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A NOTE ON THE LATTICE OF DENSITY PRESERVING MAPS

SEJAL SHAH AND T.K. DAS

We study here the poset DP(X) of density preserving continuous maps defined on
a Hausdorff sapce X and show that it is a complete lattice for a compact Hausdorff
space without isolated points. We further show that for countably compact T3
spaces X and Y without isolated points, DP(X) and DP(Y) are order isomorphic
if and only if X and Y are homeomorphic. Finally, Magill’s result on the remainder
of a locally compact Hausdorff space is deduced from the relation of DP(X) with
posets IP(X) of covering maps and Ex(X) of compactifications respectively.

0. INTRODUCTION

Throughout the spaces considered (usually denoted by symbols X, Y') are Haus-
dorff and the maps are continuous. A map f: X — Y is called a density preserving
map if Int Cl f(A) # ¢, whenever Int A # ¢, A C X ([1]). Two density preserving
maps f and g with domain X and range Rf and Rg respectively are said to be
equivalent (f =~ g) if there exists a homeomorphism h : Rf — Rg satisfying ho f=g.
We identify equivalent density preserving maps on a fixed domain X, and denote by
DP(X) the set of all such equivalent classes of density preserving maps. The relation
‘<’ defined on DP(X) by g < f if there exists a continuous map h: Rf — Rg such
that ho f = g turns out to be a partial order relation. Recall that a perfect irreducible
continuous surjection is called a covering map. In Section 1 we prove that if X is a
compact space without isolated points, then DP(X) is a complete lattice. In Section 2,
we determine the order structure of DP(X) by proving that for countably compact T3
spaces X and Y without isolated points, DP(X) and DP(Y) are order isomprphic if
and only if X and Y are homeomorphic. Section 3 is devoted to the natural relation
of DP(X) with the poset IP(X) of covering maps on X ([3]) and the poset Ex(X)
of compactifications of a locally compact space X ([2]). We show that if U is an open
dense set in a compact space X then DP(X,U) = IP(X,U), where IP(X,U) (respc-
tively DP(X,U)) is the poset of all covering (respectively density preserving-) maps f

on X satisfying l f~Y(f (z))l =1 for each = in U. Using this result we deduce Magill’s

result which states that for locally compact spaces X and Y, Ex(X) and Ex(Y) are
order isomorphic if and only if X — X and BY — Y are homeomorphic ([2]).
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1. LarTicE DP(X)

We immediately have the following lemmas.
LEMMA 1.1. DP(X) is a partially ordered set.

LEMMA 1.2. Let f, g € DP(X) be such that ¢ < f. Then the map h : Rf
—» Rg satisfying ho f = g is a density preserving map.

Proor: Let A C Rf be such that Int A # ¢. Then by setting f~1(A4) = A*, we
get ¢ # Int Clg(A*) =Int Cl(ho f)(A*) CInt Clh(A). Hence h is a density preserving
map. 0

REMARK 1.3. Fibres of a surjective density preserving map f : X — Y are closed
nowhere dense subsets of X, where X is a space without isolated points.

DEFINITION 1.4: For f € DP(X), define p(f) = {f~'(y) | y € Rf}.

From here onwards we assume that members of DP(X) are quotient maps. If X
is compact, this condition is automatically satisfied.

LEMMA 1.5. Let f, g€ DP(X). Then f < g if and only if p(g) C p(f).

PROOF: Let f < g then there exists h : Rg — Rf satisfying hog = f. If
g Yy) = A € p(g) and if h(y) = z, then A C (hog)_l(:c) = f~Y(z). Conversely,
suppose g(g9) € p(f), then for z € Rg take the unique y € Rf for which g~(z)
C f~(y) and define h : Rg = Rf by h(z) = y. Clearly h is continuous, hog = f
and hence f < g. 1|

NOTE 1.6. Two maps f and g are equivalent if and only if p(f) = p(g).

LEMMA 1.7. Let X be a compact space without isolated points. Then DP(X)
is a complete upper semi-lattice.

