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ON THE OPERATORS WHICH ARE INVERTIBLE
MODULO AN OPERATOR IDEAL

PIETRO AIENA, MANUEL GONZALEZ AND ANTONIO MARTINEZ-ABEJON

We study the semigroups Ai and AT of left and right invertible operators modulo
an operator ideal A, respectively. We show that these semigroups allow us to obtain
useful characterisations of the radical _4rad of A- For example, ATaA is the perturbation
class for Ai and Ar-

1. INTRODUCTION

Atkinson [3] studied the operators which are left invertible $i(X, Y) or right invert-
ible $T{X, Y) modulo /C, with K. the compact operators. He proved that an operator
T € C(X, Y) belongs to <£/ or $ r if and only if the kernel and the range of T are comple-
mented and additionally, the kernel is finite dimensional or the range is finite codimen-
sional, respectively. Yood [19] obtained some perturbation results for these classes and
Lebow and Schechter [12] proved that the inessential operators form the perturbation
class for $,(A") and $r{X).

Yang [18] extended some results of ^3, 19] to operators invertible modulo W, with
W the weakly compact operators. His aim was to study a generalised Fredholm theory
in which the reflexive spaces played the role of the finite dimensional spaces. Moreover,
Astala and Tylli [4] compared the left-invertible operators modulo W with the Tauberian
operators and other classes of operators defined in terms of weak compactness.

In this paper we study the classes Ai and AT of operators which are left and right
invertible respectively, modulo an operator ideal A. We show that these classes are open
semigroups in the sense of [2], and that there is a close connection between Ai, AT and
the radical ATzA (in the sense of [15]) of the operator ideal A. In fact, if A, B are operator
ideals, then the equalities ATad = 5r a d , Ai = Bi and AT — BT are equivalent. We obtain
characterisations of AT&d simpler than the original definition in [15] and we show that
»4rad is the perturbation class for Ai, Ai and Ai f~l Ar.
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234 P. Aiena, M. Gonzalez and A. Martinez-Abejon [2]

Denoting by W the weakly compact operators, we compare Wj with <3>j and Wr

with 3>r. They coincide in C(X, Y) when one of the spaces X, Y has the Dunford-Pettis
property. Moreover, we give several examples of operator ideals A which are maximal in
the sense that B C A for each operator ideal B such that Sp (A) = Sp (B)\ in particular,
A = AxzA- Observe that it is not known whether /Crad is maximal in this sense ([15,
4.3.7]).

In this paper paper, X, Y and Z are Banach spaces and X' is the dual space of
X. Also C(X, Y) is the set of all (continuous linear) operators from X into Y. For
T € C(X, Y), N{T) and R{T) are the kernel and the range of T, and T* € C{Y*, X') is
the conjugate operator of T.

Given a closed subspace M of X, we denote by JM the inclusion of M into X. and
by QM the quotient map from X onto X/M. A subspace M of X is complemented if it
is the range of a continuous linear projection on X. Of course, complemented subspaces
are closed.

We denote by C the class of all operators between Banach spaces: that is, the union
of all the sets C(X, Y), and by T and Q the subclasses of all finite rank and all bijective
operators, respectively. Given a subclass A C £, the components of A are the subsets

A(X,Y):=AnC(X,Y).

We write A{X) in the case X = Y.

DEFINITION 1.1: ([15]) A subclass A C £ is an operator ideal if it satisfies the
following conditions:

(a,) J c A

(a2) A(X, Y) is a subspace of C(X, Y).

(o3) If B e C(W, X), T € A{X, Y) and A e C{Y, Z), then ATB € A{W, Z).

Every operator ideal A has associated a space ideal Sp(.4), given by

Sp (A) := {X : the identity Ix € .4}.

The duo/ operator ideal Ad of .4 is defined by .Ad = {T € £ : T* e A}. Clearly

) { }
EXAMPLES OF OPERATOR IDEALS. ([15]) Let T € C{X,Y).

K compact operators: T € /C if it takes bounded sets into relatively compact sets.

SS strictly singular operators: T € SS if there is no infinite dimensional closed
subspace M of X so that the restriction T | M is an isomorphism.

