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1. Introduction

It is assumed throughout this paper that all topological spaces under
consideration are Hausdorff. Since the notion of topological property is
fundamental in this paper, we begin by making it precise. For our purposes
here, it is sufficient to think of a topological property Q as being a class of
spaces such that if X e Q and Y is homeomorphic to X, then Y e Q. To say
that a space X has property Q would then be equivalent to saying that
XeQ.

DEFINITION (1.1). A topological property Q is said to be composable if

(1.1.1) all points have property Q and

(1.1.2) if X is any topological space and a, /? eXxX have property Q,
then «o(5 has property Q where a o /? is defined by
a ° P = {ix> V) e X x X '• (x> z) e P a n d (z> «/)e« for some z e X}.

We see that the family of all binary relations on a topological space
which have a composable property form a semigroup under composition
as defined in (1.1.2) and it is these semigroups that we study in this paper.
Composable topological properties are investigated in section 2. It is shown
that such a property must be pairwise productive. Consequently, for an
example of a topological property which is not composable, one need only
choose a property which is not pairwise productive such as normality. It
is also observed in section 2 that connectedness is not a composable property.
Since connectedness is productive, this implies that being composable and
being pairwise productive are not equivalent. One of the most important
productive properties is composable, however, and that is compactness.
This is the content of Theorem (2.6).

In section 3, we investigate the semigroup, under composition, of all
binary relations on a topological space X (i.e., subsets of I x X ) which
have a given composable topological property Q. The isomorphisms between
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one such semigroup and another are determined and, with some additional
restrictions, the automorphism groups of such semigroups are determined.
The special case where the composabie property is compactness is treated
in further detail.

2. Computable topoiogical spaces

Let Q be any composabie property and let X be any space with at least
two distinct points p and q. Then according to (1.1.1), both <x = {{p, p)}
and /? = {(q, q)} have property Q. It follows from (1.1.2) that <j> — a of}
also has property Q. This proves

PROPOSITION (2.1). The empty set (or space) has property Q.

PROPOSITION (2.2). Any composabie topoiogical property is also pairwise
productive.

PROOF. Let Q be any composabie topoiogical property and suppose
that X and Y are two spaces which have property Q. Because of Proposition
(2.1), we may assume that XxY is nonempty. Choose any (a, b) eXxY
and let

« = {((«,&),(«,*/)) :yeY}
and

f3 = {((z,b),{a,b)) :xeX}.

Then a and /S are relations o n l x Y (i.e., subsets of (XxY)x(XxY))
which have property Q since a is homeomorphic to Y and /? is homeomorphic
to X. It therefore follows from (1.1.2) that

OLO^ = {((X, b), (a, y)) : x e X and y e Y}

also has property Q. This concludes the proof since a o /? is homeomorphic
to XxY.

Since normality is not pairwise productive, the previous result im-
mediately implies

COROLLARY (2.3). Normality is not a composabie topoiogical property.
The following result shows that one cannot drop the adjective pairwise

in the statement of Proposition (2.2). The proof is straightforward and
will not be given.

PROPOSITION (2.4). Let X be any infinite cardinal number and let Qx

denote the property of 'consisting of less than A elements'. Then Qx is a com-
posabie topoiogical property which is not productive.
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Because of Proposition (2.2), we must look for composable properties
among the pairwise productive properties. The following result shows, how-
ever, that we cannot expect every pairwise productive (or even productive)
property to be composable.

PROPOSITION (2.5). Connectedness is not a composable property.

PROOF. Let R denote the leal line and let

a = {(0, x) :xe R}

p = {{x,y)eRxR:x*+yZ= 1}.

Both a. and /S are connected but

x o /J = { ( - 1 , x) : x e R} u {(1, x) : x e R}

is not connected. Consequently, connectedness is not composable.

THEOREM (2.6). Compactness is a composable topologicai property.
PROOF. We prove this result using nets. Our terminology will be that

of [2]. Let X be any topoiogicai space and suppose that a and (i are compact
subsets of XxX. Let (h, H)> denote any net in a o /?. That is, let H be any
directed set and let h be any function which maps H into a o /?. We will
show that ao/J is compact by constructing a subnet of (h, H~> which
converges to a point in a o /?. We recall that a net </, J} is said to be a
subnet of (h, Hy if there exists a function k mapping J into H such that

(2.6.1) / = h o k

and

(2.6.2) for each meH, there exists an n e J such that if p Ŝ  n, then
k(p) ^ m.

