A CHARACTERISATION OF REFLEXIVE MODULES

JOSÉ L. GÓMEZ PARDO AND PEDRO A. GUIL ASENSIO

We characterise reflexive modules over the rings R such that each finitely generated submodule of $E(_RR)$ is torsionless (left QF-3" rings) by means of a suitable linear compactness condition relative to the Lambek torsion theory.

1. INTRODUCTION

There are a number of papers in which the reflexive R-modules with respect to the R-dual functors (or, more generally, to the "dual functors" defined by a bimodule) are characterised. The rings considered are usually generalisations of quasi-Frobenius (QF) rings and the characterisations obtained often involve some kind of linear compactness condition, inspired by the result of Müller [8] that shows that the reflexive modules in a Morita duality are precisely the linearly compact modules.

In recent times, Masaike [7] characterised the reflexive modules over QF-3 rings, and this was later extended in [4] and [2] to QF-3' rings, that is, to the rings R such that both E(RR) and E(RR) are torsionless. There is a rather more general class of rings which retains a good deal of the satisfactory behaviour of QF-3' rings vis-a-vis duality. It is the class of QF-3" rings, namely, the rings R such that every finitely generated submodule of E(RR) and of E(RR) is torsionless. As it was shown in [6], a ring is QF-3" if and only if its left maximal ring of quotients is a QF-3" (two-sided) maximal quotient ring. This shows that QF-3" rings are very abundant: in particular, all integral domains are QF-3". Observe, however, that a QF-3" ring may not be QF-3', even if it is noetherian and its maximal quotient ring is a field.

The duality properties of QF-3'' rings have been studied in [1, 3, 4, 5, 6]. A left *R*-module X is called Lambek-linearly compact [2] if for every inverse system $\{p_i : X \longrightarrow X_i\}_I$ in R - Mod such that the X_i are torsionless and Coker p_i is a Lambek-torsion module, Coker $(\lim_{K \to 0} p_i)$ is also Lambek-torsion. It is then proved in [4, Remark, p.9] and [2, Proposition 2.3] that if R is left QF-3'' and X is Lambek-linearly compact, then X is reflexive if and only if R - dom.dim $X \ge 2$. However, the

Received 27th July, 1995

Work partially supported by the DGICYT (PB93-0515, Spain). The first author was also partially supported by the European Community (Contract CHRX-CT93-0091) and the Xunta de Galicia (XUGA 10502B94), and the second author by the Comunidad Autónoma de Murcia (PIB 94-25).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

Z-module $\mathbb{Z}^{(N)}$ provides an example of a reflexive module over a QF-3'' ring which is not Lambek-linearly compact (see [2, Remark following Corollary 2.6]). The purpose of this note is to show that the reflexive modules over (left) QF-3'' rings can still be characterised by a (more general) linear compactness condition.

Throughout this paper R denotes an associative ring with identity and R – Mod (respectively Mod – R) the category of left (respectively right) R-modules. If X and M are left R-modules, X is said to have M-dominant dimension ≥ 2 (M – dom.dim $X \geq 2$) when there exists an exact sequence $0 \to X \longrightarrow Y \longrightarrow Z$, with Y and Z isomorphic to direct products of copies of X. The ring R is said to be left QF-3" (see [1]) when each finitely generated submodule of E(RR) is torsionless.

We shall denote by \mathcal{T}_M the localising subcategory of R-Mod cogenerated by the injective envelope E(M) of M.

2. Reflexive modules

We shall fix a module $M \in R$ —Mod and write $S = \text{End}(_RM)$. The *M*-dual functors $\text{Hom}_R(-,M)$ and $\text{Hom}_S(-,M)$ will be denoted by ()*, and their composition in either order by ()**. For each $X \in R$ —Mod there is a canonical (evaluation) morphism $\sigma_X : X \longrightarrow X^{**}$. σ_X is a monomorphism precisely when X is *M*-cogenerated, and when σ_X is an isomorphism, X is said to be *M*-reflexive (or just reflexive if we take $M = _RR$).

