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DECOMPOSITION OF THE MULTIVARIATE BETA 
DISTRIBUTION WITH APPLICATIONS 

BY 

D. G. KABE and R. P. GUPTA 

Summary. Let L be a positive definite symmetric matrix having a noncentral 
multivariate beta density of an arbitrary rank, see, e.g. Hayakawa ([2, p. 12, 
Equation 38]). Then an explicit procedure is given for decomposing the density of 
L in terms of densities of independent beta variâtes. 

1. Introduction and decomposition of L. Let A and B be two pxp positive 
definite symmetric random matrices having the densities 

(1) g(A) = Kexp{-itrA}\A\<N-«-p-1)l2 

(2) g(B) = Kexp{-i tr B}\B\^~^ oF^iq, ^B] 

where K is used as a generic symbol for normalizing constants and the hyper-
geometric series of the matrix argument Q.B is defined by Constantine ([1, p. 
1276]). Then Hayakawa defines a certain correlation matrix R by the relations 

(3) B = G1I2(I-R)G112, G = A+B. 

Let Q be a pxp arbitrary orthogonal matrix, then the density of the random 
matrixL= Q(I—R)Q' when Q has rank two is given by Kabe [3], and by Hayakawa 
([2, p. 12, Equation 38]) when £1 is of a general rank. However, Hayakawa's claim 
that the densities of L and (I—R) are the same is in error. The density of the matrix 
R is not so far available in the literature. The density of the matrix L is 

(4) g(L) = K |L|<"-*-*-i>/2|/_L|(«-p-i>/2 iFi$N} fa i Q L ] . 

In case Q, has rank s<p, then following Radcliffe [6], the density of L may be 
written as 

(5) g(L) = K |L|^-^^-1 ) / 2 | / -L| ( 5-p-1 ) / 2 <D(LS), 

where Q>(LS) is a certain function of the elements of Ls only, Ls being obtained from 
L by omitting its last (p—s) rows and columns. Now we write the density (5) as 

g(L,, L2, Ls) = K\L1-L2Lr1L^-"-'-^\Ls^-"-"-^ 
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where 

<7> L-tty 
Setting L1 = D+L2L~1L'29 L2=V((I—LS)LS)

1I2
9 we find the density of random 

variâtes D9 V, and Ls to be 

g(D9 V,IS) = K \D\<N-q-p-1)l2\I- VV- Z>|«-p-1)/2 

x \Ls\^
N-q-s-1)l2\I-Ls\

(q-s-1)l2^(Ls). 

Again setting D = (I- VV')1I2R(I- VV')112, we get 

g(R9 V9LS) = K\R\^N-q-p-1^2\I-VV,\(N-p-s-1)i2 

where 

(10) I/J(LS) = K |L s | ^ - g - s - 1 ) / 2 | / -L s | ( g - s - 1 ) / 2 0(L s ) . 

Introducing Z={I- D) ~1/2 V in (8) the density 

g(D,Z,Ls) = ic:|JD|^-«-p-i)/2|7_JD|(a-(P-s)-i)/2 

(11) x|/-zz'|<*-*-1)/20(£«) 
is obtained. Obviously, the densities of D, Z, and Ls are independent. Now the 
decomposition of the central multivariate beta distribution, given by Khatri and 
Pillai ([4, p. 1512, §2]), may be stated as follows: 

In case L=(/ iy), then the central part of the multivariate beta density (4) may be 
decomposed in terms of p beta variâtes zl9 z 2 , . . . , zP9 and (p — 1) Yx vector variâtes 
having the joint density 

g(zl9 z29..., zp, Yl9..., Yp-i) 

(12) p P - i 
= j ^pj z (Ar-a -P + i-2)/2(1_Ziyg-2)/2 ^ [ ( l - y / y ^ f l - P + t - a ) ^ 

f = l i = l 

Here Lu is obtained from L by omitting its first / rows and i columns and 

{ hi = zi + ki)Lii *(i)> * = 1? * • • ? Z7 1 ? hp — ZP 

*<i) = ('i,i + l ' t ,i + 2î • • -5 'ip)« 

We note that zl9 z29..., zp = |L|. Further, we note that all independent factors 
of \L\ are expressible in terms of z's. p z's andp(p—1)/2 elements of Yi's account 
for/?(/?+l)/2 elements of L. 