Now, for each n e H, h(n) = (xn, yn) e«oj5 and there exists an element
zne X such that (xn, zn) e /? and (zn, yn) e «.. Define a function j mapping
H into /3 by j(n) = (xn, zn). Then (j, H} is a net in /3 and since /3 is compact,
there exists a subnet (I, L> of (j, Hy which converges to a point (a, b) e /?.
Since <Z, L> is a subnet of (j, Hy, there exists a function k mapping L
into H such that

(2.6.3) l = jok

and

(2.6.4) for each meH, there exists an » e l such that if p 22 n, then

Now define a function u from L into a by u(n) = (%(„), ?/*(„)). Then
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(u, I.) is a net in a and since a is compact, there exists a subnet (v, V)
which converges to a point (c, (?) in a. Since (v, V} is a subnet of <«, L),
there exists a function w mapping V into L such that

(2.6.5) v = u o w

and

(2.6.6) for each m e L, there exists an n e F such that if /> 13: «, then
w(p) 5: w.

Consider the net (h ok ow, Vs). Since the function k satisfies (2.6.4) and
w satisfies (2.6.6), it follows that for each n eH, there exists an n e V such
that if p 5: n, then (k o w){j>) 2̂  m. Consequently, (h o k ow,V) is a
subnet of (h, H}. The proof will be complete when we show that
(h o k o w, Vs) converges to (a, d) and that {a, d) e a o ft. First, let n^ and
TZ2 denote the projection mappings from XxX into X which are defined by
ni(x> V) = x a n d ^2^ . y) = U f°r aU (*» y) e XxX. Using (2.6.3) and (2.6.5)
one verifies that ^ o v, F> is a subnet of <jr2 o I, L}. Since </, L> con-
verges to (a, b), <TI2 o /, L> converges to b. Similarly, since (v, Vs) converges
to (c, d), (nx o v, V} converges to c. Since (TI-L O V, V} is a subnet of
<TT2 o I, Ly, it follows that b = c (recall that all spaces are assumed to be
Hausdorff and hence a net can converge to at most one point). Consequently,
(b, d) = (c, d) e a and since {a, b) e ft, it follows that (a, d) e a. o /?. We must
yet show that (Ji o k ow, V) converges to (a, d). For this, it will be sufficient
to show that the nets (nx o h o k o w, V) and <7ra O h o k w, V) converge
to a and d respectively. Using (2.6.3), one shows that

and it follows that (T^ o h o k o w,V]y is a subnet of <% o /, L}. Since
<7, L> converges to (a, b), <^n1 o I, L} must converge to a and therefore
<(7rx o h o k o w.Vy converges to a. On the other hand, it follows from (2.6.5)
that n2 o h o k o W = TZ2 o v. Hence, the nets <7t2 o h o k o w, V} and
•(TZ2 O v, Vy are identical and must converge to d since (v, F> converges to
(c, d). This completes the proof.

PROPOSITION (2.7). Let Q denote any composable topological property and
let X denote any infinite cardinal number. Let (Q, X) denote the property of
'being the union of less than or equal to X subspaces, each having property Q'.
Then (Q, X) is a composable topological property.

PROOF. Let X be any topological space and let a and ft be two subsets
of X x X with property (Q, X). Then there exist families of sets {Ka}aeA,
{Lb}heB such that each Ka and each Lb has property Q, both card (A) and
card (B) are less than or equal to X and
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a = u {Ka}aeA

P=u {Lh}teB.

One verifies in a routine manner that

xop = v {Kao Lb}iatJ))eAxB.

Since each Kao Lb has property Q and card (AxB) 5S A, it follows that
a o /? has property (Q, A). Thus, (Q, A) is a composable topological property.

Let us recall that a space is defined to be er-compact if it is the union
of a countable number of compact subspaces. An application of Theorem
(2.6) and Proposition (2.7) immediately yields

COROLLARY (2.8). a-compactness is a composable topological property.
We remark that one can verify that sequential compactness is also a

composable topological property.

3. Semigroups of binary relations with composable properties

Let Q denote any composable topological property and let X denote
any topological space. According to (1.1.2), the family of all binary relations
on X which have property Q is a semigroup under composition. We will
denote this semigroup by £?Q[X]. Our first result which concerns the semi-
group 6^Q[X] is essentially a translation of Theorem (2.2) of [4]. It will be
convenient to recall that result along with some relevant definitions.

