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Abstract

In this paper, we explore the applications of Tail Variance (TV) as a measure of tail
riskiness and the confidence level of using Tail Conditional Expectation (TCE)-based
risk capital. While TCE measures the expected loss of a risk that exceeds a certain
threshold, TV measures the variability of risk along its tails. We first derive analytical
formulas of TV and TCE for a large variety of probability distributions. These formu-
las are useful instruments for relevant research works on tail risk measures. We then
propose a distribution-free approach utilizing TV to estimate the lower bounds of the
confidence level of using TCE-based risk capital. In doing so, we introduce sharpened
conditional probability inequalities, which halve the bounds of conventional Markov
and Cantelli inequalities. Such an approach is easy to implement. We further investigate
the characterization of tail risks by TV through an exploration of TV’s asymptotics. A
distribution-free limit formula is derived for the asymptotics of TV. To further investigate
the asymptotic properties, we consider two broad distribution families defined on tails,
namely, the polynomial-tailed distributions and the exponential-tailed distributions. The
two distribution families are found to exhibit an asymptotic equivalence between TV
and the reciprocal square of the hazard rate. We also establish asymptotic relationships
between TCE and VaR for the two families. Our asymptotic analysis contributes to the
existing research by unifying the asymptotic expressions and the convergence rate of
TV for Student-t distributions, exponential distributions, and normal distributions, which
complements the discussion on the convergence rate of univariate cases in [28]. To show
the usefulness of our results, we present two case studies based on real data from the
industry. We first show how to use conditional inequalities to assess the confidence of
using TCE-based risk capital for different types of insurance businesses. Then, for finan-
cial data, we provide alternative evidence for the relationship between the data frequency
and the tail categorization by the asymptotics of TV.
Keywords: Tail variance; tail conditional expectation; probability inequalities; capital
adequacy; asymptotics
2020 Mathematics Subject Classification: Primary 62P05

Secondary 60E15

Received 9 June 2023; accepted 1 June 2024.

* Postal address: School of Economics & Management, Chongqing Normal University, China. Email address:
duanjun@cqnu.edu.cn

** Postal address: Actuarial Research Center, Department of Statistics, University of Haifa, Israel. Faculty of Sciences,
Holon Institute of Technology, Israel. Email address: landsman @stat.haifa.ac.il

*#* Postal address: Center for financial engineering and Department of Mathematics, Soochow University, China.
Email address: j.yao@suda.edu.cn

© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

346
https://doi.org/10.1017/apr.2024.34 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2024.34
https://orcid.org/0000-0002-7369-6745
https://orcid.org/0000-0002-8936-2600
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/apr.2024.34&domain=pdf
https://doi.org/10.1017/apr.2024.34

Tail variance and confidence of using tail conditional expectation 347

1. Introduction

Studies on the tails of risks have always been the core research in finance and actuarial sci-
ence. Regulators, investors, and other stakeholders are often interested in the risk’s tail region
beyond a probability level p (p is close to 1) and rely on risk measures defined on such a tail
region, namely, [ , 1] , to assess the potential loss of the risk. For instance, Solvency II regula-
tion accounts for the insurance risk based on Value-at-Risk (VaR) at p = 99.5% over a one-year
period while Basel III tends to use Expected Shortfall (ES) as the measure of various risks for
“expected losses” subject to the stressed region [ , 1] [13]. These risk measures defined on
tails not only suggest the amount of capital adequacy for financial institutions under poten-
tial risks but also provide insights into understanding risks’ behaviors at tails. There are also
other well-known risk measures defined on tails such as Conditional Value-at-Risk (CVaR),
Tail Conditional Expectation (TCE, also known as CTE, i.e. Conditional Tail Expectation),
etc. It has been shown that the three risk measures (ES, CVaR, and TCE), which are coinciding
for continuous risks, satisfy the so-called “coherence”; see [4]. Coherence requires risk mea-
sures to satisfy a number of desirable properties such as monotonicity, subadditivity, positive
homogeneity, translation invariance, etc. These properties bring mathematical superiority to
coherent risk measures and make them relatively more robust in assessing risks at tails. By
contrast, VaR is not coherent, but it has advantages in practical use; for instance, it is more
straightforward for back-testing. We refer to [14] for a study on the comparison between VaR
and ES and to [11] for more details on the coherent risk measure.

Despite the popularity of the aforementioned risk measures, they often appear to be insuf-
ficient in exploiting the information about the riskiness at the tail. [16] gave an example to
illustrate such insufficiency and proposes the Tail Variance (TV) and the Tail Variance pre-
mium (TVp) to further account for the tail riskiness. In particular, in this work, TV is defined
as the conditional variance of a risk on the tail region [ , 1] , while TVp is the well-known
mean-variance premium in which the mean and the variance are replaced by TCE and TV.
The authors also derive the formulas of TV and TVp for elliptically distributed risks. In a later
work, by [27], the formulas of TV and a TV-based capital allocation rule were derived for log-
elliptical risks. [22] conducted similar research for symmetric generalized hyperbolic risks and
pointed out that these formulas of TV and TVp can estimate the loss severity at tails. Intuitively
speaking, in the same manner that variance measures the dispersion of a risk from its mean,
TV accounts for the magnitude of the risk deviating from its TCE on the chosen tail region.
Specifically, as a measure of tail variability, TV satisfies properties such as law-invariance,
standardization, and location invariance. Furthermore, [17] discussed the tail standard devia-
tion (+/TV) on the measurement of tail variability. [19] defined the coherent measures on the
tail variability; in fact, VTV is such a coherent measure for tail variability. [7] studied the
parametric estimation on the variability. Therefore, studying TV as a risk measure, in addition
to studying VaR and TCE, are of importance and interest in several aspects.

First, TV provides additional information on the riskiness of tails. Many existing results
in the literature based on VaR and TCE can be extended straightforwardly by further taking
TV into account. For instance, [26] considered a TCE-TV framework as an extension of the
classic mean-variance framework at tails. Second, TV measures how far a risk deviates from its
TCE. Therefore, when TCE is used to estimate the risk capital, TV can be used to measure the
confidence level of using the TCE-based risk capital. In particular, by developing an analogue
of the well-known Chebyshev inequality at the tail region, one can find an interval regarding
how far the actual loss may differ from the TCE-based risk capital for a given confidence level.
Third, unlike VaR and TCE, which both increase to infinity when p approaches 1, the limit
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of TV along p — 1 shows a certain tendency that may converge to 0, a positive constant, or
infinity. This phenomenon was first noticed by [22], in which the authors showed that TV — oo
for Student-t distributions while TV — 0 for normal distributions. Thus, it is of interest to study
the asymptotics of TV, which may characterize the tail behaviors of the risk and provide further
insights into the confidence level of using TCE-based capital under extreme events.

