simplify the exposition and the

computations. Instead of labelling the roots by pairs (8, 9) with 8 ∈ [<] and 9 ∈ [38], we relabel them

as 01, . . . , 0= in the global cyclic order. Similarly, we relabel the D8s to agree with the labelling of the

roots; that is, we have vectors D1, . . . , D=, where D8 is the primitive inner normal vector of the edge of
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Δ that corresponds to the axis in which q(08) vanishes. With this notation, we have

U(q) (C) =
=∏
8=1

(C − 08)D8 ,

and the 08 and D8 correspond to a parametrisation of a Harnack curve if

◦

=∑
8=1

D8 = 0.

◦ 01 ≤ · · · ≤ 0=.

◦ The D1, . . . , D= are ordered anticlockwise.

We write 0 = (01, . . . , 0=) and * = (D1, . . . , D=) for short, and we say that 0 and * are cyclically

ordered if they satisfy these conditions.

Now we consider the Jacobian matrix � of d at a given point 0. We have

�8, 9 =




D8 ∧ D 9

08 − 0 9

if 08 ≠ 0 9 ,

0 if 08 = 0 9 but 8 ≠ 9 ,

− ∑
:≠8

�8,: if 8 = 9 .

In general, � is a matrix that depends on 0 and *, so we denote it as � (0,*) =

� (01, . . . , 0=; D1, . . . , D=).

Proposition 3.7. The map d̃ |H0,Δ
is a local diffeomorphism.

Proof. Let 0 and* be cyclically ordered. Let )0PSL2(R)0 be the tangent space of the orbit of 0 under

the PSL2(R) action at 0, and similarly let  be the kernel of the quotient R= → R=/R2 by the R2 action

defined in Eq. (6). In other words,

 = {(A ∧ D1, . . . , A ∧ D=) | A ∈ R2},

which is a linear space. Let us look at the relation of these spaces with �.

To compute the tangent space )0PSL2 (R)0, recall that Möbius transformations are of the form

C ↦→ 0C + 1
2C + 3 .

We see that

m

mn
C + n

����
n=0

= 1,
m

mn
(1 + n)C

����
n=0

= C,
m

mn

C

nC + 1

����
n=0

= −C2,

so )0PSL2 (R)0 is spanned by the vectors (1, . . . , 1), (01, . . . , 0=) and (02
1
, . . . , 02

=). Since

=∑
9=1

�8, 9 = �8,8 − �8,8 = 0

and
=∑
9=1

0 9�8, 9 =

=∑
9=1

0 9 · D8 ∧ D 9

08 − 0 9

−
=∑
9=1

08 · D8 ∧ D 9

08 − 0 9

= −
=∑
9=1

D8 ∧ D 9 = 0,

both (1, . . . , 1) and (01, . . . , 0=) are in the kernel of �. In Theorem 3.8 we will prove that the kernel

of � is 2-dimensional, so the vector
(
02

1
, . . . , 02

=

)
is not in the kernel. However, since d descends to the

map d̃, we have � ·
(
02

1
, . . . , 02

=

)⊤ ∈  .
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Since � is symmetric, its image is the orthogonal complement of its kernel. So the image of � is

orthogonal to (1, . . . , 1) and (01, . . . , 0=). On the other hand,  is always orthogonal to (1, . . . , 1).
By a similar argument as in the proof of Theorem 3.6, we have

=∑
8=1

08D8 ≠ 0, so (01, . . . , 0=) is never

orthogonal to . Thus, the intersection of the image of� with is exactly 1-dimensional, so it is spanned

by
(
02

1
, . . . , 02

=

)
. This implies that the Jacobian of d̃ is injective, since no vector outside )0PSL2(R)0

vanishes under the composition of � and the quotient R= → R=/R2. �

Now the only thing left to prove is the following:

Proposition 3.8. If 0 and* are cyclically ordered, then the rank of � (0,*) is = − 2.

Proof. In [12, Theorem 4] the authors prove this for the case whereΔ is the dilation of a the unit triangle.

They do so by showing that � is a sum of 3 × 3-block semidefinite positive matrices of rank 1, each

corresponding to the Jacobian of the unimodular triangle case. We here generalise this for any polygon

Δ . Let 41, 42, 43 be the primitive normal vector of the standard unimodular triangle in clockwise order

and let )
(
08 , 0 9 , 0:

)
= �

(
08 , 0 9 , 0: , 41, 42, 43

)
(see [12, Equation (4.8)]). We have that )

(
08 , 0 9 , 0:

)
is

a rank 1 matrix with kernel generated by (1, 1, 1) and
(
08 , 0 9 , 0:

)
. We obtain the nonzero eigenvalue by

computing the image under� of the cross-product of the two vectors in the kernel, (1, 1, 1)×
(
08 , 0 9 , 0:

)
.

