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IN WHICH METRIC SPACES ARE PARALLEL BODIES OF
CLOSED SETS CLOSED?

by GERALD BEER

(Received 1st March 1982)

1. Preliminaries

Let X be a metric space with metric d and for each x in X let Bk[x] denote the
closed ball of radius X about x. Following Valentine [15] if KcX and X is positive,
then we call the set Bx[K] = \JxeKBx[x'] the X-parallel body of K. The following fact is
obvious.

Lemma 1. Let X be a metric space in which each closed and bounded set is compact.
Then for each closed (resp. compact) subset K of X and each X>0 the parallel body

is a closed (resp. compact) set.

It is clear that the metric spaces in which each parallel body of each compact set is
again compact are precisely those in which each closed and bounded set is compact.
Such spaces have been characterised by Hindman [12]. It is the main purpose of this
article to characterise those metric spaces in which each parallel body of each closed set
is closed.

One characterisation will involve the upper semicontinuous extended real valued
functions on X. Recall that f:X-*\_ — oo, oo] is u.s.c. if and only if for each aeR
/"*([ — oo, a)) is an open set. It is well known that / is u.s.c. if and only if its hypograph

hypo / = {(x, a): a e K and a^/(x)}

is a closed subset of X x R. Let us metrise X x R in a manner compatible with the
product uniformity. For definiteness and computational simplicity we shall use the
metric p defined by

p[(x1,a1),(x2)a2)]=max{d(xlJx2),|a1-a2|}.

Relative to this metric we can take parallel bodies of subsets of X x R; in particular we
can take parallel bodies of hypographs of real valued upper semicontinuous functions.
Given such a function / and X > 0 we call the "upper ridge" of Bx[hypo / ] the upper
parallel function f x of/ Thus, at each x in X the definition of p implies

ft(x) = sup {a: (x, a) e BA[hypo / ]}

= sup {/(>>) +A: yeB.M}
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266 GERALD BEER

Note that if B^hypo / ] is a closed set, then fx is u.s.c. (in the extended sense). In [3]
upper parallel functions are used to study two hyperspace topologies for the upper
semicontinuous real valued functions on a compact metric space. In that paper it is
shown that if X is compact, then whenever /:X->i? is u.s.c. each upper parallel function
fx of / is both u.s.c. and bounded (whether / is bounded or not). Also, if X is compact
and / is continuous, then {fx} converges uniformly to / as A->0; uniform convergence
may fail if / is merely u.s.c. or if in X we only know that closed and bounded sets are
compact. It is clear that for each u.s.c. function / {ft)-*f pointwise as A->0 without
restriction on X.

A second characterisation will be given in terms of the behaviour of certain
multifunctions on X. Following the notation of Nadler [14] let CL(Y) denote the space
of nonempty closed subsets of a metric space Y. The following definitions of upper and
lower semicontinuity for multifunctions are as popular as any.

Definition. Let X and Y be metric spaces. A multifunction T:X-*CL{Y) is called
u.s.c. (resp. l.s.c.) at x in X if for each open set V satisfying F(x)c V (resp. F(x) nV^0)
there exists a neighbourhood U of x such that for each y in U F(y) c V (resp.

Just as useful for our purposes are the following definitions that appear in Berge [4].

Definition. Let X and Y be metric spaces. A multifunction Y\X-*CL(Y) is called
u.s.c. (resp. l.s.c.) at x in X if for each s > 0 there exists a neighborhood U of x such that
for each y in U F(y) c BE[T(x)] (resp. T(x)cB£[F(y)]).