W weakly compact operators: T € W if it takes bounded sets into relatively weakly
compact sets.

CC completely continuous operators: T € CC if it takes weakly Cauchy sequences
into convergent sequences.
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[3] On operators which are invertible modulo 235

UC unconditionally converging operators: T € UC if it takes weakly unconditionally

Cauchy series into unconditionally convergent series.

The space ideals of /C, W, CC and UC are the finite dimensional spaces, the reflexive

spaces, the spaces with the Schur property and the spaces that contain no subspaces

isomorphic to Co, respectively.

The following concept of semigroup was introduced in [2].

D E F I N I T I O N 1.2: A subclass S c C is an operator semigroup (a semigroup, for

short) if it satisfies the following conditions:

(CT2) S e S{W, Y) and T 6 S(X, Z) if and only if 5 © T e S{W © X, Y © Z).

(CT3) If T e S(X, V) and 5 e <S(F, Z), then ST e «S(*, Z).

EXAMPLES OF SEMIGROUPS. [2] Every operator ideal A has associated two semigroups
A+ and A-, given by

A+:={T€C:SeC,TS€A=>SeA};

that is, T e ^+(A", K) if and only if for every Z and every 5 6 £(Z, A"), we have TS € A
implies 5 € A. Analogously,

A- := {T e C : S € £, ST € A ̂  S e A}.

The semigroups /C+, /C_, W+ and W_ coincide with the upper semi-Fredholm, lower
semi-Fredholm, Tauberian ([10]) and cotauberian operators ([17]), respectively. The
semigroups UC+ and UC- were studied in [8]. We refer to [2] for further results.

DEFINITION 1.3: Let X and Y be Banach spaces, and let S be a semigroup such
that S{X, Y) is non-empty.

The component PS(X, Y) of the perturbation class PS of <S is defined by

PS{X, Y) := [K € C{X, Y):T + K € S(X, Y) for every T € S(X, Y)}.

P R O P O S I T I O N 1 . 4 . ([12,2]) Let S be a semigroup. Then

(a) PS{X, Y) is a subspace of C{X, Y) and PS(X) is a two-sided ideal in
C(X).

(b) IfS(X, Y) is an open subset ofC{X, Y), then PS(X, Y) is closed.

An even more general concept of perturbation class was introduced by Lebow and

Schechter [12].

2. M A I N RESULTS

In this section A is an operator ideal. We introduce and study the semigroups Ai

and AT of operators which are left or right invertible modulo A.
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DEFINITION 2.1: Let T e C(X, Y). We define the classes At and AT as follows:

T € At if there exists A € £(Y, X) such that Ix - AT e A(X).

T e Ar if there exists B € £(V, X) such that IY-TB <= -4(V).

Let us denote by 72.72 the relatively regular operators ([3]); that is, the operators with
complemented kernel and range. The relatively regular operators provide basic examples
of operators in Ai and AT-

EXAMPLES 2.2.

(a) L e t T e C(X,Y). Then

T € K-i -*=*• T € 7272 and dim iV(T) < oo;

T € /Cr <=> r € Till and dim F/fl(T) < oo.

(b) Let T£TI1I(X,Y). Then

G Sp M) <=• T € ̂  and Y/R(T) € Sp(-4) <̂ => T € A ,

but Example (c) below shows that neither Ai nor ,4r is contained in 7272 in general,

(c) If X €Sp{A), then

Ai{X,Y) = C(X,Y) and A{Y,X) = C(Y,X), for every Y.

The following result can be derived easily from the definitions.

PROPOSITION 2 . 3 . The classes Ai and Ar are semigroups in the sense of Def-
inition 1.2. Moreover, Ai C A+ and AT CA-.

REMARK 2.4. The class At n AT is also a semigroup. We have KL\ n/Cr = KL+ n/C_., the
Fredholm operators, but an example in [9] shows that Vty n Wr ^ W+ n W_.