The eigenvalue is (
08 − 0 9

)2 +
(
0 9 − 0:

)2 + (0: − 08)2(
08 − 0 9

) (
0 9 − 0:

)
(0: − 08)

,

which is always positive when 08 < 0 9 < 0: .

Let )8, 9 ,:
(
08 , 0 9 , 0:

)
be the = × = matrix that restricts to )

(
08 , 0 9 , 0:

)
in the 3 × 3 submatrix with

indices {8, 9 , :} and is zero elsewhere. We will show that if 0 and* are cyclically ordered, then � (0,*)
is a positive sum of matrices of the form )8, 9 ,:

(
08 , 0 9 , 0:

)
. In other words, we want to show that

� (0,*) ∈ cone
({
)8, 9 ,:

(
08 , 0 9 , 0:

) �� 1 ≤ 8 < 9 < : ≤ =
})
.

To do so, we write each D8 in the unique form D8 = G841 + H842 + I843, where G8 , H8 , I8 ≥ 0 and at most

two are positive. With this notation we have

D8 ∧ D 9 = G8H 9 + H8I 9 + I8G 9 − G8I 9 − H8G 9 − I8H 9

and
=∑
8=1

G8 =

=∑
8=1

H8 =

=∑
8=1

I8 =: 2.

For 8 < 9 < : , let

@8, 9 ,: = det
©«
G8 H8 I8
G 9 H 9 I 9
G: H: I:

ª®¬
.

For all 8 < 9 < : , we have @8, 9 ,: ≥ 0. To see that, note that the vectors (G8 , H8 , I8) are ordered

cyclically along

R
2 × {0} ∪ R × {0} × R ∪ {0} × R2,

since they project to* under
(

1 0 −1
0 1 −1

)
. Therefore, by the right-hand rule, the determinant of that matrix

is nonnegative. Now we claim that∑
8< 9<:

@8, 9 ,:)8, 9 ,:
(
08 , 0 9 , 0:

)
= 2� (0,*).
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To verify this claim, look at the coefficient of 1
08−0 9

in the (8, 9)-entry of the left-hand side. It is equal to

G8H 9

(
=∑

:=1

I:

)
+ H8I 9

(
=∑

:=1

G:

)
+ I8G 9

(
=∑

:=1

H:

)

− G8I 9

(
=∑

:=1

H:

)
− H8G 9

(
=∑

:=1

I:

)
− I8H 9

(
=∑

:=1

G:

)
= 2 · D8 ∧ D 9 .

Therefore, � (0,*) is the sum of positive semidefinite matrices, so its kernel is the intersection of the

kernels of all of the summands. This implies that the kernel is the span of (1, . . . , 1) and (01, . . . , 0=). �

Proof of Theorem 3.3. By Theorems 3.6 and 3.7, d̃ is a proper local diffeomorphism whenever 0 and

* are cyclically ordered. By Theorem 3.4, d̃ |H0,Δ
is a diffeomorphism onto the space defined by Eq. (7)

modulo R2. �

4. From H0,� to H�

The reason for the change of coordinates by d̃ is that we are fixing �\�◦ by fixing the position of the

tentacle. In other words, we are fixing 5 |mΔ up to scaling by a constant. Polynomials using the remaining

monomials int(Δ) ∩ " were shown to be in correspondence with holomorphic differentials in [12,

Section 2.2.4] for CP2 and in [3, Lemma 4.3] for smooth toric projective surfaces. The following lemma

generalises this to -Δ for any Δ:

Lemma 4.1. Let Δ be any lattice polygon and let � ⊆ -Δ be the vanishing set of a polynomial 5 with

Newton polygon Δ such that R� is a Harnack curve. Then the space of holomorphic differentials on �

is isomorphic to the space of polynomials with coefficients in int(Δ) ∩ " , via the map

ℎ(I1, I2) ↦→
ℎ(I1, I2)3I2

mI1
5 (I1, I2)I1I2

. (10)

Proof. The map is injective, and both spaces have dimension 6, so it remains to prove that the differentials

from Eq. (10) are holomorphic. IfΔ has a vertex at the origin with incident edges given by the coordinate

axes, then the differentials from Eq. (10) are holomorphic over C2 ∩ � [3, Lemma 4.3].

Given any lattice-preserving affine map � : " ⊗ R→ " ⊗ R that sends a polygon Δ ′ to Δ , there is

a dual map �∨ : -Δ → -Δ′ . In [3] it is shown that the pullback of �∨ sends differentials of the form of

Eq. (10) for Δ ′ to differentials of that form for Δ . For each vertex E of Δ , consider the lattice-preserving

affine map that sends the positive orthant to the cone spanned by Δ from E. Then the differentials from

Eq. (10) are holomorphic in the intersection of � with the affine chart corresponding to E. Doing that

for every vertex, we get that they are holomorphic in all of �.