First of all, a triform was defined in [4] as a triple {X,J^X, S?[X])
where X is a nonempty set, &x is a family of subsets of X, £?[X] is a family
of subsets of XxX and the following conditions are satisfied:

(A) {(x, x)} e Sf[X] for each xeX.
(B) H e &x if and only if H x{x} e Sf\X\ for some x e X.
(C) a o /? e S?[X] for each a, /3 e SP[X] where a o 0 is defined by

a o p = {(x, y) e X x X : (x, z) e /S and (z, y) e a for some z e X}.

Because of condition (C), S?[X] is a semigroup of binary relations on X
and is referred to in [4] as a triform semigroup. Theorem (2.2) is the main
result of that paper. It describes all the isomorphisms from one triform
semigroup onto another and is essentially as follows:

THEOREM (3.1). The following statements concerning a bisection <p from
a triform semigroup ^[X] onto a triform semigroup S?[Y] are equivalent:

(3.1.1) q> is an isomorphism.

(3.1.2) There exists a bisection h from X onto Y such that h[A] e^Y for
each AetFx> h~1[A]e&'x for each Ae^Y

 an^> furthermore,
9?(a) = h o a o h~x for each a e
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(3.1.3) There exists a bisection h from X onto Y such that h[A] e^y for
each Ae^x, h~1[A]e^r

x for each Ae?FY and. furthermore,
<p{x) = {(*(*), h(y)) : (x, y) ex} for each a e ST[X].

Now let X denote any topological space. We let Qx denote the family
of all subsets of X which have the composable property Q and we recall
that S?Q[X] denotes the semigroup, under composition, of all binary
relations on X which have property Q. Because of (1.1.1), {{x, x)} e S^Q[X]

for each x e X. Furthermore, for any nonempty subset H of X and any
x e X, H and Hx{x} are homeomorphic. Thus, HeQx if and only if
Hx{x} e £fQ[X]. Therefore, conditions (A), (B) and (C) are satisfied and
the triple (X, Qx, 6^Q[X1) is a triform. Before stating our first result on
semigroups of the type S?Q[X], it wi)l be convenient to have the following

DEFINITION (3.2). Let Q be any topological property. A bijection h
from a. topologica! space X onto a topological space Y is a (?-morphism if
h[A] has property Q whenever ACX has property Q and, similarly,
h"1 [A] has property Q whenever A CY has property Q.

With all this in mind, we see tlmt Theorem (3.1) translates into

THEOREM (3.3). Let Q be any composable topological property and let
S^Q[X] and ^Q[Y] denote the semigroups of all binary relations on X and Y
respectively which have property Q. Then the following statements concerning
a bijection <p from, S^Q[X] onto £?Q[Y] are equivalent:

(3.3.1) <p is an isomorphism.

(3.3.2) There exists a, Q-morphism h from X onto Y such that
(p(a) = h o a. o hr1 for each a 6 S^Q[X].

(3.3.3) There exists a Q-morphism h from X onto Y such that
(p(a) = {{h(x), h(y)) : (x, y) e a} for each a e SPQ\X~\.

THEOREM (3.4). For any composable topological property Q and any
topological space X, the automorphism group of S^Q[X] is isomorphic to a
subgroup of the group, under composition, of all Q-morphisms which map X
onto X. If, in addition to being composable, Q is also hereditary and preserved
by continuous mappings, then the automorphism group of S^Q[X] is isomorphic
to the group of all Q-morphisms which w,ap X onto X.

PROOF. Let stf denote the automorphism group of SfQ[X] and let ^
denote the group of all (^-morphisms which map X onto X. For each cp e ,s/,
there exists, according to Theorem (3.3), a 0-morphism h mapping X onto X
such that

9?(oc) = h o « o h~l

for each a e S^e[X]. This @-morphism is unique and we define a mapping 0
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from si into ^ by 0{<p) = h. Suppose 0{<p1) = hx and 0{<p2) = h2. Then
for any a e 5PQ\X~\, we have

= hx o A2 o a o Â "1 o Aj"1 = (Aj o A2) o a o (Ax o

Thus ^ ( ^ o y2) = 4 1 o i j = ^("Pi) ° &(<Ps) which verifies the fact that 0
is a homomorphism. To see that 0 is injective, suppose that 0(<p) = i,
the identity @-morphism. Then q>(x) = j oo io i""1 = a for each a e ^ Q [ X ]
and this implies that the kernel of 0 consists of the identity.