Indeed, for every T 6 £(JT, V) we consider the operator Tc° € C(X"/X,Y"/Y),
given by Tc0(2 + X) = T"z + Y. Since T 6 W+ if and only if Tco is injective, and
T € W_ if and only if Tco has dense range, T € W+ n W_ whenever Tco is bijective.

On the other hand, for X ~ £2{J), where J is the quasireflexive James' space, X" jX
is isomorphic to £2 and T € £(X) belongs to W( D Wr if and only if Tco is regular with
respect to the lattice structure in £2- Since there are examples of operators T € C(X)
such that Tco is bijective but not regular, Wz n Wr / W+ D VV_.

We refer to [9] for further details.

The following result gives basic properties of Ai and AT.

PROPOSITION 2 . 5 . Let S e £{Y,Z) and T e C(X,Y).

(a) ST eAi^-T eAt and STeAr=> S e Ar.

(b) For every K € .4(A', Y),

TeAt=>T + KeAi and T € Ar => T + /C € AT.
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(c) T € Adi => T* € Ar and T e Ad
r => T* e At. However, the converse

implications are not true.

(d) Ai(X, Y)^% if and only if Ar{Y, X) / 0.

(e) At(X, Y) and Ar(X, Y) are open subsets ofC(X, Y).

PROOF: We indicate the proof of some of the results. The remaining ones are direct
consequences of the definitions.

(c) Let J : co —> £oo be the natural inclusion. Then J £ /Q because CQ is not
complemented in i^. However, N(J') is complemented by the lifting property of t\,
hence J* € $ r = /Cr. Note that /C = Kd by Schauder's theorem.

(e) Let T e A,(X,Y) and A € C(Y,X) such that AT = Ix + K with K e A{X).
If 5 € C{X,Y) and \\A\\ • \\S\\ < 1, then /* + ̂ 5 is invertible, hence A(T + S) =
Ix + AS + K € ̂ t| by part (b); thus T + S € At by part (a). D

The concept of radical of an operator ideal is due to Pietsch [15, Section 4.3].

DEFINITION 2.6: ([15]) The radical «4rad of A is defined as follows:

A"*(v v\ I u c riY v\ f o r e v e ry 5 e £ ( F ' X ) ' t h e r e e x i s t s U
A (X,Y):=^KeC(X,Y): SQ that Ix _ u{Ix _ SK) e A

^4rad is an operator ideal that contains A. Moreover, Sp (Ar!id) = Sp (̂ 4) and
Arad{X,Y) is always closed in C(X,Y) ([15]).

LEMMA 2 . 7 . /n the definition ofArad we can write Ix - (/^ - 5A")t/ € A instead
oflx-U(Ix-SK) eA.

P R O O F : If K e >trad and L, := 7X - [/(/* - 5A") € ̂ l, then Ix - U e Arad. Thus
there exists W e £ (X) so that / x - WU € ̂ , and

(Ix ~ SK)U = WU(IX - SK)U -L2 = W{IX - LX)U -L2 = IX- L3,

with L2, L3 e A: hence Ix - (Ix - SK)U € A.

The converse implication is similar. D

The best known example of radical is I := ^rrad, the inessential operators. These
operators were introduced by Yood [19] in the study of the perturbation of Fredholm
operators. Kleinecke [11] introduced the name inessential operators and proved that
X{X) is the biggest ideal of operators in C(X) with Riesz spectrum.
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REMARK 2.8. ([15, 4.3.8])

(a) X is contained in .4rad for every A.

(b) A C B implies .4rad C Brad for every pair of operator ideals A and B.

(c) (A"a)"* = A"a.

REMARK 2.9. In general, Arad is much bigger than A- For example [7, Theorem 1],
£(X, Y) = I{X, Y) and £{Y, X) = 1{Y, X) in the following cases:

(i) X contains no copies of £K and Y = £oo-

(ii) X contains no complemented copies of CQ and Y = C[0,1];

(iii) X contains no complemented copies of ip and Y = Lp[0,1], 1 ̂  p < oo.

Pietsch conjectured that the following question has a positive answer.

QUESTION 2 . 1 0 . ([15, 4.3.7]) Is AraA the biggest operator ideal B such that

As far as we know, the question is open even for ^rrad = I.