In the literature Berge's definitions are often referred to as Hausdorff semicontinuity
(see, e.g., [2] or [7]). For compact valued multifunctions the above two definitions of
semicontinuity are equivalent. In general Berge upper semicontinuity is implied by the
usual notion of upper semicontinuity whereas Berge lower semicontinuity implies the
first notion of lower semicontinuity. In the context of complete metric spaces Dolecki
and Rolewicz [7] have characterised those multifunctions that are u.s.c. in the usual
sense among those u.s.c. in the sense of Berge. Notice that a compact valued
multifunction that is both u.s.c. and l.s.c. is continuous with respect to the Hausdorff
metric on CL(Y). When we speak of a continuous compact valued multifunction, the
Hausdorff metric topology on CL(Y) shall be understood. We refer the interested reader
to Borges [5] for other definitions of semicontinuity.

Lemma 2. Let X be a metric space in which each closed and bounded set is compact.
For each X>0 the multifunction rx:X->CL(X) defined by FA(x) = {y:d{x,y)^X} is upper
semicontinuous.

Proof. First note that FA is compact valued. Now fix x in X. If Tx failed to be u.s.c.
at x we could find e>0 and a sequence {xn} convergent to x such that for each n
Tx(xn)izBE[rx(x)l For each n choose yn in FA(xn)-B£[FA(x)]. Siince U " = i r ^ n ) is a
bounded set, by passing to a subsequence we can assume that {yn} converges to some
point y, and we have d(y,x)^l, i.e., yeF^x). Now choose n so large that d(ya,y)<e.
Clearly, yn must then lie in Bc[FA(x)], a contradiction.
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In the sequel we shall call the multifunction Tx defined in the statement of Lemma 2
a ball multifunction. Ball multifunctions in a normed linear space are u.s.c. if and only if
the space is finite dimensional [11].

Example 1. Ball multifunctions for locally compact, sigma compact, complete,
connected, locally connected spaces need not be u.s.c. To see this, let l2 be the Hilbert
space of square summable real sequences and let {ey.jeZ+} denote the standard
orthonormal basis for l2. For each jeZ+ let a, = ( l+ l//)e,- and let ftJ = (l/;)eJ-. Let L
denote the infinite polygonal path joining 0 to au then al to a2, then a2 to a3, etc., and
let W be the following starshaped set:

Finally set I = L u f f i We leave it to the reader to verify that X has the asserted
properties. The multifunction F1 fails to be u.s.c. at the origin (in either sense) because
for each ja} e F^b,) whereas B1/2[F^O)] n {a,-:; 3; 2} = 0 .

2. The main results

Our next lemma is at the heart of the characterisation theorem.

Lemma 3. Let X be a metric space. Let x in X and k > 0 be arbitrary. If the ball
multifunction Fx is u.s.c. at x, then each upper parallel function fx of each real valued
u.s.c. function f on X is u.s.c. at x. Conversely, if each upper parallel function fx of each
real valued continuous function f on X is u.s.c. at x, then FA is u.s.c. at x.

Proof. Suppose FA is u.s.c. at x. Let f:X-*R be u.s.c. For each yery(x) choose
<5,,>0 such that if d(y,z)^5y then f(z)<f(y) + e. Now let V=\J{BsJiyy.yerx(x)}. Since
Fx is u.s.c. at x there exists a neighbourhood U of x such that for each w in U rx(w) c V.
By the construction of V for each w in U we have

sup [/(z): z e TA(w)} ^ sup {/(z): zeV}^ sup {/(z): z e rx(x)} + e.

By the definition of fx we have fx(x) + e^fx(w) and fx is u.s.c. at x (although not
necessarily finite valued).

Conversely suppose Fx is not u.s.c. at x. We can find an open set V containing Tx(x)
and a sequence {xn} convergent to x such that for each n Tx(xn) <£ V. For each n choose
yn e Tx(xn) — V. Clearly, {yn} can have no convergent subsequence, for the limit would be
in Tx(x) so that {yn} would be in V frequently. Without loss of generality we can assume
that the terms of the sequence are distinct. For each neZ+ choose <5n>0 such that

(i) 0<8n<min\-,d(x,yn)-l

(ii) for each j # n d(yn, ys) > 25n.

https://doi.org/10.1017/S0013091500016977 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016977