In this paper, we investigate using TV to account for the confidence of using TCE to assess
tail riskiness in the context of absolutely continuous risks. Our findings contribute to the lit-
erature in three ways. First, we provide a list of analytical TV formulas for a large variety of
probability distributions, including a Pareto distribution, a Weibull distribution, a normal dis-
tribution, etc. As a necessary step in calculating TV, we also provide explicit formulas of TCE
for these probability distributions. These formulas not only cover the existing results in the
literature as special cases but also are useful instruments for relevant research works, such as
the TV premium calculation [16], optimal capital allocation [38], loss severity estimation [22],
optimal portfolio selection [12, 26], etc.

Secondly, we propose a novel approach to assessing the confidence level of using TCE-
based risk capital from multiple angles. By virtue of the appropriateness of risk capital defined
in [15], we introduce sharpened conditional probability inequalities based on TV, which offers
a significant advancement by halving the confidence bounds of TCE-based risk capital. More
specifically, we first propose a sharpened conditional Markov inequality that gives a lower
bound of the confidence level of using the TCE-based risk capital. The lower bound could
possibly be further improved by using a sharpened conditional Cantelli inequality. Then we
present a sharpened conditional Chebyshev inequality to offer a more precise confidence
interval within which possible extreme loss values may fall. Our results offer practical and
accessible tools for practitioners and regulators alike to evaluate capital adequacy. To illustrate
the usefulness of our approach, we present a case study based on real data from two insurance
business lines. Overall, our findings demonstrate the effectiveness of our proposed method for
assessing the confidence of using TCE-based risk capital and provide valuable insights for risk
management practices.

Third, we study the asymptotic properties of TV. We first give a distribution-free limit of the
TV when p — 1 and show that, for an absolutely continuous random variable, the limit value of
TV coincides with the limit value of the reciprocal square of the hazard rate. In other words, TV
gives similar information as the hazard rate does but at tail regions. To derive explicit forms,
we then consider two large distribution families defined by the tails, namely, the distribution
family of exponential tails and the distribution family of polynomial tails. We establish explicit
asymptotic formulas of TVs for the two distribution families and further show that there exist
exact asymptotic equivalences between the TV and the reciprocal square of the hazard rate.
In doing so, we also derive formulas of asymptotic equivalences between TCE and VaR in the
context of the two distribution families. Note that the result of asymptotic equivalences is much
stronger than equal limits. The asymptotic equivalence not only guarantees the same limits but
also implies the same convergence rate. There are many papers discussing TV asymptotic
formulas: for instance, [22] and [28]. Our work on TV not only unifies the TV asymptotic
formulas discussed on specific distribution assumptions but also points out the convergence
speed that previous literature failed to give. We then provide a categorization of the tails of
risks based on TV’s asymptotics. As an application, we show that such a categorization gives
new evidence to the relationship between the financial data frequency and the tail types of
risks.

We organize the rest of the paper as follows: Section 2 derives the formulas of TV and
TCE for frequently used probability distributions. Section 3 presents the two applications with
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numerical case studies. Section 4 investigates the asymptotic behavior of TV and establishes
an asymptotic relationship between the TV and the hazard rate. Section 5 concludes the paper.

2. Formulas of Tail Variance and Tail Conditional Expectation in Assessing Tail Risks

2.1. Definitions and notations

We first introduce the following notations and definitions for our paper: In this paper, X
is an absolutely continuous random variable defined on a support with an unbounded supre-
mum. We denote its probability density function (PDF) and cumulative distribution function
(CDF) as f(x) and F(x), respectively. Furthermore, we have F(x) = 1 — F(x), the tail distribu-
tion function. In actuarial science or reliability theory, F(x) is also referred to as the survival
function or the reliability function. The hazard rate of X (notation /(x)), defined as the ratio
of density function f(x) and survival function Fx) (i.e. h(x) = %) is also widely used as a
characteristic of X. The hazard rate often refers to the force of mortality or the failure rate of
the risk in actuarial science and reliability engineering. (x) is also often involved in discussing
heavy-tailed and light-tailed distributions in the literature; see [24, 35] and references therein.

A risk measure is a functional mapping of X to a real number, possibly infinite, that reflects
the riskiness of X. It suggests an amount of capital that should be added to the risk such that
it is acceptable to stakeholders. Such an amount of risk capital should be adequate to cover
the possible loss of the risk in the sense of the corresponding risk measure. In our context,
the quantile function Q,[X]:= inf{x, F(x) > q}, g € (0, 1), is the well-known risk measure
Value-at-Risk. Then the Tail Conditional Expectation of X is defined as

TCEq[X]zE[X|X>xq], (1)
where x; = Q,[X]. [16] introduces TV as follows:
TV, [X] = Var[X|X > x,] = E[X?|X > x,] — E?[X|X > x,] ©)
and points out that TV,[X] has the following property:
: 2
TV,[X]= 1IC1fIE[(X — )% IX) xq]-

TV, as a risk measure, actually provides additional information on the riskiness of distribution
at tails, especially when the Tail Conditional Expectation fails to distinguish the risks. In this
section, we first derive the formulas of TV for frequently used distributions. Naturally, we also
derive the formulas of TCE in the process, which is required when deriving TV formulas. Using
these formulas, we present an example at the end of this section to illustrate the insufficiency
of TCE in identifying the tail riskiness.

2.2. Explicit Tail variance and Tail Conditional Expectation formulas for frequently used
distributions

Many papers have endeavored to derive the formulas of TV and TCE for specific distri-
butions in the literature. [16] did such work in the context of the normal distribution and the
elliptical distribution. In addition, the TV formula for the symmetric generalized hyperbolic
distributions was derived in [22]. Furthermore, the TV formula for the generalized hyperbolic
distribution has been proved in [23]. Given the increasing popularity of TV and capital alloca-
tion based on a Tail Variance premium, we provide a list of TV formulas for frequently used
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continuous probability distributions. Our list covers all the aforementioned results in the liter-
ature and provides many new TV formulas for other popular distributions. Thus, the list can be
used as an instrumental reference for interested researchers in their relevant works. Note that
according to Formula (2), we also derive the formulas of TCE for these distributions to obtain
the formulas of TV. The full list of formulas is presented in the Appendix.