The semigroups associated to an operator ideal allow us to give a simpler description
of the radical.

PROPOSITION 2 . 1 1 . For every T e £{X,Y), the following assertions are
equivalent:

(a) TeArid{X,Y).

(b) For every S € C(Y, X), Ix - ST € At{X).

(b') For every S e C(Y, X), IY-TSe At{Y).

(c) For every S € £{Y, X), IX-ST € A{X).

(c') For every S € £{Y, X), IY-TSe A{Y)-

P R O O F : (a) & (b). Assume T € AT!ui(X,Y) and 5 e C(Y,X). Then there exists
U e £{X) such that Kx := Ix - U{IX - ST) € A. Thus U{IX - ST) = Ix - Kx €
Ai n Ar, hence Ix - ST e Ai (Proposition 2.5.a).

Conversely, if Ix — ST € At for every 5 € C(Y, X), then any left inverse modulo A
of Ix - ST can be taken as U in Definition 2.6.

The proof of (a) <=> (c) is similar to that of (a) ** (b), using Lemma 2.7.

(b) •& (b;) and (c) <=> (c'). If U € C(X) is a left (respectively, right) inverse of
Ix - ST modulo A, then IY + TUS is a left (respectively, right) inverse of IY - TS
modulo A. D

COROLLARY 2 . 1 2 . £{X, Y) = ATMi(X, Y) «=> £{Y, X) = Arad{Y, X).

Let us see that the perturbation classes of the semigroups Ai, Ar and AinAT coincide
with the radical Arad.
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THEOREM 2 . 1 3 . LetS be one of the semigroups At, Ar or At n As. HS{X, Y)
is non-empty, then

PS{X,Y) = Arad(X,Y).

PROOF: We give the proof for S = At- The proof of the other cases is analogous.

Let K € AT^{X, Y). For every T € At(X, Y), we can select A € C{Y, X) so that

A := Ix-ATe A(X).

For the operator —A € C(Y, X), the definition of -4rad gives us another operator U €
C(X) so that D2 := Ix ~ U{IX + AK) € A. Since A C PAt (Proposition 2.5.b),

UA{T + K) = U(IX - A + AK) = IX-D2- UDX € Af,

hence T + K € At. Thus ^ r a d (X, Y) C P ^ i ) ^ , y ) .
For the converse inclusion, we show first that

(1) K € PAi{X, Y), A e C{Y) ̂ -AKe PAt{X, Y).

It U € Ai(X, Y) and A is invertible, then U + AK = A{A~lU + K) € Af, hence v4K €
PAi- For the general case it is enough to observe that every A € C-{Y) can be written as
the sum of two invertible operators.

Now, let K € C(X,Y), K # Avad. By Proposition 2.11, there exists A € C(Y,X)
such that Ix - AK g At(X).

Let U € Ai{X,Y). Then U{IX-AK) = U - {UA)K <? At{X,Y). Therefore
(UA)K £ PAh and (1) implies K <£ PAt{X). D

The semigroups Ai and Ar determine and are determined by -4rad.

PROPOSITION 2 . 1 4 . Let A and B be operator ideals. Then

AT&A{X) = BraA{X) ^ MX) = B,(X) ̂  Ar(X) = Br{X).

P R O O F : Assume that AT&d(X) = Brad(X). Since A C AraA = (A""*)^ (Remark

2.8), Ai C ^4radj and AT C ATid
T. To prove the other two equalities it is enough to show

that Arad
t(X) c At(X) and ATaA

r{X) c AT(X).

If T € ^lrad;(X), then we can find A e £{X) such that IX-AT £ AraA. By Theorem
2.13, AT € Af, hence T € At.

The proof for ̂ 4r is similar.

If Ai{X) = Bi{X) or AT{X) = Br(X), then it follows from Proposition 2.11 that
ATad(X) = Srad(X). D

COROLLARY 2 . 1 5 . Arad = Br a d <^^> At = B, <=> AT = Br.