If Δ is not a smooth polygon, then such a lattice-preserving map does not exist. However, given any

vertex E of Δ , there is a lattice-preserving map that sends the cone spanned by (1, 0) and (?, @) to

the cone spanned by Δ from E, for some suitable ?, @ ∈ N. Let Δ ′ be the preimage of Δ under such

a map. By the same arguments as in [3, Lemma 4.3], the differentials of the form of Eq. (10) for Δ ′

are holomorphic in (C × C∗) ∩ �. This implies that the pullback is holomorphic in
(
(C∗)2 ∪ !

)
∩ �,

where ! is the axis that corresponds to the edge contained in the image under � of the coordinate axis

{G1 = 0}. This can be done for every edge of Δ . Since � does not contain the intersection of any two

axes, it follows that the differentials in Eq. (10) are holomorphic over all �. �

Proposition 4.2. The areas of the holes of the amoeba are global coordinates for the moduli space of

Harnack curves with fixed Newton polygon Δ and fixed boundary points. Moreover, the moduli space

of Harnack curves with fixed boundary is diffeomorphic to R
6

≥0
.
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Proof. Recall the diagram from formula (1). The first map sends a Harnack curve with fixed boundary

(that is, we fix 5 |mΔ ) to the bounded Ronkin intercepts. By Theorem 4.1, the differential of that map is

the period matrix of � (see [12, Proposition 6] and [3, Theorem 3]). The second map, from the bounded

intercepts to the areas of the holes in the amoeba, is also a local diffeomorphism because its differential

is diagonally dominant [12, Proposition 10]. The areas of the holes of the amoeba are nonnegative, and

the composition of the two maps is proper overR
6

≥0
[12, Theorem 6]. All of these facts are proven in [12],

and none of the arguments used there require that -Δ = CP2. Again, by Theorem 3.4 the composition

of the maps is a diffeomorphism onto R
6

≥0
. �

Notice that the positions of the tentacles are also well-defined numbers for nonrational Harnack

curves: they are simply the evaluation of �D8 on the points� ∩ !8 . So by Theorem 3.3 and Theorems 3.1

and 4.2, we have that the positions of the tentacles of the amoeba modulo translation together with the

areas of the holes of the amoeba are global coordinates for HΔ . Hence, we have proved the following:

Theorem 4.3. Let Δ be a lattice polygon with < sides, 6 interior lattice points and = boundary lattice

points. Then HΔ is diffeomorphic to R<−3 × R=+6−<≥0
.

5. Compactification of H�

The goal of this section is to construct a natural compactification HΔ of HΔ by collections of ‘patch-

workable’ Harnack curves.

5.1. Abstract tropical curves

We begin with a review of abstract tropical curves and of M
trop
6,= , the moduli space of tropical curves

with = legs and genus 6. For details of this construction, see [1].

A weighted graph with = legs � is a triple (+, �, !, F), where

◦ (+, �) is a perhaps nonsimple connected graph – that is, we allow multiple edges and loops;

◦ ! : [=] → + is a function which we think of as attaching = labelled legs at vertices of the graph;

◦ F is a function + → N which we call the weights of the vertices.

The genus of � is the usual genus of (+, �) plus the sum of the weights on all vertices; that is,

genus(�) =
∑
E ∈+

F(E) − |+ | + |� | + 1.

An isomorphism between two graphs �1 = (+1, �1, !1, F1) and �2 = (+2, �2, !2, F2) is a pair of

bijections q+ : +1 → +2 and q� : �1 → �2 such that

◦ for any edge 4 ∈ �1 and any vertex E ∈ +1, q� (4) is incident to q+ (E) if and only if 4 is incident to E;

◦ !2 = q+ (!1);
◦ F1 (E) = F2 (q+ ).

Let�/4 denote the usual contraction of� over an edge 4 with the following change of weights: if we

contract a nonloop 01, then the contracted vertex gets weight F(0) + F(1). If the contracted edge is a

loop on 0, then the weight of 0 is increased by 1. Observe that the genus is invariant under contraction.

We say that a weighted graph � is stable if every vertex with weight 0 has degree at least 3 and

every vertex with weight 1 has positive degree. An (abstract) tropical curve is a pair (�, ;) where �

is a stable weighted graph and ; is a function that assigns lengths to the edges of � – in other words, ;

is a function ; : � (�) → R |� (�) |
≥0

. The genus of the tropical curve is the genus of �. An isomorphism

between two abstract tropical curves (�1, ;1) and (�2, ;2) is an isomorphism q of the weighted graphs

�1 and �2 such that ;1 = ;2 ◦ q� , or such that one is the result of contracting an edge of length 0 from

the other, or the transitive closure of these two relations.
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Given a weighted stable graph �, one can identify the space of all tropical curves over � with

R
|� (�) |
≥0

. We define M
trop
6,= (�) := R

|� (�) |
≥0

and

M
trop
6,= :=

( ⊔
� stable

M
trop
6,= (�)

)/
∼ ,

where ∼ denotes isomorphism. This is a connected Hausdorff topological space which bijectively

parametrises isomorphism classes of tropical curves. It is covered by the set of M
trop
6,= (�), where �

runs over all 3-valent graphs with all vertices of weight 0. For such graphs we have that M
trop
6,= (�) is

just R36+=−3. However, M
trop
6,= is not a manifold, as there are triples of graphs of this form glued along

codimension 1.