3. The Confidence of Using TCE-based Risk Capital

Both VaR and TCE have been suggested as risk measures to estimate the risk capital for
a given risk [13]. Despite its popularity in risk management, VaR is criticized because it is
defined by an extreme event, yet “thousand-year events happen on a regular basis,” and it is not
sub-additive; hence, unlike TCE, it is not a coherent risk measure. Using VaR to estimate the
risk capital later leads to trouble when the extreme event occurs, i.e. X > x, [32]. Particularly,
an estimated risk capital C is said to be appropriate at g level of confidence if

PX=C)=g¢q 3)

in [15]. It is then evident that using VaR as the risk capital is at ¢ confidence level. By contrast
with VaR, TCE takes all possible outcomes of the event X > x, into account and calculates the
“expected loss” of the risk under X > x,. Ever since the seminal work of [1], TCE has been
advocated for the evaluation of risk capital from a regulatory point of view [6]. Similarly, it is of
interest and importance to investigate, when the extreme event X > x, happens, whether TCE-
based capital is enough to cover the loss or what the confidence level of TCE-based risk capital
is; i.e. if we take C as TCE of X, how can we estimate the appropriateness in Formula (3)?
Note that appropriateness here is defined by the adequacy of risk capital. As we are primarily
interested in the distribution-free capital adequacy of TCE, instead of appropriateness, we say
that the confidence level of using C (based on VaR or TCE) is ¢ instead of appropriateness.

With the aid of TV, we answer this question from three aspects in a distribution-free
way: First, we develop a sharpened conditional Markov inequality to give a lower bound of
the confidence level of using TCE-based risk capital. Second, we introduce the conditional
Cantelli inequality in conjunction with the sharpened conditional Markov inequality to give
an improved lower bound of the confidence level of using TCE-based risk capital. Third, we
propose a sharpened conditional Chebyshev inequality to give a confidence interval of using
TCE-based capital. Such an interval is the range within which the extreme values—i.e. the
losses when the event X > x, occurs—are likely to fall. Note that this interval differs from the
usual confidence interval in statistical estimation. A confidence interval using TCE-based cap-
ital at a 95% level is a range that X falls into with at least 95% probability, given that X > x,,.
Both the sharpened conditional Markov inequality and the sharpened conditional Chebyshev
inequality halve the bounds compared with the original bounds, respectively.

Our approach to assessing the confidence of using TCE-based risk capital is handy and easy
to implement by regulators and financial institutes. In particular, regulators aim to protect the
stability of markets and financial systems from extreme events, which coincides with the nature
of the tail conditional inequalities that give lower bounds to the confidence of TCE-based
capital. Moreover, our approach is distribution-free. As such, it provides a fast and easy-to-
understand solution that may be favorable for regulators. In fact, a similar approach has been
proposed by [25], where the authors used a Chebyshev inequality to investigate bank capital
regulation and bankruptcy as well as the riskiness of the bank portfolio in their models.

In the sequel of our paper, we assume that the PDF of ¥ = X|X > x, is non-increasing on
its support and that x, is nonnegative. These assumptions are very mild, as they hold true for
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the majority of distributions. As a matter of fact, when one performs asymptotic analysis, X
is usually assumed to be eventually monotone in the literature, such as the monotone density
theorem in regular variation theory.

3.1. The sharpened conditional Markov inequality

The well-known Markov inequality states that if X is a nonnegative random variable and
if t>0, then P(X >1) < w. Applying this inequality directly to the tail random variable
Y =X|X > x, gives

TCE,[X
P(Y>1) < A.

If +=TCE,[X], the conditional Markov inequality is trivial, as ]P’(Y ZTCEq[X]) <1.
Therefore, we propose a sharpened conditional Markov inequality, which halves the bound
of the original Markov inequality for tail risks. The proof is given in the Appendix.

Proposition 1. (Sharpened Conditional Markov Inequality) For a random variable X, if x; > 0
and Y = X|X > x4 has a non-increasing PDF, the following inequalities hold for t > x,:

TCE,[X] TCE,[X]
2t 2t
Remark 1. When ¢t = TCE,[X], the sharpened conditional Markov inequality is

PY>=1)< and PX=1) < (1 —¢q)

P(X < TCEy[X]) = (¢+ 1) /2.

Hence, we can assert that the TCE-based risk capital is always over a (¢ + 1) /2 confidence
level whatever the model is. Therefore, for the same g, TCE,; is at a higher confidence level in
calculating the risk capital than VaR,. To reach the confidence level of VaR,,, one may consider
TCE (24p—1). For example, TCE g is no lower than VaRg.gg. This is slightly higher than the
Basel level for the TCE (0.975, [5]) bank; however, the bound here is the worst-case one.

3.2. The sharpened conditional Cantelli inequality

To further incorporate TV when assessing the confidence level of TCE, we develop a condi-
tional Cantelli inequality. The classic Cantelli inequality, which is an improved version of the
one-sided Chebyshev inequality, states that for a constant ¢ > 0,

P(X — E[X] > 1) < — uIX]
—EXIED =G

Similarly, we have a sharpened conditional Cantelli inequality, which halves the bound
of the classic Cantelli inequality. The random variables X and Y = X|X > x,, as defined in
Proposition 1. It holds for ¢ > O that

P(Y > TCE,[X] +1) < TVqlX]

“ 3V, ”

In particular, if we may take 7 as a proportion of TCE4[X], i.e. = ATCE,[X], where A > 0,
then we have

TV, [X]

P(Y > (14 1) TCE,[X]) < -
Z(TVq[X] + (ATCE, [X]) )

&)
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Corollary 1. (Improved lower bounds of confidence level of using TCE-based risk capital) For
a random variable X, if x, > 0 and Y = X|X > x, has a non-increasing PDF on its support, we
have the following inequality: For ). > 0,

P(Y = (1 + 1) TCE,[X])

L TV,(X]
> 1 —min s 5 (6)
21+ 2(TVq[X] + (ATCE,[X]) )
P(X < (1 +A) TCEy[X])
>1— (1 —g)min TVylX] (7)

2(14+2)° Z(TVq[X] + (ATCEq[X])z)

Remark 2. The sharpened conditional Cantelli inequality, Formula (4), is obtained directly
from the sharpened conditional Markov inequality using the same proof method of the classic
Cantelli inequality; see 6.1.e in [29] for details. Corollary 1 combines the sharpened conditional
Markov and Cantelli inequalities for a more precise tail risk estimation. As mentioned by [2],
while these inequalities provide rough estimates, their usefulness lies in their applicability to
any random variable with finite variance. Consequently, in practical scenarios, especially for
continuous random variables, these inequalities are typically strict, with equality attainable
only in specific contexts.