Now assume that, in addition to being composable, Q is hereditary and
continuous images of spaces with property Q also have property Q. Let A
be any element of G. We assert that if a e S?Q[X], (i.e., a has property Q),
then, A o « o A"1 e 5*"Q[X]. Since continuous images of a have property Q
and the domain, &(a.) and the range, 0l(a) are continuous images of a
under the projection mappings, it follows that both @(x) and M{a) have
property Q. Since a C®(a)x^(«) , it follows that

X#(<x)] o A"1 = *[#(«)] X

Since h is a ^-morphism, both A[^(a)] and A[^?(«)] have property () and
it follows from Proposition (2.2) that A[^(«)]xA[^(«)] has property Q.
This implies that h o a o A"1 has property ^ since ^ is hereditary. Hence,
h o a o h~x e £PQ[X], It follows that the mapping defined by

9?(a) = h o a o A"1

is an automorphism of S^Q[X] and 0(<p) = A. Thus, in this particular case,
0 is an isomorphism from «s/ ontoi^.

The additional assumptions that Q is hereditary and preserved under
continuous mappings were used to prove that if h is any (?-morphism from
X onto X, then i o m o h~1 has property (? whenever xC XxX has property
(?. We do not know if these additional assumptions are needed to prove this,
although we suspect that they are. We do give an example of a (}-morphism
h from X onto X such that h o at, o A"1 does not have property Q even though
a C XxX does. This particular property Q, however, is not composable.

EXAMPLE (3.5). Let Q be the property of 'having more than one limit
point'. Let X denote the usual two-point compactification of the integers
with a being the limit point of the negative integers and z being the limit
point of the positive integers. Define a. mapping h from X onto X by

h(a) = z, h(z) = a and h(n) = n for n # a, z.

One easily verifies that A is a (?-morphism. Let

x = {(1, 1), (1, 2), • • • (1, *)} u {(2, 1), (2, 2), • • • (2, z)}.
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Then x has property Q since it has two limit points, namely (1,2) and (2, z).
However,

= {(1. 1). (1. 2), • • •} u {(2, 1), (2, 2), • • •} u {(1, a), (2, a)}

has no limit points.
As we mentioned previously, Q is not composable (although it is

productive). In fact, Q does not even satisfy condition (1.1.1). This can be
remedied by defining Q in such a manner that all finite subsets have property
Q. A more serious failing is that condition (1.1.2) is not satisfied. To see
this, let

& = {(1, 1), (2, 2), (3, 3), • • •},
fit = { ( - 1 , 1), ( - 1 , 2), ( - 1 , 3), • • • ( - 1 , *)},
& = {(-2, 1), ( -2 , 2), ( - 2 , 3), • • • ( -2 , *)},

and note that

y o « = {(1, 1), (1, 2,) (1, 3), • • •} <j {(2, 1), (2, 2), (2, 3), • • •}.

It is not difficult to show that if h is a homeomorphism from X onto Y
and Q is any topological property, then h o a o A"1 C Y x F has property Q
ii xC XxX has property (). Define a mapping k from XxX onto Y X Y by

k(x,y) = {h(x

The desired conclusion is a consequence of the fact that k is a homeomor-
phism and

h o « o A-* = {(Afc), % ) ) : (*, | / )ea} = k[x\.

Since we have need to refer to this observation later, it is convenient to state
it formally as

PROPOSITION (3.6). Let Q be any topological property and let h be any
homeomorphism from a space X onto a space Y. Then h o x o h~x C Y x Y
has property Q whenever xC XxX has property Q.

We now consider the special case where the composable topological
property is compactness. We denote this property by K and we denote the
semigroup, under composition, of all compact binary relations on a topo-
logical space X by S?K[X]. It will be convenient, during the discussion of
semigroups of compact relations, to restrict ourselves to ^-spaces [2, p.
230—231]. These are defined to be those spaces with the property that any
subset which intersects each compact subset in a closed set must, itself,
be closed. The class of ^-spaces includes all locally compact spaces and all
first countable spaces [2, p. 231, Theorem 13]. In particular, every metric
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space is a &-space. One readily shows that if X and Y are ^-spaces, then any
if-morphism from X onto Y is, in fact, a homeomorphism. This, together
with Theorem (3.3) results in

THEOREM (3.7). Let X and Y be k-spaces and let £fK[X] and S?K[Y]
denote the semigroups of compact binary relations on X and Y respectively.
Then the following statements concerning a bisection <p from £fK[X] onto

are equivalent:

(3.7.1) <p is an isomorphism.

(3.7.2) There exists a homeomorphism h from X onto Y such that
<p(<x.) = h o a o h~x for each a e £fK[X].