To compactify this space we allow lengths to be infinite. Let R∞ = R≥0 ⊔ {∞} be the 1-point

compactification of R≥0. An extended tropical curve (�, ;) consists of a stable weighted graph � and a

length function ; : � (�) → R |� (�) |
∞ . We define isomorphism classes of extended tropical curves in the

same way as for tropical curves. This way we define M
trop
6,= (�) := R

|� (�) |
∞ and

M
trop
6,= :=

( ⊔
� stable

M
trop
6,= (�)

)/
∼

This is a compact Hausdorff space with M
trop
6,= as an open dense subspace.

5.2. Ronkin intercepts

From now on, lightly abusing notation, we call elements of HΔ curves and denote one of them �, even

though by definition they are equivalence classes of Harnack curves. We say that a polynomial vanishes

on � if its zero locus is in the equivalence class �.

The expanded spines of different Harnack curves in the same equivalence class in HΔ differ only by

translations. In particular, the combinatorial type and the lengths of the bounded edges remain the same.

So given a curve� ∈ HΔ , we have a well-defined abstract tropical curve structure for its expanded spine

Υ(�) ∈ M
trop
6,= : fix a labelling of the boundary segments ofΔ by [=] in a cyclical way and let !(Υ(�)) (:)

be the vertex incident to the ray corresponding to the segment labelled : . This induces a map

Υ : HΔ → M
trop
6,= .

Recall that Ronkin intercepts are the coefficients of the tropical polynomial defining the expanded

spine.

Proposition 5.1. The Ronkin intercepts modulo translations of the graph of the Ronkin function can be

taken as global coordinates for HΔ .

Notice that translations of the Ronkin function are the same as translations of the amoeba.

Proof. Since we proved in Theorem 4.2 that composition of the maps in Eq. (1) is a diffeomorphism,

each of the maps themselves is a diffeomorphism. This implies that the bounded Ronkin intercepts can

be taken as global coordinates for Harnack curves with fixed boundary.

Now, Theorem 3.3 says that the positions of the amoeba tentacles can be taken as global coordinates

for rational Harnack curves, and it is easy to recover the unbounded Ronkin intercepts from the positions

of the tentacles as follows. Let d8 be the position of a tentacle. It corresponds to a segment in mΔ

lying between two lattice points. Let 28 and 28+1 be the intercepts corresponding to those points. It is
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straightfoward that d8 = 28 − 28+1. This implies that the map




Positions of

amoeba

tentacles



/R2 →




Unbounded

Ronkin

intercepts/R3




is a linear bijection when restricted to

{
=∑
8=1

d8 = 0

}
. �

Proposition 5.2. The map HΔ → M
trop
6,= is a piecewise linear topological embedding.

Proof. By Theorem 5.1, we can take the Ronkin intercepts as global coordinates of HΔ . The Ronkin

intercepts can be recovered from Υ(�) and Δ up to translations of the amoeba. Computing the lengths

of the bounded edges of a tropical curve from the tropical polynomial is again solving a system of linear

equations. So over every component M
trop
6,= ((�)) of the codomain, the map Υ is linear. �

5.3. Harnack meshes

Definition 5.3. Let � ⊆ " be a finite set of affine dimension 2 (i.e., its convex hull is a 2-dimensional

polygon; not all of them are in a line). We define H� to be the subset of Hconv(�) consisting of curves

� such that for every E ∈ conv(�)" , the corresponding component �E in R2 \A(�) exists if and only

if E ∈ �.

This is well defined, since the existence of �E depends only on the equivalence class of a Harnack

curve. By Theorem 4.3, H� is diffeomorphic to R |� |−3. To see this, notice that all the R≥0 factors of

Hconv(�) are replaced by either 0 for E ∉ � (as the corresponding component must vanish) or R>0 � R

for E ∈ � (as the corresponding component cannot vanish).

Definition 5.4. Consider a regular subdivision S of Δ with facets {�1, . . . , �B} and let Δ 8 = conv(�8).
A Harnack mesh over S is a collection of curves (�1, . . . , �B) with �8 ∈ H�8

such that there exists a

polynomial 5 with 5 |Δ8
vanishing on �8 . We write

HΔ (S) ⊆
B∏
8=1

H�8

for the space of all Harnack meshes over S.