3.3. A distribution-free confidence interval using TCE-based capital

Furthermore, the conditional Chebyshev inequality can give a confidence interval in which
extreme losses are likely to fall within the tail. We also present a sharpened conditional
Chebyshev inequality to give a more precise interval.

The classic Chebyshev inequality states that if X is a random variable with finite expectation
and finite variance, then for any ¢ > 1, we have

IP<|X _E[X]| > tJVar[X]) <2

Then for tail distributions, by analogy, there is the following conditional Chebyshev inequal-
ity straightforwardly. For a random variable X, define Y := X|X > x,. The following inequality
holds:

P(|Y — TCE,[X]] < t/TV4[X]) > 1 — 12, (8)
wheret>1land0<g < 1.

The conditional Chebyshev inequality, Formula (8), implies the confidence interval
that Y deviates from TCE4[X]. Such an interval at the confidence level 1—t2 is
[max (x4, TCE4[X] — £,/TV4[X]) , TCEy[X] + ¢,/TV4[X]]. Moreover, based on the feature
of the non-increasing PDF of the tail distributions, we can give a sharpened conditional
Chebyshev inequality; the proof is similar to that of Proposition 1.

Proposition 2. (sharpened conditional Chebyshev inequality) For a random variable X, if x; >
0 and Y = X|X > x4 has a non-increasing PDF on its support, the following inequality holds
fort>1:

P(]Y — TCE,[X]| <t,/TV,[X]) > 1 — %I_z. )
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TABLE 1. The distribution-free confidence level of using TCE-based risk capital for two data sets

q=0.95 Data set I Data set II
TCE, (standard errors) 3223.95 (15.17) 0.41462 (0.0008)
sharpened Markov inequality 0.975 0.975
1C30% 0.9808 0.9927
Closq, (0.457, 6.254) (0.777, 1.858)
sharpened Clgsg, (0.457,4.715) (0.777, 1.606)
q¢=0.99 Data set I Data set II
TCE, (standard errors) 7570.23 (66.12) 0.54909 (0.0011)
sharpened Markov inequality 0.995 0.995
1C30% 0.9962 0.9996
Closa (0.443,5.191) (0.818, 1.386)
sharpened Clgsg, (0.443, 3.963) (0.818, 1.273)
Data set | Data set Il
g 7] —
T - o
o & © 8 -
2 _ g o
8 3 -
g 5 | S o
E ¢ g 2
] g |
é B T T T T T T T T g T T T T T T T T
03 04 05 06 07 08 09 1.0 03 04 05 06 07 08 09 10
q q

FIGURE 1. Estimated TV of the insurance and financial losses

3.4. Case study I: capital adequacy of TCE-based risk capital for insurance and financial
losses

We collect two data sets of losses from the insurance and financial sectors. The first data
set contains information on 2,387 business interruption losses (in 100,000 French francs) over
the period 1985 to 2000 in France; the second data set includes 400 monthly loss rates of the
VIX Index from February 1990 to May 2023 (the first data set is available in an R package
named CASdatasets; the second data set is collected from Yahoo Finance). Assume that reg-
ulators in both sectors rely on TCE to calculate the risk capital for these business activities.
We then estimate the TCE and the TV of the two sectors, respectively. In accordance with
our distribution-free approach, we use non-parametric empirical estimations in this paper. To
tackle the small sample in the estimation of TCE and TV at high-risk levels, we employ boot-
strapping; see [18] and [36] for more details. Moreover, the highest level we can estimate is
restricted to sample size; e.g. if the total sample size is 1,000, we can estimate the confidence
level only up to 0.999. The lower bounds of the confidence level of using TCE-based capital
for the two data sets are given in Proposition 1 and Corollary 1, respectively. Numerical results
are summarized in Figure 1 and Table 1.
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From Figure 1, we can observe that Data set I (business interruption insurance) exhibits
the characteristics of heavy tails, as its TV increases sharply to infinity along g — 1. This
is consistent with the study of [10], where the author considered the same data set and argued
that log-normal distribution (heavy-tailed) outperforms gamma distribution (light-tailed) in the
goodness of fit. For Data set II (VIX Index), its TV gradually decreases to 0, which is a typical
light-tailed feature.

Remark 3. In Table 1, the calculations of 1C3¢q, Closq, and sharpened Clgsg, correspond to
Formulas (7), (8), and (9), respectively. The estimation is conducted using bootstrapping, with
500 resamples, and the standard errors of TV, in data sets 1 and 2 are approximately 0.02+TV,.
Note that IC3¢¢, is short for the improved lower bound of the confidence level with A = 0.3, i.e.
IF’(X <13 xTCE, [X]) > 1C309. Moreover, the confidence interval (CI) is demonstrated as a
proportion to its TCE,. For example, Closq = (a, b) implies that at a 95% confidence level,
the conditional variable Y = X|X > x, falls within the interval (axTCE,[X], b*TCE,[X]).

Remark 4. From Table 1, it is evident that the deviations of the loss variables X and Y from
TCE are characterized by TV. Therefore, based on well-estimated TCE and TV, our results are
distribution-free. Such findings underscore the inadequacy of relying solely on TCE for tail
risk assessment. For insurers with risk capital exceeding TCE, IC offers a minimal confidence
level, signifying a probability of at least IC that loss X remains below the prepared risk capital.
Conversely, in events where X > x,, to ensure that loss ¥ = X|X > x, falls within the Cl interval
with a probability of at least 95%, insurers might need to allocate a risk capital significantly
higher than TCE (see the right boundary of CI). This is especially evident in data with heavy
tail variance.