PROOF: It is enough to note that the proof of Proposition 2.14 shows that A(X) =

Arad{X) implies At(X,Y) = Bt(X,Y) and Ar{Y,X) = BT(Y,X) for every Y, and
>t,(X) = Bi(X) or A(A") = Br(X) for every X implies .4rad(X,y) = Brad(X,Y) for
every X , y . D
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3. EXAMPLES

Here we give information on the semigroups Ai and Ar in some cases. First we recall
some useful characterisations of the inessential operators.

THEOREM 3 . 1 . [14, 1] For K € C(X, Y) the following assertions are equiva-

lent:

(a) K is inessential.

(b) For every S 6 £{Y, X) the kernel of Ix - SK is finite dimensional.

(b') For every S € C(Y, X) the kernel of Iy — KS is finite dimensional.

(c) For every S £ £{Y, X) the cokernel X/R(IX - SK) is finite dimensional.

(c;) For every S € C{Y, X) the cokernel Y/R{IY - KS) is finite dimensional.

QUESTION 3 . 2 . 7s it possible to find characterisations of .4rad similar to Theo-
rem 3.1 for other semigroups A ?

Recall that a Banach space X is said to have the Dunford-Pettis property if
W{X,Y) C CC(X,Y) for every Banach space Y. The spaces C{K) and Li{fj.) have
the Dunford-Pettis property. We refer to [6] for additional information.

PROPOSITION 3 . 3 . Assume that X or Y has the Dunford-Pettis property.
Then

Wi{X, Y) = $i{X, Y) and Wr(X, Y) = *r(X, Y).

PROOF: Recall that K-i = <&i and /Cr = $ r . If X has the Dunford-Pettis property
and T e W{X, Y), then S T e ( W f l CC)(X) for every S € C(Y, X). Thus (ST)2 € K. In
particular, dim/V(/ — ST) < oo. By Theorem 3.1, T is inessential. Hence,

K(X,Y)CW(X,Y)CI{X,Y).

Since /C, = I/, it follows from Corollary 2.15 that W,(X, Y) = Kt{X, Y).

The proof of the other cases is analogous. D

COROLLARY 3 . 4 . If X has the Dunford-Pettis property and Y is a non-
complemented closed subspace of X, then the inclusion JY :Y -> X does not belong to

P R O O F : Clearly, Jy <£ ^ (V, X) = W,(K, X). D

REMARK 3.5. The Hardy space H1 is a closed non-complemented subspace of L1. Since
L1 has the Dunford-Pettis property, it follows from the previous corollary that the inclu-
sion of H1 into L1 does not belong to Wj. This result was previously established in [4,
Lemma 8] using techniques of harmonic analysis.

Apart from the inessential operators, we can show other examples of operator ideals
which coincide with its radical.
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D E F I N I T I O N 3.6: We say that an operator ideal A is radical if A = Arad.

D E F I N I T I O N 3.7: Let ZQ be a fixed infinite dimensional Banach space. An operator

T € £(X, Y) belongs to the class Zo-AfC if there is no closed subspace M of X isomorphic

to ZQ SO that the restriction T\M is an isomorphism, and T(M) is complemented in Y.

For some spaces, like Zo = t.\ © £2, the identity Iz0 is not in Zo-AfC, but we can

write it as the sum of two projections that are both in Zo-AfC. Thus ZQ-NC(ZQ) is not

a subspace of £(Z0). However, we shall give examples of spaces so that Zo-AfC is an

operator ideal.

PROPOSITION 3 . 8 . Let ZQ be a fixed infinite dimensional Banach space. Then

(a) Z0-AfC satisfies properties (ai) and (03) in Definition 1.1. Moreover,

Ix € Zo-AfC «=> X contains no complemented copy of Zo .

(b) Suppose that Zo-AfC is an operator ideal. Then every operator ideal A

that satisfies Sp (A) = Sp (Zo-AfC) is contained in Zo-AfC. In particular,

Zo-AfC is a radical operator ideal.

PROOF: (a) Since Zo is infinite dimensional, the finite rank operators are contained

in Zo-AfC. So it satisfies property (c*i).