Notice that HΔ is equal to the disjoint union of all HΔ (S) where S has exactly one face – that is, all

S of the form {�} with Δ = conv(�).
The existence of such 5 is equivalent to the �8s agreeing on their common boundary. That is, given

Δ 8 and Δ 9 such that Γ = Δ 8 ∩ Δ 9 , the distances between the tentacles of �8 corresponding to Γ are the

same as the distances between the respective tentacles in � 9 .

Given any Harnack mesh (�1, . . . �B) ∈ HΔ (S), we can define its expanded spine as an extended

tropical curve. Let Υ8 be the expanded spines of �8 . For each edge Δ 8 ∩Δ 9 , glue the expanded spines Υ8

and Υ 9 by removing the legs corresponding to that edge and placing instead an edge of infinite length

for each primitive segment in Δ 8 ∩ Δ 9 between the two vertices that were incident to the corresponding

leg. The remaining legs are labelled by the boundary segments of Δ . This way we have a map

ΥS : HΔ (S) → M
trop
6,= ,

which is an embedding, by Theorem 5.1.
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Definition 5.5. Let Δ be a lattice polygon. The compactified moduli space of Harnack curves is

HΔ :=
⊔
S

HΔ (S),

where the union runs over all regular subdivisions S of Δ" . We give it the coarsest topology that makes

continuous the map

Υ : HΔ → M
trop
6,=

defined by Υ|HΔ (S) := ΥS.

We will prove that this in fact is a compactification of HΔ – that is, a compact space where HΔ is

dense.

Harnack meshes are essentially collections of Harnack curves that can be patchworked into another

Harnack curve, except that we allow singularities and nontransversal intersection with the axes. Recall

that we call a subdivision S of Δ full if it uses all the points. We can only do patchworking whenever S

is full.

Proposition 5.6. Let S be a full regular subdivision of Δ with lifting function ℎ and let (�1, . . . , �B) ∈
HΔ (S) be a Harnack mesh. Then there exist polynomials 51, . . . , 5B vanishing on �1, . . . , �B such that

the polynomial 5C obtained by patchworking them vanishes on a Harnack curve.

Proof. S being full implies that each�8 is smooth and nontransversal in the boundary, so that they can be

patchworked together. The topological type of �8 can be obtained by patchworking using a unimodular

triangulation of Δ 8 and the Harnack sign pattern E ↦→ (−1)E1E2 . Through taking a unimodular triangu-

lation of Δ that refines S and the Harnack sign pattern, the result of patchworking is a Harnack curve. It

must have the same topological type as the patchwork using S and the curves �8 when the polynomials

58 are chosen with the same sign as the polynomial that results from patchworking Δ 8 with the Harnack

sign configuration. �

Notice that HΔ (S) is a linear subspace of
∏

� facet of S

H� � R
2 , cut out by the linear relations G8 = G 9 ,

where G8 and G 9 correspond to the distance between opposite pairs of parallel tentacles and where 2 is

a suitable integer

(
2 =

∑
� facet of S

(|� | − 3)
)
. So HΔ (S) is homeomorphic to an open ball. We will now

show that this ball can be identified with relint(�S), where �S is the face of Sec(Δ) corresponding to S.

Proposition 5.7. Let S be a regular subdivision of Δ . Then

dim(HΔ (S)) = dim(�S).

Proof. Recall that in Section 2.4 we used the graph �S dual to S to compute the dimension of f(S)
(see Eq. (3)). Now we will use it to compute the dimension of HΔ (S). For every face � ∈ S, we have

that H� � R
|� |−3. However, for every interior edge 4 ∈ S, there are |4 | − 2 parameters corresponding to

distances between tentacles orthogonal to 4, which must agree for the two Harnack curves corresponding

to the two faces containing 4. Then we have

dim(HΔ (S)) =
∑

�∈S facet

|� | − 3 −
∑

4∈S interior edge

|4 | − 2.

Now we consider how many times a point in Δ" is taken into account in this equation. If a point is

contained in a single facet of S, then it cannot be contained in any interior edge. If a point is in the

boundary of Δ , then it is contained in one more facet of S than interior edges. The same is true if the

point is in the interior of an edge in the interior of Δ . However, if the point is a vertex of S in the interior
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of Δ , it is contained in the same number of facets as interior edges, and the same is true for points not

contained in any facet of S. So we obtain

dim(HΔ (S)) =|Δ" | − |{interior points of S}| −
���Δ" \

⋃
S

���
− 3|{facets of S}| + 2|{interior edges of S}|

=

���⋃ S

��� − |� (�S) | + 2|� (�S) | − 3|� (�S) |. (11)

If we add Eqs. (3) and (11) and use Euler’s formula for �S, we get

dim(HΔ (S)) + dim(f(S)) = |Δ" | + 3(1 − |+ (�S) | + |� (�S) | − |� (�S) |)
= |Δ" |.