4. Asymptotics of Tail Variance

As we have seen in case study I, TV may exhibit a certain tendency when p approaches 1. In
fact, there can be three possible circumstances for TV when ¢ — 1, i.e. 0, a positive constant,
or infinity. Understanding the tendency of TV along g — 1 can help us further estimate the
capital adequacy of TCE. In this section, we study the asymptotics of TV. In the sequel of this
paper, for two positive-valued functions f and g, we say f and g are asymptotically equivalent
if imys oo [ — 1, and we denote it as £(x) ~ g(x). We also tactically assume that E[X?] < o0
holds and tiat the lim,_, 1 TV, exists on the extended real numbers in the rest of this paper.

4.1. A distribution-free limit formula of Tail Variance
We first investigate the asymptotics of TV without additional specific distribution assump-
tions.

Theorem 1. Let X be an absolutely continuous random variable defined on a support with an
unbounded supremum. It holds that

Jim TV, [X] = lim _f(x‘f)
Xg—>00 f (xq)

for differentiable f(x).

Based on Theorem 1, we can establish a relationship between the TV and the hazard rate as
the following corollary:
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Corollary 2. Following Theorem 1, it holds that

lim TV,[X] = lim (hx(x)) 2. (10)
q— X—> 00

Corollary 2 shows an identity between the limit of the hazard rate and the TV. More specifi-
cally, if we define a tail standard deviation as the square root of TV, then the standard deviation
always has the same limit as the hazard rate. We further demonstrate this with an example of
Weibull distributions.

Example 1. A random variable X follows a Weibull distribution, written as X ~ Weibull(a, b),
if its PDF is of the form

fO0) =ab™"x"exp[—(x/b)],
where x € [0, 00) , a > 0, and b > 0. Then the TCE of the Weibull distribution is

b (1 a
TCE,[X] = :]I‘(; +1, (xq/b) ) :

and the TV of the Weibull distribution is
2

- (e ) (55 )

where I' (s, x) is the upper incomplete gamma function and is defined as
o0
(s, x) =/ £l dt,
X

The limit of TV,[X] can be 0 (a > 1), a non-zero constant b*(a=1),or infinity (0 <a < 1).
For a given shape parameter a, the limits of TV and the hazard rate™> converge to the same
value. In fact, it can be verified that the TV and the square of the reciprocal hazard rate are
asymptotically equivalent for Weibull distribution, namely,

TV, [X]
m = 1.
qg—1 h_z(xq)

(1)

A numerical illustration for such an asymptotic equivalence in the case of Weibull
distribution is demonstrated in Figure 2.

The asymptotic equivalence of Equation (11) implies the same convergence rate for TV ,[X]
and h’z(xq), which is a stronger result than Corollary 2. In Theorem 1 and Corollary 2, we have
only the same limit tendency, which can be 0, a positive constant, or co. But the convergence
rate of the two sides can be different. On the other hand, we do not hold specific assumptions
on the distribution in Theorem 1 and Corollary 2. The asymptotic equivalence of equation (11)
actually holds more generally for distributions with certain tails. We discuss this in the next
subsection.

4.2. Asymptotic equivalences of Tail Variances for distributions with polynomial and
exponential tails

Theorem 1 and Corollary 2 show that the asymptotic of TV is closely related to the hazard
rate. Note that Theorem 1 and Corollary 2 do not require additional distribution assumptions
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FIGURE 2. The asymptotic equivalence between TV ;[X] and h_z(xq)

on X. As such, we do not have explicit asymptotic formulas, and we cannot guarantee the
asymptotic equivalence of Equation (11). To further investigate the asymptotic equivalence
with more explicit results, we consider two general distribution families defined by the tails:
namely, the distributions families with polynomial and exponential tails. The two distribution
families cover a large variety of standard distributions; we refer to [33] for more details. To aid
the proof of our results in this subsection, we introduce the following notations and prerequisite
theorems in regular varying theory. For more details about regular varying, we refer to [31] and
the references therein.

Let U: [0, o) — [0, c0) be a measurable function. We say U has regular variation of order
p at infinity if there exists a real number p such that for every 7 > 0,

Ut
im (&) =1,
x—o00 U(x)

Furthermore, if p =0, the function U is said to be slowly varying at infinity. From the
definition, we see that U(x) = x”I(x), where [ is slowly varying.
Let /1 and I, be nonnegative functions such that
L1(x)
X

—— —>0and l1(x)x* = 00, as x — 0o, forall € > 0,

l(x)

and o 0 and h(x)e*” — 00, as x — 0o, for all € > 0.

Let L be the set for all /1, and let L, be the set for all /5. [33] showed that L; consists of
all normalized slowly varying functions and that L, consists of all />(x) for which lz[(lnx)l/ 6]
L)

is slowly varying for all € > O under the assumption that lim,_, o, # exists for all € > 0.

Numerous asymptotic studies focus on regularly varying random variables, which essentially
have polynomial tails, yet fail to cover a vast array of exponential-tail random variables with
medium or light tails [3]. Therefore, investigating the tail asymptotic properties of these two
distinct classes of random variables is of importance and interest and provides complementary
results to relevant literatures.

e—1
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Equipped with the notations and theorems just presented, we are able to put forward the
definitions of the polynomial tail and the exponential tail as follows:

Theorem 2. If X’s PDF f and its first derivative, f’, exist, then

o X has a polynomial tail if and only if one of the following three holds:

F(x) ~ I (xx—+1, (12)

which is equivalent to
J@)~ (e —=1) - hiox™, (13)
S@~—=(—Da-hxx ", (14)

for somely € Ly and o > 1.

e X has an exponential tail if and only if

F) ~bxe ™, (15)

which is equivalent to
F) ~ B hxe ™ 5P, (16)
) ~—p% hxe ™ 2, (17)

for some I, € Ly and 8 > 0.

Well-known examples of distributions with polynomial tails are, for instance, Student-t dis-
tributions and Pareto distributions, while gamma distributions and Weibull distributions are
typical examples of exponential-tailed distributions. Furthermore, based on Theorem 2, we
have the following corollary on the asymptotics of TCE:

Corollary 3. If a random variable X has a polynomial tail as defined in Equation (12), then

a—1 '
2)cq,ot>2, when g — 1;

TCE, [X] ~

if X has an exponential tail as defined in Equation (15), then
TCEy[X] ~ x4, when g — 1.