PRrROOF: Let S be a non-empty subset of DP(X) and let Z = [[{Rf | f € S}.
Consider the natural evaluation map g : X — Z such that ms(g(p)) = f(p), where
g Z — Rf is the f** projection map. Set T = g(X), 7r’f = 7¢lr and define
g : X =T by ¢(p) = g(p), p€ X. It is easy to verify that ¢’ is the least upper
bound of S. ]

THEOREM 1.8. Let X be a compact space without isolated points. Then
DP(X) is a complete lattice.

PROOF: Since a constant map onto its image is a density preserving map and
any two such maps are equivalent, DP(X) has the minimum element. The required
result now follows from Lemma 1.7 and the fact that a complete upper semilattice with
minimum element is a complete lattice. 0
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2. ORDER STRUCTURE OF DP(X)

The order structure of the poset DP(X) is always determined by the topology on
X, that is, if spaces X and Y are homeomorphic then DP(X) and DP(Y) are order
isomorphic. We show here that the converse is true when X and Y are countably
compact T3 spaces without isolated points. The following terms and results are along
the lines of {2, Lemmas 6, 9 and 10]. Throughout this section, our spaces are without
isolated points.

DEFINITION 2.1: A Map f € DP(X) is said to be

(1) primaryif p(f) has at most one non-singleton member.
(ii) dualif it is primary and p(f) contains exactly one doubleton.

NoTaTION. If for some f € DP(X), p(f) contains n non-singleton members, say
K., K, ..., K,,, then f is denoted by (f, K1, K3, ..., K,). In particular, if K is a
non-singleton closed nowhere dense set in X, then (f, K) denotes the natural density
preserving map defined on X obtained by collapsing K to a point.

LEMMA 2.2.
I A map f € DP(X), f # idx is primary (respectively dual) if and only if
there do not exist dual points g, h € DP(X) (respectively g € DP(X))
such that f Ag= f Ah # f and the only dual points greater than g A h
are g and h (respctively f < g <idx ).
II For two closed nowhere dense subsets K, and K, of X,

(h, K1, K2), ifKiNKe=¢

(f,Kl)A(gvK2)={ (h,KlUKZ)a IlenK2?é¢

III An oder isomorphism ¢ : DP(X) — DP(Y) maps dual points to dual
points.

DEFINITION 2.3: A bijection f : X — Y is called a cln-bijection if {f(A)| A
is a closed nowhere dense subset of X} = {B | B is closed nowhere dense subset of Y'}.

LEMMA 2.4. Let ¢ : DP(X) —» DP(Y) be an order isomorphism. Then there
exists a cln-bijection F : X — Y such that f € DP(X) implies p(p(f)) = {F(A) |
A€ p(f)}.

PRrROOF: Take p € X and choose distinct points ¢, r € X — {p}. By Lemma
2.2(IID), o(f,{p.q}), ¢(g,{p,r}) are dual points of DP(Y) say (f,{a,b}) and
(3, {c.d}) respectively. Clearly (f,{a,b}) A (3,{c.d}) = o(fAg,{p.q,7}). If {a,b} N
{cv d} = ¢, then (?a {aa b}) A (g, {c’ d}) = (7/\?’ {a’ b}’ {c’ d}); (fv {1%?})7 (ga {p,T‘}),
(h{q,7}) are three dual points greater than (f Ag,{p,q,7}) and (f,{a,b}), (3, {c.d})
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are two dual points greater than (7 A G,{a,b},{c,d}) which is not possible. There-
fore {a,b} N {c,d} # ¢, in fact it is a singleton, say {a}. Define F : X - Y by
F(p) = a. Note that the choice of a does not depend on the choice of » and ¢. In
general, if f € DP(X) is of the form (f, H) and if ¢(f,H) = f, then it is easy to
verify that f = (7 , K ) for some closed nowhere dense subset K of Y. Further, if
p,q € H, p # q then (g,{p.q}) > (f, H) which implies (7, {a,b}) > (f,K) there-
fore F({p,q}) = {a,b} C K and hence F(H) C K. Similarly we can use ¢~! to
define F : Y - X and obtain F(K) C H. Observe that F o F is identity on X.
In fact, if p € X and ¢ € X — {p}, then o(f,{p,q}) is dual point say (f,{a,b})
and F(p) € {a,b}. Assume F(p) = a. Suppose F(a) # p. Then F(a) = q. Choose
r € X — {g,p} then there exists ¢ € Y such that ¢(g,{p,r}) is a dual point say
(3, {a.c}). Since F(a) € {p,r} and F(a) # p, therefore F(a) = r, a contradic-
tion. Similaraly, F o F is identity on Y. We have also shown in the process that if
o(f,H) = (J,K), then F(H) =K. 0