Hence dim(HΔ (S)) = dim(�S) = |Δ" | − dim(f(S)). �

Proposition 5.8. Let Δ be a lattice polygon and S be a regular subdivision of Δ" . Then ΥS(HΔ (S)) ⊆
Υ(HΔ ), where Υ(HΔ ) is the closure of Υ(HΔ ) in M

trop
6,= .

Proof. Suppose S is a full subdivision of Δ . Choose a height function ℎ ∈ f(S). By Theorem 5.6, for

any Harnack mesh C = (�1, . . . , �B) in HΔ (S) there exist polynomials 51, . . . , 5B and C0 > 0 such that

for any 0 < C < C0, the curve �C obtained by patchworking is in HΔ . So we have a path (0, C0) → HΔ .

For each facet �8 of S there is a family of polynomials
{
5 8C

�� C ∈ (0, C0)
}

with real coefficients such that

5 8C vanishes on �C and every coefficient of 5 8C outside conv(�8) goes to 0 as C goes to 0. This follows

from picking the height function ℎ8 affinely equivalent to ℎ such that points in �8 have height 0 and

doing patchworking with ℎ8 . The limit limC→∞ 5 8C = 58 vanishes on �8 .

As C goes to 0, the lengths of the edges of Υ(�C ) that corresponds to the interior of �8 tend to the

lengths of the edges of Υ(�8). Doing this for every 8, we have that all the finite lengths of ΥS(C) agree

with the lengths of limC→0 Υ(�C ). The edges going to infinity are precisely those dual to primitive

segments of S. Then Υ(�C ) forms a path (0, C0) → Υ(HΔ ) such that the limit of this path when C goes

to 0 is Υ(C). So C ∈ HΔ .

If S is not full, let S′ be the subdivision whose facets are �′ = conv(�)" for each facet � ∈ S. That

is, S′ is the finest full subdivision that coarsens S. It is regular, as we can take a height function in f(S)
and linearly extrapolate in each Δ 8 to make it full. As the expanded spine is continuous, even when ovals

contract, we have

ΥS(HΔ (S)) ⊆ ΥS′ (HΔ (S′)) ⊆ HΔ .

�

Lemma 5.9. Let Δ be a lattice polygon. Then Υ(HΔ ) = Υ

(
HΔ

)
.

Proof. Proposition 5.8 implies that Υ
(
HΔ

)
⊂ Υ(HΔ ).

For the other containment, let �1, �2, . . . be a sequence of curves in HΔ such that their expanded

spines converge to a point in� ∈ M
trop
6,= . The graph� is connected but with some edges of infinite length,

so we call connected components of� the connected components after deleting all infinite edges. Notice

that vertices of an expanded spine correspond to polygons inside Δ given by the regular subdivision

dual to the expanded spine. This association is carried on to the limit, so the connected components

�1, . . . , �B induce a regular subdivision S = {�1, . . . , �B} of Δ . For a connected component �8 of �,

we can choose polynomials 5 8
1
, 5 8

2
, . . . vanishing on �1, �2, . . . such that they converge to a polynomial

5 8 which vanishes on a curve whose expanded spine is �8 . This can be done, for example, by picking a

vertex of �8 and fixing it to be in the origin – that is, translating the amoebas of �1, �2, . . . so that the
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Figure 2. HΔ for Δ = conv((1, 0), (0, 1), (−1, 0), (0,−1)).

corresponding vertex in the expanded spine is always at the origin. Since the limit of Harnack curves is

a Harnack curve [18, Remark 2], 5 8 vanishes on a Harnack curve �8 ∈ H�8
. By construction, the tuple

C =
(
�1, . . . , �B

)
is a Harnack mesh over S, and we have Υ(C) = �. �

Corollary 5.10. Let Δ be a lattice polygon. Then

HΔ (S) =
⊔
T≤S

HΔ (T),

where the union runs over all subdivisions T of Δ that refine S.

Theorem 5.11. Let Δ be a lattice polygon. The stratification of HΔ by HΔ (S) is a cell complex with a

poset isomorphic to the face poset of the secondary polytope Sec(Δ" ) given by its faces.