268 GERALD BEER

It follows that for each j and k Bt[yj\ n Blk[y,J = 0 . Set

We claim that F is a closed set. To see this let {zk} be a sequence in F convergent to
some point z. Clearly, {zk} cannot be in each of two of the balls that comprise F
frequently; so, either {zk} is in infinitely many balls or {zk} is in one ball, say Ba [yn],
eventually. In the first case since {(5k}->0, a subsequence of {yk} must also converge to z,
an impossibility. Hence, the second alternative must occur, whence zeF because BSn[yn~]
is a closed set. Thus, F is closed. Now define/:X->•/? by the formula

1 -—d(z, yn) if for some n zeBdn [>„]

0 if x£F

Clearly,,/,is continuous on F and cl(Fc); so, by a standard criterion [13; p. 33] / is
globally continuous. For each n fx(xn) = l + ̂  because f(yn)= 1. However, f${x) = X
because the distance of x from each point of F exceeds L Thus, fx is not u.s.c. at x.

Theorem 1. Let X be a metric space. The following are equivalent.

(i) Each parallel body of each closed subset of X is closed.
(ii) Each upper parallel function of each real valued u.s.c. function on X is an extended

real valued u.s.c. function.
(iii) Each upper parallel function of each real valued continuous function on X is an

extended real valued u.s.c. function.
(iv) Each ball multifunction on X is u.s.c.

Proof. The equivalence of (ii), (iii), and (iv) follows from Lemma 3. It is also easy to
see that statements (i) and (iv) are equivalent: by the definition of upper semicontinuity
FX:X-*CL{X) is u.s.c. if and only if for each closed subset A of X the set
{x: rx(x) nAj=0} is a closed subset of X. However, {x: Fx(x) n A =f= 0 ] is precisely the
A-parallel body of A.

Are each of the conditions presented in the statement of Theorem 1 equivalent to the
following condition: for each A>0 and each u.s.c. function f:X->R the set Bx[hypof]
is a closed subset of X x Rl The answer is negative.

Example 2. As in Example 1 let {e/.jeZ*} denote the standard orthonormal basis
for l2. If we regard this discrete set as a metric subspace X of l2, then each parallel body
of each closed subset of X is closed. In fact, if A <= X, then B^/l] is either A or X. Now
define f.X^R by

f — l/j if x = e, for some j > 1
10 if x = et.

https://doi.org/10.1017/S0013091500016977 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016977


PARALLEL BODIES OF CLOSED SETS 269

Although / is continuous ByiChypo/] is not closed, for it fails to contain the limit
point (e1>v/2).

It should be noticed that the metric space of Example 2 is one in which not all closed
and bounded sets are compact, but is one in which parallel bodies of closed sets are
closed.

Theorem 2. Let X be a metric space. The following are equivalent.

(i) Each closed and bounded subset of X is compact.
(ii) For each real valued u.s.c. function f on X and each X > 0, the set /JA[hypo / ] is a

closed subset of X xR.
(iii) Each upper parallel function of each real valued u.s.c. function on X is again a real

valued u.s.c. function on X.
(iv) Each upper parallel function of each real valued continuous function on X is real

valued.

Proof. (i)->(ii) Closed and bounded subsets of X xR must be compact, and the
implication follows from Lemma 1.

(ii)-»(i) If for some x and A>0 the ball Bx\_x] is noncompact, choose a sequence {)/„} in
the ball with no convergent subsequence, and define f:X->R by f{yn) = 1 — 1/n. and zero
otherwise. As in Example 2, BA[hypo / ] is nonclosed.

(i)->(iii) Let f:X-*R be u.s.c. By Theorem 1 and Lemma 1 for each X>0fx is u.s.c.
For each x, sup{/(y) + /l:yeBA[x]} is achieved because Bx\_x~\ is compact and / is u.s.c.
Thus, — oo</(x)</^"(x)<oo.

(iii)—>-(iv) Obvious.