By using the decomposition (12) it follows from (11) that the (p-s)x(p-s) 
matrix D may be expressed in terms of (p—s) independent beta variâtes and 
%(p — s)(p — s—l) y{ variâtes i = l , 2 , . . .9p — s— 1; Z contains (p—s)xs variâtes 
and Ls has s(s+1)/2 variâtes and this accounts for p(p+s)/2 elements of L. 
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2. Applications. If L has the central distribution (4), then \L\ has the distribution 
of zx z2... zp denoted by A(N9 p, q). Now in Kshirsagar's [5] notations 

(14) A0 = \rçB-A)r\/\r'Br\ = \LS\, 
r is sxp arbitrary, 

(15) A* = A/A0 = \L\/\LS\ = i L i - L a L r 1 ^ ! = \D\ = A'A", 

(16) A' = | r ' | r ^ = | 7~ v r l = |7~ v'n A" = I*'' 
(17) A* - A5A6 = \I-W'\ iPil-VVT^l = \P'P\ = \D\. 

The independence of the distributions of \R\ and \(I— VV')\ follow from (9). 
\I—VV'\ is A(N—s,p—s, s), \R\ is A(N—2s,p—s,q—s). The independence of 
\I-VV'\ and \P,(I-VV,)-1P\ is obvious from (8), D=PP\ P is (p-s)x(p-s)i 

A5 is A(N—s, q-s,p—s), and A6 is A(N—q, s,p—s). 
Incidentally, it may be mentioned that the distribution of the residual criterion 

A0 may be obtained explicitly even if T is not of the type (/, 0) as assumed by 
Radcliffe [6], and Kshirsagar [5] and it has a noncentral multivariate beta distribu
tion of rank s. We may obtain this distribution by using the results given in next 
section. 

3. Some further results. Let 2 be a pxp positive definite symmetric matrix 
having a noncentral Wishart distribution with N degrees of freedom (d.f.) and of 
rank <s, with population covariance matrix 2. Then the noncentral part involves 
the roots of 

(18) I Z - ^ Q Q ' Z - 1 - ^ = 0. 

If B is an .yx/? arbitrary matrix of rank s (<p) then the matrix BliB' has a non-
central Wishart distribution with N d.f. and of rank s with population covariance 
matrix # £ £ ' . This noncentral distribution is obtained by changing/? to s every
where and changing 2 to i?2i?', Q to BQ. and 2 to B%B\ i.e. the noncentral part 
will involve the roots of 

(19) {BaQB'-XB^B'BlB'B^B^ = 0. 

Thus in (14) for arbitrary T, the numerator Y'{B — A)T has a noncentral Wishart 
distribution of rank s and denominator central Wishart distribution of rank s, 
and hence the distribution of A0 may be obtained. If pxp M has a central (or 
noncentral) multivariate beta distribution 

(20) g(M) = K \M\<N-p-u'2\G-M\«-p-1)l2 

then for arbitrary T sxp, the matrix TfMT= Wh&s the distribution 

(21) g(w) = K\w\(N-s-1)l2\r'Gr-w\(q-s-1)l2 
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The noncentral distribution of Y'MT is derived from the noncentral distribution 

of M exactly on same lines, as in case of the Wishart distribution. If M has the 

distribution 

(22) g(M) = K \M\(N-p-1)l2\G + M\-« + N)l2 

then Y'MY = W has the density 

(23) g(W) = K\W\w-s-1)l2\T'GY+W\-^N)l2, 

and the noncentral case follows exactly on same lines as in noncentral Wishart 

distribution. 
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