Recall that a subset A of countably compact T3 space X without isolated points
is closed if and only if whenever B C A and Cly B is nowhere dense in X then
Clx B C A. Using this fact, Lemma 2.4 and the technique of [3, Theorem 1.1], we have
the following.

THEOREM 2.5. Let X and Y be countably compact T3 spaces without isolated
points. Then DP(X) and DP(Y) are order isomorphic if and only if X and Y are
homeomorphic.

NOTE 2.6. Themap f: QU {p} - QU{g} in [3, example 3.9] defined by f(z) =z if
z € Q and f(p) = g, where p and ¢ are remote points of @ such that Stone’s extension
of no self-homeomorphism of @ maps p to ¢, is a cln-bijection between non countably
compact spaces which is not a homeomorphism.

3. DP(X) aND IP(X)

DEFINITION 3.1: For a subset A in X we define

DP(X,A) = {f € DP(X) | |f-1(f(z))|=1, forall z€A}.

NoTE 3.2.

(i) DP(X,A) is a poset with respect to the order defined on DP(X).
(i) I ge DP(X,A), fe DP(X) and g < f, then f € DP(X, A).
THEOREM 3.3. Let A be a subset of a compact space X containing all isolated
points of X. The DP(X, A) is a complete upper semilattice.

PROOF: Follows from Lemma 1.7 and Note 3.2(ii). 0
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THEOREM 3.4. Let A; be any subset of X; containing all isolated points of X;,
i=1,2 and ¢ : DP(X;,A;) = DP(X3, A3) be an order isomorphism. Then there is
a cln-bijection F : X; — A; — X, — As.

ProoF: Follows along the lines of Lemma 2.4. 0

THEOREM 3.5. Let A be a dense subspace of a space X. Then every f in
DP(X, A) is ireducible.

PROOF: Let f € DP(X,A). F be a proper closed subset of X and f(F)=Rf.
Then for every y € (X — F)NA, ‘ s (y))| # 1 which contradicts the choice of f. 0

COROLLARY 3.6. If X is compact and A is dense in X then DP(X, A)

= IP(X, A). In particular, if X is locally compact the DP{aX, X) = IP(aX, X),
where aX is a compactification of X .

PROOF: Set Dc(X,A) = {f € DP(X,A) | f is closed}. Observe that D¢(X, A)
C IP(X) and D¢(X, A) = DP(X, A). 0

NoTe 3.7. In general, if A is not dense then De(X, A) € IP{X) need not be true.
For example take X = [0,1], A =[0,1/2) and define f: X —» X by

2z, OszS%
flz)= 3 1 . Clearly f € Dc(X, A) — IP(X).
-2-—:1:, Es.rsl

We recall the following result [3, Lemma 3.11].

LEMMA 3.8. Let X be a locally compact space. The function v : IP(8X,X)
— Ex(X) defined by ¥(f) = BX | p(f) is an order isomorphism, where BX | p(f) is
the natural compactification of X obtained by collapsing each fibre in p(f) to a point.
We now deduce following result due to Magill {2, Theorem 12].

THEOREM 3.9. Let X and Y be locally compact spaces. Then Ex(X) and
Eg(Y) are order isomorphic if and only if X — X and Y — Y are homeomorphic.

PRrOOF: If Ex(X) and Ex(Y) are ordered isomorphic, then by Corollary 3.6 and
Lemma 3.8, DP(8X,X) and DP(BY,Y) are order isomorphic and hence Theorem 3.4
gives a cln-bijection F : X — X — BY — Y. Since all closed subsets in X — X are
nowhere dense, F is a closed map. Similarly F~! is also a closed map. 0
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