The asymptotics of TCE have been widely discussed in the literature. For example, [20]
derived similar asymptotic results for distributions of regular variation laws, which are the
polynomial-tailed distributions in this paper; see also [22, 37]. Further, [30] studied the asymp-
totic representation of the TCE for the Generalized Pareto distribution. Since this distribution
exhibits a polynomial tail (when the shape parameter £ > 0) and an exponential tail (when
& =0), Corollary 3 encompasses their results.

Next, we give the asymptotics of TV for the two distribution families.

Theorem 3. If a random variable X has a polynomial tail as defined in Equation (12), then

a—1

TV, [X]~ —————
Xl @22 @37

o >3, when qg— 1,
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if X has an exponential tail as defined in Equation (15), then
TV, (X1~ B2x, P when g — 1. (18)

Theorem 3 characterizes the tail behavior of TV for distributions with polynomial and expo-
nential tails. It is consistent with Theorem 4.1 in [22], which is a special case of our results.
Specifically, Theorem 4.1 in [22] pointed out that if Z is a standardized Student-t distribution,

then TV equals ——~——72 <1 + 0(%)) , and if Z is the standard normal distribution, then
=12 (v=2)"4 2

TV equals Ziz (1 - Z% + 0(1%)) For Student-t distributions, it is straightforward to obtain
K q q
two similar results by setting @« = v + 1. For the normal distribution, by substituting x = \%z
and setting 8 = 2 in Equation (16), Theorem 3 gives TV as being asymptotically equivalent to
z;z, which is consistent with the result mentioned before.
We give an explicit asymptotic formula for TV of exponential-tailed distributions that sup-

plements the work on univariate cases in [28], which pointed out only TV,[X] ~ o(xé). [28]

mentioned that there could be different converging speeds and named normal distributions and
exponential distributions as instances of those speeds. Our contributions are giving a univer-
sal asymptotic formula [Equation (18)] for exponential-tailed distributions, including normal
distributions and exponential distributions, and giving the converging speed in the formula.
Furthermore, we can establish an asymptotic equivalence between the TV and the reciprocal
square of the hazard rate for the distributions with polynomial tails and exponential tails.

Corollary 4. If a random variable X has a polynomial tail or an exponential tail defined in
Equation (12) or Equation (15), respectively, then it holds that

TV, [X]~c-h2(x,)

as q — 1, where

3
% o > 3 if X has a polynomial tail;
= _ _

1 if X has an exponential tail.

4.3. Tail categorization based on TV

Risks’ tail behaviors are of importance and interest in many fields, such as insurance,
finance, and engineering. There is a large number of papers on the classification of risks’ tails
or tail ordering based on various tools and concepts in the literature. In particular, a tail cate-
gorization proposed in [34] is broadly discussed. The authors suggested using the asymptotics
of hazard rates to classify distributions. Note that we have shown the asymptotic equivalence
between TV and hazard rate; we can now categorize risks’ tails using the TV in similar ways.
The TV of each category, when ¢ — 1, can be computed straightforwardly based on formulas
in Section 2.

Proposition 3. Let X be an absolutely continuous random variable, and define hy:=
limx_)+ooﬁ. We have the tail variance of X when q — 1 as follows:
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X tail behavior vV
ho=0 short tail 0

0<hy<oo medium tail h(z)
hg =00 long tail o0

Proposition 3 tells us that the hazard rate essentially gives the same information as TV does
when X approaches infinity. The Weibull distribution in Example 1 is a typical example illus-
trating such categorization. Its tail decays exponentially, and the shape parameter a indicates
whether it is long-tailed (0 < a < 1), medium-tailed (a = 1), or short-tailed (a > 1). More gen-
erally, we present a tail categorization for distributions with polynomial tails and exponential
tails.

Remark S. Let X be an absolutely continuous random variable with a polynomial or an expo-
nential tail as defined in Equation (12) or Equation (15), respectively; we then have the
classification and the TV of X when g — 1 as follows:

Distributions with what tail lim,1TV4[X] Tail behavior

polynomial, o > 1 .
00 long tail

exponential, 0 < 8 < 1

exponential, 8 =1 constant medium tail

exponential, 8 > 1 0 short tail

TV categorizes the probability distributions into three classes according to tails. Despite the
simplicity, it provides a brief insight into the tail behaviors of the concerned risks, which can
also help us have a quick judgment on how the risks could be at the upper tails. For instance,
in our case study I, we can observe a significant distinct tendency of TV along g — 1 for the
two sets of insurance data, which suggests that they belong to different categories and should
have very different tail behaviors. Note that, from a practical application point of view, TV is
much easier to estimate than the hazard rate. We further provide another practical case study
based on financial data to illustrate the advantage of TV in tail categorization.

4.4. Case study II: alternative evidence for financial data categorization

Empirical studies often suggest that high-frequency financial data are usually more heavy-
tailed than are low-frequency data. For example, the Gaussian models seem to fit yearly data
well in many circumstances, but the high-frequency data appear to be more heavy-tailed; see
[9, 39]. In addition to these empirical studies, Proposition 3 uses the asymptotics of TV to
provide an alternative way to verify this conclusion.

We collect the data on the exchange rate in different frequencies between British Pound
Sterling and the U.S. Dollar. We consider the minutely, daily, weekly, and yearly data and
estimate the TVs along the tails, respectively, using the bootstrap method (the data encompass
8,253 minute-level points from January 4-12, 2024; 5,230 daily points from December 2003 to
January 2024; 1,049 weekly points in the same interval; and 409 monthly points from January
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FIGURE 3. Estimated TV of losses on the exchange rate of British Pound and U.S. Dollar

1990 to January 2024, all sourced from the Wind Economic Database) in order to obtain quasi
yearly losses. To facilitate comparison, the losses are converted into annualized losses, and the
results are presented in Figure 3. (The standard errors of TV fluctuate around 0.015%TV for
minutely data, 0.008+TV for daily data, 0.016xTV for weekly data, and 0.014«TV for yearly
data.) We can easily observe that the TV increases as the frequency of data gets higher. In
particular, minutely data’s TV shows a tendency to increase to infinity, while the yearly data’s
TV converges to 0, which indicates that minutely data have heavy tails and that yearly data
have light tails. For daily and weekly data, the asymptotics of TV appear to have constantcy,
which implies medium tails. As such, TV gives us a quick view of the tail categorization of the
data, allowing unsuitable distributions to be precluded from the calibrations. Our results also
provide alternative evidence to support the empirical studies on the relationship between the
frequency and the tail categorization of financial data.