Proof. The faces of Sec(Δ" ) are in correspondance with regular subdivisions. By Theorem 5.7,HΔ (S)
has the same dimension as the face of Sec(Δ" ) corresponding to S. By Theorem 5.10, the boundary of

HΔ (S) consists of HΔ (T) for every subdivision T that refines S. Similarly, the faces contained in the

face of Sec(Δ" ) corresponding to S are those corresponding to refinements of S. �

Example 5.12. SetΔ := conv((1, 0), (0, 1), (−1, 0), (0,−1)). We have that Sec(Δ) is a triangle. Figure 2

shows the spaceHΔ together with the subdivisions of the corresponding face in Sec(Δ) and the amoebas

of the corresponding Harnack meshes. The horizontal coordinate represents the relative position of

the tentacles. This is parametrised, for example, by d1 + d3. Going to the left stretches the amoeba

vertically, whereas going to the right stretches it horizontally. The vertical coordinate corresponds to

the area of the oval, where going downward decreases the area and going upward increases it. The

bottom open segment corresponds to H0,Δ , and that segment together with the interior face corresponds

to HΔ � R × R≥0.
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Remark. We warn the reader that the regular subdivision corresponding to the open cell where Harnack

mesh C lies is not the same as the subdivision dual to Υ(C). In fact, the two subdivisions are not always

comparable with the refinement order. For example, the subdivision corresponding to the bottom edge

of Figure 2 is the square without the middle point, but the subdivision dual to the graph of a spine in

that cell would be the subdivision with four triangles.

6. Questions and future directions

6.1. HΔ as a CW-complex

We begin by suggesting the following strengthening of Theorem 5.11:

Conjecture 6.1. The cell decomposition of the compactified moduli spaceHΔ =
⊔

SHΔ (S) is a regular

CW-complex.

Two regular CW-complexes with isomorphic cell posets are isomorphic – that is, there is a home-

omorphism that maps each cell to the corresponding cell given by the poset isomorphism. By Theo-

rem 5.11, if Theorem 6.1 holds, then HΔ would be isomorphic to Sec(Δ" ). To show that HΔ is a

regular CW-complex, it is enough to show that for any regular subdivision S of Δ , ΥS(HΔ (S)) is a

closed ball. Moreover, it is enough to prove the following:

Conjecture 6.2. Let C ∈ HΔ (S) be a Harnack mesh and S
′ be a coarsening of S. Then there is a

neighbourhood of C in HΔ (S′) homeomorphic to a half space of dimension dim(HΔ (S′)).

Since the poset of HΔ is Eulerian by Theorem 5.11, Theorem 6.2 implies that the closure of the cells

of HΔ are closed balls by (a reformulation of) Poincaré’s conjecture. This argument was recently used

to prove that the positroid stratification of the totally nonnegative Grassmannian is a CW-complex [6]. It

is worth remarking that Harnack curves enjoy several similarities with the total positivity phenomenon

(see, e.g., [13, Section 5.2] or our proof of Theorem 3.8). In the next subsection we will see that

Theorem 6.2 holds when S is full.

6.2. HΔ as a manifold with generalised corners

The foregoing discussion suggests a study of topological charts inHΔ . We can be more ambitious and try

to endow HΔ with a smooth structure. Theorem 4.3 is already a description of HΔ as a smooth manifold

with corners. A natural question is whether we can extend this smooth structure to HΔ . A desirable trait

of such a smooth structure (besides being compatible with the chart given by Theorem 4.3) is that the

cell complex structure from Theorem 5.11 be recoverable from it. However, secondary polytopes are not

always simple polytopes, and manifolds with corners lack the capacity to describe nonsimple vertices.

To mend this, we turn our attention to a wider category, namely that of manifolds with generalised

corners, or 62-manifolds, as defined in [11].

Definition 6.3 ([11]). A 6-chart of a topological space - is a triple (q,L,*) such that

◦ L is a weakly toric monoid – that is, a semilattice of the form L = ZB ∩ f, where B is a positive

integer and f ⊆ RB is a rational polyhedral cone;

◦ * is an open subset of Hom (L,R≥0) – that is, the space of monoid morphisms from L to the

monoid (R≥0, ·) with the weakest topology that makes evaluation on a point @ ∈ L continuous;

◦ q : * → - is a topological embedding to an open subset q(*) ⊆ - .

We call - a 62-manifold if it has a 6-atlas – that is, a collection of 6-charts covering - and

satisfying certain compatibility conditions on the transition functions. These conditions depend on the

monoids, but we refrain from explaining them in detail in this paper. Easy examples of 62-manifolds are

Hom (N,R≥0) � R≥0 and Hom (Z,R≥0) � R. So as a 62-manifold, HΔ � Hom
(
N

<−3 × Z=+6−<,R≥0

)
by Theorem 4.3.
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Proposition 6.4. Let C ∈ HΔ (S) be a Harnack mesh where S is a full subdivision. Then there exists a

6-chart around C. Moreover, all charts provided this way are compatible with each other.