(iv)->(i) It suffices to show that each closed ball in X is compact. Suppose for some
xeX and A>0 the ball Bx[x] is noncompact. Then we can find a sequence {yn} in the
ball with no convergent subsequence. Without loss of generality we can assume that all
the terms are distinct. As usual set E = {yn:neZ+} and define g:E->R by g{yn) = n. Since
E is closed, the Tietze extension theorem yields an / in C(X) such that f\E=g. Clearly,

Lemma 4. Let X be a metric space in which each closed and bounded set is compact,
and let X be positive. If xeX then Tx is discontinuous at x if and only if there exists
f e C(X) such that fX is discontinuous at x.

Proof. Suppose that the multifunction FA is continuous at x but for some / in C(X)
the upper parallel function f% is discontinuous at x. By Theorem 2 fx is an u.s.c. real
valued function; so, there exists a sequence {xn} in X convergent to x and an extended
real number 9<fx(x) such that limB_oo/;f(xII) = 0. By the definition of fl and the
compactness of closed A-balls in X there exists yeTk{x) for which ff(x)=f(y) + L
Choose £>0 satisfying e<fx(x) — 6 and a positive integer N so large that for each n^.N
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Next choose 8>0 such that if d(p,y)<d then \f{p)—/(y)|<e/2. If V denotes the open 8-
ball about y, there exists a neighbourhood U of x such that for each z in U
r\(z)n K ^ 0 . Choose n^N so large that x,el/ . Since TA(xn)n V±0, there exists peK
such that d{xn,p)-^L But this implies

/ i W = supw6 ^ ^ /

This contradicts our choice of N above.
Conversely, suppose Tx failed to be l.s.c. at some point x. There exists an open set V

meeting Yx(x) and a sequence {*„} convergent to x such that for each n Tx(xn)n V=0.
It is clear that for each /? < X T^(x) n V is empty, or else eventually {Tx(xn)} would meet
KThus

Next choose z in Tx(x) n Kand e>0 such that BE[z] c K Define feC(X) by

- d(z, y) if y e Bc[z]
otherwise

We claim that fx is discontinuous at x. First,

However, for each n Bx[x^\ n B£[z] <= rA(xn) n V=0. Hence, for each n /^"(xn)
so that limn^xfx(xn)j=fx(x). This concludes the proof.

To see that Lemma 4 is not content-free, we present a continuous function on a
polygonally connected compact set in the plane that admits discontinuous upper
parallel functions. Another somewhat misleading example appears in [3].

Example 3. In the plane with the usual metric let X denote the union of the line
segments joining (0,0) to (8,0) and (0,0) to (8,6). Define f.X^R by

We claim that ft is discontinuous at (4,3). Since the closed disc with centre (4,3) and
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radius 3 meets the line segment joining (0,0) to (8,0) in exactly one point, we have

- 3 ) 2 ^ 9 and (ai,a2)eX)

=/(4,0) + 3 =

However, if 1<0^2 then the disc with centre (49,39) of radius 3 fails to meet the line
segment. It follows that for all such 9 f^{A9,30) = 3, and the claim is established. Similar
reasoning shows that if 0 < X < 6 then fl is discontinuous at (fX, X).

Our next theorem is an immediate corollary of Theorem 2 and Lemma 4.

Theorem 3. Let X be a metric space. Then each upper parallel function of each
function in C(X) is again in C(X) if and only if each closed and bounded subset of X is
compact and each ball multifunction on X is continuous.