5. Conclusion

Tail variance is an instrumental risk measure for the analysis of risks at the tails. In this
paper, we review extant explicit formulas of TV and TCE and derive more TV and TCE for-
mulas of frequently used distributions. These formulas can be used directly in relevant studies.
When TCE is used for calculating the risk capital, TV can be taken into account for assessing
how far the true loss deviates from the TCE-based risk capital under the event X > x,, which
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provides valuable insights into the capital adequacy problem. We give sharpened distribution-
free lower bounds of the confidence level of using the TCE-based capital adequacy. Such an
approach is straightforward to implement and partially mitigates the limitations of measuring
tail risk with TCE exclusivly. More specifically, using TCE solely as the risk measure plausibly
does not exploit the tail information sufficiently and might result in under- or overestimation
of the risk capital (see Remark 4). Moreover, because we observed that the asymptotic proper-
ties of TV are eventually determined by the risk heaviness, we studied the asymptotics of tail
variance. In particular, for two large probability distribution families with certain tails (expo-
nential tails and polynomial tails), we unified the asymptotic formulas of TCE and TV, which
have been widely studied under various specific distribution assumptions. More importantly,
those formulas also give more accurate convergence rates, which previous literature has failed
to do generally. Two case studies based on real data are presented to support our theoretical
results. Our result suggests that tail variance is indeed a useful risk measure that has potential
significance to and importance in many applications.

Appendix A. Proofs

A.1. Theorems and propositions in Section 3

A.1.1. Proposition 1. We provide a proof of Proposition 1 that is enlightened by [21].
Assume U is a uniform random variable on [—¢, #]. Then

PY+U=H=P¥>t-U)
t
=/ P(Y>t—uw) fy(u) du
—t

When O<u<t, PY>t—u)=PX¥>0)+Pt—u<Y<t). When —t<u<0,
PY>t—u) =P >1) —P( <Y <t—u). Subsequently,

TP(Y>t—
]P’(Y+U2t)=/ Przt—uw,,
_ 2t
TP(Y >t "Pt—u<Y<t
=/ fr=n _)du—i—/—( UsY=>n4,
—t 2t 0 2t
/‘P(t§Y<t+u)d
_ ) =TT
0 2t

t

=]P’(th)+21t/ [Pt—u<Y<t)—Pt<Y<t+uldu.
0

Given that Y has a non-increasing PDF, we have P(r—u <Y <) >Pt <Y <t+u).
Hence, P(Y > 1) < P(Y + U > 1). Next, we show that P(Y + U > 1) < =11,

PY4+U>H=E[1Y +U=>1)]
=E[E[1(Y+U=0|Y]]
=E[P(U=t-Y|V)],

where 1(-) is an indicator function that equals 1 if the argument is true or equals O otherwise.
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When t—Y<-—t, Y>2t and P(U>t—Y|Y)=1. When r—Y>t, Y <0 and
IP’(Uzt—Y|Y)=O.When0§Y§2t,IP’(Uzt—Y|Y)=21l.Hence,

PY+U=0=E[()],

where f1(y) = 1(y > 2r) + 5,1(0 <y < 21). Note that if f(y) < 5;1(y > 0) ,we have

Y E[Y]
PY+U=0n=E[fi(1)] = E[z—tl(Y > 0)} ==

Consequently, it follows that

TCE,[X]

PY=n<PY+U=z=n= 2

A.2. Theorems and corollaries in Section 4

Before providing the proofs of theorems and corollaries in Section 4, we need to present the
well-known theorems in regularly varying theory and a lemma.

Theorem 4. (Karamata’s theorem) Let g(x) be slowly varying and locally bounded in
[x0, +00) for some xo > 0. Then

e fora > —1,

X
/ “g()dt ~ (@ + 1) 'x*Hg(x), x > o0;
x0

o fora < —1,

o0
/ “g(t)dt ~ — (o + 1)~ g (x), x > 0.

X

Based on Karamata’s theorem, Corollary 5 can be deduced directly. The proof is provided
in [8].

Corollary 5. If g is slowly varying and o < —1, then fx 1% ¢(1) dt converges and

xHg)
m s ~ .= 2~
x—00 [ (% e(r) dt
A.2.1. Theorem 1. First we can rewrite TV4[X] in an integral form using f(x) and x,.

TV, [X] = E[X2|X) xq] — E2[XIX > x,]

_ E[X°Ix=x,] (E[Xlx>xq])2

I—gq l—gq

- 2
Flxg) [ Xf()dx - ( Jiee xf(x)dx)
(Fexp)®

19)
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Note that ¢ — 1 is equivalent to x; — co. We compute the following:

_ f;q“oo x2f(x)dx — xéf(xq) + 2x fx:OO xf(x)dx

lim TVy[X]= lim

q—1 Xqg—>00 —Zf(xq)
—xgF(xg) + f;roo xf(x)dx
= lim 2
Xg—>00 Sflxg)
_F(xq)

im .
Xq—> 0 f/(xq)
A.2.2. Corollary 2. First note that

_F(xq) — lim _F(xq) f(xq)
q—1 xg=>00 f'(xg) xg=>00 f(xg) f(xq)

and limy, oo fl(V(xq) =1 xq%oo]{i((x)) Therefore,

— 2
hm TV, [X]= <f (xg) )2 lim —Fx) . (20)
xq—>oo f/(xq) —1 f(xq)

A.2.3. Theorem 2. We show that the three definitions of the two types of tails are equivalent,
respectively. The equivalences between Equations (12) and (13) and between Equations (15)
and (16) have been proved by [33]. Hence, we give a proof of the rest of the asymptotic equiv-
alences. Moreover, we say that a function g(x) is eventually monotone if there exists an x*, for
Vx* < x| < xp, and if we have g(x]) > g(x2).