To prove property (a 3 ) , observe that for every operator T € C(X, Y), if the restric-

tion T\M on a closed subspace M of X is an isomorphism and T(M) is complemented in

Y. then M is complemented in X. Indeed, if Y = N ® T(M), then X = T'^N) 0 M.

We take B € £{W, X), T € C(X, Y) and A e C(Y, Z), and we suppose that ATB $
Z0-AfC(W,Z). Then there exists a closed subspace M of W isomorphic to Zo so that
ATB\M is an isomorphism and (ATB)(M) is complemented in Z. Let TV be a closed
subspace of Z such that Z = N@(ATB)(M). Then Y = A-l(N)®(TB)(M). Moreover,
B(M) is isomorphic to ZQ and T\B(M) is an isomorphism; hence T $ Zo-AfC. Thus Z0-AfC
satisfies property (0:3).

The second assertion of part (a) is immediate.

(b) Note that Zo <£ Sp (A) = Sp (Z0-AfC), by part (a). Suppose that T e C{X, Y),
but T $. Zo-AfC. Then there exists a subspace M of X isomorphic to Zo such that
T\M is an isomorphism and both M and T(M) are complemented. Thus we can find
A € C(Y, Zo) and B € £(Z0, X) so that ATB = IZo; hence T $ A. 0

Let us see that the class of all operators preserving no complemented copies of one
of the spaces tv., 1 ^ p ^ 00 or CQ is a radical operator ideal.

THEOREM 3 . 9 . Suppose that Zo is one of the spaces £p, 1 ^ p ^ 00, or Co- Then
Zo-AfC is a radical operator ideal.

PROOF: By Proposition 3.8, we only have to show that Z0-AfC(X, Y) is a subspace
of C(X.Y). In order to do that, let S € Z0-AfC(X,Y) and T e C{X,Y), and assume
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that M is a subspace of X isomorphic to ZQ SO that (5 + T)\M is an isomorphism and
(S + T)(M) is complemented in Y. We have to show that T $ Z0-XC(X, Y).

First we assume that ZQ is £v with 1 ^ p < oo, or CQ. Let P be a projection on Y
such that R(P) = (S + T){M). Then PS\M + PT\M = (S + T)\M, and by Proposition
3.8(a), PS\M € ZQ-MC.

We claim that PS\M € SS\ that is, it is strictly singular. Indeed, otherwise we could
find a closed, infinite dimensional subspace M\ of M such that PS\M, is an isomorphism.
By [13, Proposition 2.a.2], PS (Mi) contains a subspace /V2 which is isomorphic to Zo

and complemented in R(P). Since we can write TV2 = PS(M-i), where Mi is a closed
subspace of Mi, PS\M2 $ ZQ-NC(X, Y), a contradiction.

Note that (5 + T)\M € K-i(M, Y), because it is an isomorphism with complemented
range (see Example 2.2). Moreover, SS C I and 2 is the perturbation class of /Q [15].
Thus PT\M € K.t.

So, there exists a finite codimensional closed subspace TV of M (which is isomorphic
to M) such that PT\N is an isomorphism and PT(M) = PT(N). Thus T $ Z0-MC.

In the case ZQ = £&,, we can repeat a similar argument, using three facts. First,
that every subspace of a Banach space isomorphic to £„, is complemented; second, that
for every non-weakly compact operator R : £„, —t Z, there exists a subspace M of £<„
isomorphic to ^ so that R \ M is an isomorphism [13, Proposition 2.f.4]; and third, that
every weakly compact R : £„ —> Z is inessential [7, Theorem 1]. D

REMARK 3.10. (a) Theorem 3.9 gives a positive answer to Question 2.10 for ZQ-S/C,

when Zo is one of the spaces £p, 1 ^ p ^ 00 or CQ.

(b) It follows from the results of Bessaga and Pelczynski in [5] (see [16, Lemma 9.2
in Chapter C.II.]) that the conjugate T* of T € C(X, Y) is unconditionally converging,
that is, T € UCd, if and only if X has no closed subspace TV isomorphic to £x such that
TJN is an isomorphism and T(N) is complemented in Y.

Thus, it follows from Theorem 3.9 that UCd is the radical operator ideal £X-MC.
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