To apply Theorem 3 in spaces in which closed and bounded subsets are compact, we
need only check (by virtue of Lemma 2) that each ball multifunction is l.s.c. A Lechiki
(private communication) has pointed out a simple sufficient (but not necessary)
condition for the lower semicontinuity of each ball multifunction in an arbitrary metric
space X: if xeX and X>0 and {y:d(x,y)^X] = cl{y:d(x,y)<X}, then the ball
multifunction FA is l.s.c. at x. To see this let K c l be an open set that meets F^x).
Then there exists a point v in Vn{y:d(x,y)<X}. Choose e>0 such that e<X — d(x,v).
Then if d(z,x)<s, we have d(z, v)<X, whence rx(z)nV=fc0. In particular, if X is a
convex subset of a normal linear space L, viewed as a metric subspace of L, then for
each X > 0 the ball multifunction FA is l.s.c. on X. Thus, if X is a closed convex subset of
d-dimensional Euclidean space Rd, Theorem 3 ensures that each upper parallel function
of each function in C(X) is again in C(X). Example 3 shows that an analogous statement
cannot be made for compact starshaped subsets of Ud.

A function f:X-*( — oo, oo] defined on a convex subset X of a normed linear space L
is called concave if for each x, y in X and each Xe[0,1] we have f[Xx + {l — X)y]^.Xf{x)
+ (1 — X)f(y). Alternatively, / is concave if its hypograph is a convex subset of LxR.
Since the parallel bodies of a convex set in a normed linear space are again convex sets
[15], it is easy to see that iff:X-*( — oo, oo] is a concave function, then so is each upper
parallel function f£. The details are left to the reader.

Given a circle C in the plane it is easy to see that each ball multifunction on C is
continuous: take 3 = e. On the other hand, if T is the boundary of a triangle, then for all
X sufficiently small FA fails to be globally continuous. To see this choose two sides of T
that enclose an acute angle and repeat the construction of Example 3. This author
cannot characterise those plane convex curves for which each ball multifunction is
continuous. Such a characterisation might not rest on an approximation by polygonal
convex curves because the compact sets in the plane for which each ball multifunction is
continuous do not form a closed set relative to the Hausdorff metric. In fact this
collection is dense in the compact sets, for it includes all finite sets.
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Finally we present a characterisation of the closed subsets X of d-dimensional
Euclidean space Rd that have continuous ball multifunctions. In this theorem parallel
bodies of sets are taken with respect to Ud. We shall consider auxilliary multifunctions
associated with TX:X-*CL(X). For each neZ + the multifunction F" represents the
A-ball multifunction for the closed set Blln\X].

Theorem 4. Let X be a closed subset of Ud and let X be positive. Then the ball
multifunction TX:X->CL(X) is continuous if and only if the sequence {F"X\X} converges to
Tx uniformly in the Hausdorff metric on compact subsets of X.

Proof. Fix A>0. Suppose Tx fails to be l.s.c. at some point x in X. In terms of
Berge's definition, there exists e>0 and a sequence {xn} in X such that for all n
| |*n-x | |<l /n b u t ^2£[FA(xn)] \>rA(x). For each n choose yn in rx(x)-B2e[Tx{xJ\; clearly,
B£yn~]nBc[Tx(xnj] = 0. Next choose N so large that l/JV<e. By the choice of N, for
each n^N the point zn = yn + (xn — x) lies in B^yJ and

Since zneB1/n[rA(x)]cB1/n[X] it follows that zneF"(xn). Since zneB£[^J we also know
that for each n^N rx(xn)cfzBe[rx(xny\. Thus the Hausdorff distance of F^(xn) from FA(xn)
exceeds e for all n^.N so that {F"|X} fails to converge uniformly to FA on
{x} u {xn:neZ+}, a compact subset of X.

The converse, i.e.,' that continuity of Tx implies uniform convergence on compact
subsets of X, follows immediately from Dini's theorem for multifunctions [2] because (i)
for each n Bl/n[X] is a closed subset of W so that F^ is u.s.c, and (ii) for each x in X
and for all n T%x)^T\+\x) and f|"= i n(*) = W

We close by mentioning that there is some literature on the structure of the boundary
of parallel bodies of more general sets. We refer the interested reader to Gindifer [10],
Brown [6], Gariepy and Pepe [9}, Beer [1], and Ferry [8].
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