(i) Suppose Equation (14) holds. Applying Corollary 3 gives us

x(—a—1)+lll(x)
—
[ 1D (n) de

Given that fxoo #=2=D], (¢) dt converges, the derivative of the integral with respect to x gives
us —f’(x). Hence, we have Equation (13).
(i) Now we suppose that Equation (13) holds. For any 0 < a < b < 0o, and given that f is
nonnegative and eventually non-increasing, we have
bx
fbx) —fla)= | f(®Hdr=<0.

ax

As f'(x) is non-decreasing and non-positive, when x is large enough, it holds that

(b—a)xf'(@) _fbx) —fax) _ b=k _

= < (21)
x 9 (x) X% (x) x 9 (x)
We rewrite the mid-term of the inequalities in Equation (21) as
fx) b hbx)  flaw) a*li(ax) ’ 22)

G0 lL(bx) L) (ax) “h@) LK)
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which approaches (o« — 1) (b‘“ - a“") as x — 0o. Subsequently, for the first inequality of
Equation (21), we have

_ f/(ax) - (O{ — 1) (b_a — a_ot)

1
o0 e T () = b—a
Next, taking b as 1 gives
LT f'(x)
lim1 _— -1
T
Similarly, we have
. o— ')
lim1 —_ -1
lim oo = =~ (@ = Da,

which concludes the proof of Equation (14)’s implying Equation (13).
(iii) Suppose Equation (15) holds. Substituting x by (In y)'/# gives

F'(y) == Fl(ny)""*1~ LIy P1y~".
Note that lg[(ln y)l/e ] is slowly varying. We then define

dF*(y)

o= df*’()—df(y)

Because f* and f* are eventually monotone, an argument similar to that in (i) leads to
)~ 12[(1n y)l/ﬂ] 2 and f*(y) ~ =l [(ln y)l/ﬁ] 3, respectively. Taking f back, we have
Equation (17).

(iv) Suppose Equation (17) holds. Starting with the definition of asymptotic equivalence,
e B2

e P < €. Subsequently, it holds
—Dh(x)e ™" x=P~

for any € > 0 there exists xg. For all x > x,

that

/oof/(t) == (’32 +6) /oo by e 6241,

X
Substituting ¢ by (Iny)'/, the right-hand side of the last inequality is
0o 1/87 =3 . . . . 2B B
¢/B [ b[(ny)!/P]y—3dy, which is asymptotically equivalent to e *"h(e") by
Corollary 3. Therefore, Equation (17) implies Equation (16).

A.2.4. Corollary 3. To derive the asymptotic relationship between TCE and VaR, we need to
TCE,[X]
.

calculate limg |
If a random variable X has a polynomial tail, Karamata’s theorem gives

[o@de 2 (= Dx T ()dx
: ! : +2

— 1m
=1 Fx(xg)-xq4 41 ll(xq)xq_a

a—1 x;a+211 (q)

= lim
q—)lll(xq)xq_oH—Q' a—2
oa—1

= lim
g—la—2

Hence, TCE,[X] ~ 2)cq, a>2,wheng— 1.
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If a random variable X has an exponential tail, by substituting x by (In y)!/#, we have

S A (odx

S x Bh(x)xf~ e dx

a—1 Fx(xg) - xg

]
g1 b(xg)e™ - x4

S x BL(x)xf~ e dx

7—1 lz(xq)e*xZ - Xg
L[y P any)VEy~2dy
= lim —

g—1 lz[(lnyq)]/ﬁ] (lnyq)l/ﬁygl

As mentioned above, lz[(ln y)/8 ] is asymptotically equivalent to a slowly varying function.
Hence, we can apply Karamata’s theorem again, and the numerator will be asymptoti-

cally equivalent to lz[(lnyq)l/ P ] (lnyq)l/ p yq_l. Subsequently, TCE and VaR are asymptotically
equivalent for a random variable with an exponential tail.

A.2.5. Theorem 3. To derive the asymptotic relationship between TV and VaR for a

polynomial-tailed distribution, we need to calculate lim,_, |

TVq X1

Similarly to the proof of Corollary 3, if a random Varlable X has a polynomial tail,

Karamata’s theorem gives

q

/OO)Cf(X)ObCN(Ot—1)/OO

x0T (oydx

Ol—l _
— 2 q()l+2 (xq)

and
o0 o0
/ Kf()dx ~ (@ — 1) / X2 (x)dx
Xq
o — 1 B
Subsequently,
_ 2
TV x] . FOg) [ P eodx - ( [ xf(x)dx)
lim 5 = lim 5
qg—1 xq qg—1 (f(xq)) xé
2
‘ éx a+412(xq) (Z %) x—2a+412(xq)
= hm 2 —2a+4
q—1 l 1(xg)xg

_O(—l oa—1
Ta-3 a—2

a—1

T @-22@-3)

Therefore, we may conclude the proof of the case of polynomial-tailed random variables.
For the case of exponential-tailed random variables, the proof is quite complicated and can be

shown upon request.

A.2.6. Corollary 4. This is a straightforward result of Theorem 3 along with the definition of

the hazard rate.
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Appendix B. A table of the summary of TV formulas and asymptotics

TABLE 2. A list of TCE and TV distributions

Distribution TCE,4[X] TV,[X] Tail Type lim1 TV,[X]
q%
ab®x l —a ab®x 2 a .
Pareto, type I m, a>1 m TCE [X],a>2 polynomial, long )
a a 2 2 .
Pareto, type II %()\ _i_xq)fa, a>1 an ()lti;q) ((K;rfg) + ZA(I)L_-I;Xq) + %) _ polynomlal, long )
TCE;[X], a > 2
, oo, a<l
Weibull %}F(}Z +1, (xq/b)a) lb__qF(l +2a71, (xg/b)") — TCE;[X] exponential, b2, a=1
long, a<l1 0, a>1
median, a=1
short, a>1
Normal w+ 0@ [1 + ¢(Z") ( Zq ?(TZ"‘I))] exponential, short 0
Elliptical uw+ f;*ézq)) Var(X) - Depends on density generators
75 [szzq) 4 Iz [Z _ szz*«q)]]
1—q 1—q q Z 1—q
exp(/4+ﬂ2/2) exp(Z(qunz)) 2
Log-normal ?CD(U —2) — = ®(20 —z4) — TCEZ[X] long o0
.. — 24 f—
Log-elliptical ﬁ] (—202) Fz+(z¢) f_lqw (—202) Fze(z9)— long 00
2\ — 2
[ (%) e
kaHhixy f(xg) Q+k)k 225 (ka+hixg) fxg) :
F 52 P 2rm— 17‘; Xq kl(kzl 2TCE(,[X] + e 17"[1 — polynomial, long 00
TCE?I[X]

99¢

TV 14 NvNd [
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TABLE 2. Continued
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