Proof. Since (R ∪ {∞}, +) is isomorphic as a monoid to (R≥0, ·) with G ↦→ 4−G as isomorphism, 6-

charts can be equivalently defined to be homeomorphisms from open subsets of ‘affine tropical toric

varieties’ – that is, from open subsets * ⊆ Hom(L,R ∪ {∞}). Consider a graph � embedded in R2

that is dual to the subdivision S. In particular, the edges of � have a prescribed slope. The lengths of

these edges satisfy linear equations with integer coefficients given by the circuits of � (two for each

circuit). These equations are binomial relations under the isomorphism (R ∪ {∞}, +) � (R≥0, ·). Thus,

the edges of � (which correspond to edges of S in the interior of Δ) generate a toric monoid LS under

these relations.

Let C′ be a Harnack mesh close enough to C. The spine Υ(C′) has a subgraph �8 which is very close

to Υ(�8) for each curve �8 ∈ C. These subgraphs are glued together with edges of very large (possibly

infinite) length. Contracting these subgraphs results in the graph dual to S, so the distances between

these graphs induce a homomorphism qC′ : LS → R ∪ {∞}.
The coordinates of a Harnack mesh in HΔ (S) encode the same information as the spines of each

curve in the Harnack mesh. Since C
′ is close enough to C, there exists a mesh HΔ (S) that has a curve

whose spine is isomorphic as metric graphs to �8 for each 8 (here we use the fact that S is full). The

coordinates of this mesh in HΔ (S) are a vector in R3 , where 3 = = + 6 − dim(f(S)), by Theorem 5.7.

This vector induces a homomorphism kC′ : Z3 → R≥0.

The Harnack mesh C
′ is completely determined by qC′ and kC′ , so we obtain an embedding from a

neighbourhood of C in HΔ to Hom
(
LS × Z3 ,R≥0

)
given by

C
′ ↦→

(
(G, H) ↦→ 4−qC′ (G)kC′ (H)

)
,

where G ∈ LS and H ∈ Z3 . Since Hom
(
LS × Z3 ,R≥0

)
is of the same dimension as HΔ , this mapping

forms a 6-chart.

That this 6-chart is compatible with the 6-chart of HΔ given by Theorem 4.3 is a consequence of

Theorem 5.1. Similarly, charts constructed this way are compatible with each other. �

Corollary 6.5. Theorem 6.2 holds when S is full.

Proof. For any L, the space Hom (L,R≥0) is stratified by its support. All of the strata are again of

the form Hom (L′,R≥0) for some submonoid L
′ ≤ L and are topological manifolds with boundary.

The 6-charts constructed before respect the cell strata of Hom
(
LS × Z3 ,R≥0

)
and HΔ , so the result

follows. �

Unfortunately, we do not know of a good way of constructing 6-charts for points in cells corresponding

to nonfull subdivisions. Length of edges is not a good parameter for the chart, since the edges of cycles

in Γ that correspond to ovals contracting to a point are finite (that is, positive after applying G ↦→ 4−G),

so the preimage in such a chart would not be open. One could expect a 6-chart covering HΔ (S) for a

nonfull subdivision S to be defined over an open subset of Hom
(
LS × Z3 × N: ,R≥0

)
, where : is the

number of missing points of S. However, it is not clear what the coordinates corresponding to the copies

of N should be.

For example, using the area of ovals as coordinates, as we did in Theorem 4.3, does not work either.

Consider the bottom right corner of Figure 2. We can take a continuous path along the interior of

the triangle by stretching the amoeba horizontally but maintaining the area of the bounded component

constant. Since the square bounded by the expanded spine is contained in the union of the amoeba with

the bounded component of the complement, its area is bounded. Stretching the amoeba horizontally

causes the length of the vertical edges of the square to tend to 0, which means that the path ends in the

bottom right corner. This coordinate should be 0 at this point, so the continuity is broken.
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Question 6.6. Is there a natural way of completing a 6-atlas on HΔ with 6-charts respecting the cell

strata?

A positive answer to this question implies a positive answer to the conjectures in Section 6.1.

6.3. A cell complex for )-curves

Harnack meshes can also be patchworked into non-Harnack curves by choosing polynomials with differ-

ent sign patterns. The resulting curves are called)-curves. They can be thought of as the ‘neighbourhood’

of HΔ , which suggests the following question:

Question 6.7. Given a lattice polygon Δ , are there other topological types of curves in -Δ such that

their moduli space can be given a cell complex structure similar to HΔ? Can such moduli spaces be

glued together to form a larger cell complex, or even a polytopal complex, where cells correspond to

different topological types?

Example 6.8. When Δ is the unit square, HΔ is a segment. When the Harnack meshes of the extremes

are patchworked in a non-Harnack way, we get a curve whose amoeba has a pinching [16, Example 1].

From one of the extremes, the resulting expanded spine has a bounded edge parallel to {G1 = G2}, and

from the other extreme the edge is parallel to {G1 = −G2}. When the length of the bounded edge goes

to 0, both cases degenerate to a reducible curve (the union of two axis-parallel lines). In this case the

complex of Question 6.7 exists and is isomorphic to the boundary of a triangle.
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