(3.7.3) There exists a homeomorphism h from X onto Y such that
9?(«) = {{hix)> Kv)) '• (x> y) « «} for each a e SfK\_X\

COROLLARY (3.8). Two k-spaces X and Y are homeomorphic if and only if
SPK\X~\ and SfK\Y~\ are isomorphic.

PROOF. If S?K[X] and S?K[Y] are isomorphic, it follows immediately
from Theorem (3.7) that X and Y are homeomorphic. On the other hand,
if h is a homeomorphism from X onto Y, we can define a mapping <p by
cp(x) = h o a o h~x. It follows from Proposition (3.6) that cp maps S^K[X]
bijectively onto <S^K[Y] and hence that <p is an isomorphism.

COROLLARY (3.9). Let X be a k-space. Then the automorphism group of
S?K[X] is isomorphic to the group, under composition, of all homeomorphisms
which map X onto X.

PROOF. Let s/ denote the automorphism group of S^K[X] and let ^
denote the group of homeomorphisms on X. By Theorem (3.7) there exists,
for any q> e s#, a homeomorphism h mapping X onto X which satisfies
(3.7.2). This homeomorphism is unique and we define a mapping 0 from
j / into ^ by 0(<p) = h. Just as in the proof of Theorem (3.4), one shows
that 0 is a monomorphism. It follows from Proposition (3.6) that if t is any
homeomorphism mapping X onto X, then the mapping q>t, defined by
q>t(x) = t o a o t~x, belongs to s£'. Since 0(yt) = t, we conclude that 0 is
surjective.

We remark that we were prevented from using Theorem (3.4) to prove
the latter corollary by the fact that compactness is not hereditary.

An endomorphism <p of a semigroup 5 is defined to be inner if there
exist elements a and b in 5 such that <p(x) = axb for each x e X. M. L.
Vitanza has shown [5, p. 1079, Theorem 1] that if such an endomorphism
is surjective, then S has an identity and a and b are inverses of each other
relative to that identity. This implies, among other things, that any inner
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epimorphism is, in fact, an automorphism. Concerning the automorphisms
of S?K[X], we have

THEOREM (3.10). The following statements about a k-space X are equiv-
alent:

(3.10.1) X is compact.

(3.10.2) Every automorphism of SPK[X~\ is inner.

(3.10.3) At least one automorphism of S^K[X] is inner.

(3.10.4) fglX] has an identity.

PROOF. Suppose X is compact and let q> be an automorphism of SfK[X~\.
Then by Theorem (3.7), there exists a homeomorphism h from X onto X
such that

<p(K) = h o a oh*1

for each a 6 S?K[X]. We regard h as a-subset of XxX and note that the
mapping H defined by

H(x) = (x, h(x))

is a homeomorphism from X onto, A. Thus, h belongs to S^K[X], In a similar
manner, hr1 does also and we conclude that q> is an inner automorphism.
Thus (3.10.1) implies (3.10.2). It is evident that (3.10.2) implies (3.10.3)
and in view of the result of Vitanza that we mentioned previously, (3.10.3)
implies (3.10.4). Therefore, we need only show that (3.10.4) implies (3.10.1).
Suppose S^K\_X] has an identity / . Then for any (x, y) el, {(x, y)} belongs
to S?K[X] and since (x, y) e {(y, y)} ol = {(«/, y)}, it follows that x = y.
On the other hand, for any x e X, {(x, x)} = {(x, x)} o I which implies that
(x, x) e I. Therefore,

1 = {(*,*) :xeX}.

Since / e ^T^X\ it is compact and since X is the image of / under either
projection mapping, it too must be compact.

According to this latter result, if X is not compact, then SfK[X~\ has no
identity. However, each finite subset 3~ of SPK\X~\ has an infinite number of
identities. To see this, let H be the union of the domains and the ranges of
all of the relations in 3~. Since both the domain and the range of a compact
relation are compact, H is the finite union of compact sets and hence,
must also be compact. Since X is not compact, X—H must be infinite.
For each p eX—H, define

/„ = {(*, x) e X X X : x e H) u {(p, p)}.

One readily verifies that each Iv is an identity for each element of the
subset &~.
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We conclude by mentioning that the substance of Corollary (3.8) is
that within the class of ^-spaces, the topological structure of a space X
determines and is determined by the algebraic structure of its semigroup
•S^K[X] of compact binary relations. Consequently, it would seem to be
fruitful to investigate further the relationships between the two structures.
We already know, for example, that X is compact if and only if every
automorphism of £?K[X] is inner. One would expect to find other such
results relating topological properties of X to algebraic properties of SPglX],
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