An inverse system $\{p_i: X \longrightarrow X_i\}_I$ in R-Mod will be called a \mathcal{T}_M -inverse system whenever the X_i are M-cogenerated and Coker $p_i \in \mathcal{T}_M$ for every $i \in I$. The inverse system will be called M-complete if for every $f: X \longrightarrow M$ there exist an index $i \in I$ and a morphism $f_i: X_i \longrightarrow M$ such that $f = f_i \circ p_i$. We shall say that a module X is \mathcal{T}_M -linearly compact when for each \mathcal{T}_M -inverse system $\{p_i: X \longrightarrow X_i\}_I$, Coker $(\lim_{i \to \infty} p_i) \in \mathcal{T}_M$. (This concept was introduced by Hoshino and Takashima in [4].) If this property holds just for all the M-complete \mathcal{T}_M -inverse systems $\{p_i: X \longrightarrow X_i\}_I$, then we say that X is \mathcal{T}_M -weakly linearly compact. In the particular case that $M = {}_R R$, we have that $\mathcal{T}_M = \mathcal{L}$ is the Lambek localising subcategory (see [9]), and thus we say that X is Lambek-weakly linearly compact when the cokernel of the inverse limit of every R-complete Lambek-inverse system $\{p_i: X \longrightarrow X_i\}_I$ in R-Mod is a Lambek-torsion module.

We are now ready to give our main result.

THEOREM 2.1. Let $M \in R$ — Mod be such that every finitely M-generated submodule of E(M) is M-cogenerated. Then the following conditions are equivalent for any left R-module X:

(i) X is M-reflexive.

- (ii) For every M-complete \mathcal{T}_M -inverse system $\{p_i : X \longrightarrow X_i\}_I$, $\varprojlim_I p_i$ is an isomorphism.
- (iii) X is T_M -weakly linearly compact and $M \operatorname{dom} . \operatorname{dim} X \ge 2$.

PROOF: (i) \Rightarrow (ii), (iii) Let $\{p_i : X \longrightarrow X_i\}_I$ be an *M*-complete T_M -inverse system in R-Mod. Since Coker $p_i \in T_M$, we have a direct system of monomorphisms in Mod-S, $\{p_i^* : X_i^* \longrightarrow X^*\}_I$. Now, the *M*-completeness hypothesis implies that, for each $f \in X^*$, there exist $i \in I$ and $f_i \in X_i^*$ such that $f = f_i \circ p_i = p_i^*(f_i)$, so that $\limsup_{i \to i} p_i^*$ is an epimorphism, and hence an isomorphism. Therefore, $\limsup_{i \to i} p_i^{**} = \left(\limsup_{i \to i} p_i^*\right)^*$ is also an isomorphism. On the other hand we have that, for each $i \in I$, $p_i^{**} \circ \sigma_X = \sigma_{X_i} \circ p_i$. On taking inverse limits, we obtain:

$$\lim_{K \to \infty} p_i^{**} \circ \sigma_X = \lim_{K \to \infty} \sigma_{X_i} \circ \lim_{K \to \infty} p_i.$$

Since σ_X is an isomorphism by hypothesis and, as we have just seen, $\lim_{i \to \infty} p_i^{**}$ is also an isomorphism, we see that $\lim_{i \to \infty} \sigma_{X_i} \circ \lim_{i \to \infty} p_i$ is an isomorphism. Since the X_i are Mcogenerated, the σ_{X_i} are monomorphisms and so is $\lim_{i \to \infty} \sigma_{X_i}$. This shows that $\lim_{i \to \infty} p_i$ is an isomorphism and we see that (i) \Rightarrow (ii) holds. In particular, X is \mathcal{T}_M -weakly linearly compact. It is also clear that $M - \text{dom.dim } X \ge 2$, for if $\mathbb{R}^{(J)} \longrightarrow \mathbb{R}^{(I)} \longrightarrow X^* \to 0$ is a free presentation of X^* in Mod - S, then applying the functor ()^{*} and bearing in mind that X is M-reflexive, we obtain an exact sequence $0 \to X \longrightarrow M^I \longrightarrow M^J$ in $\mathbb{R} - \text{Mod}$.

(iii) \Rightarrow (ii) Let $\{p_i : X \longrightarrow X_i\}_I$ be an *M*-complete \mathcal{T}_M -inverse system in R-Mod. We see as before that $\lim_{i \to \infty} p_i^{**} = \left(\lim_{i \to \infty} p_i^*\right)^*$ is an isomorphism and hence that, up to an isomorphism, $\sigma_X = \lim_{i \to \infty} \sigma_{X_i} \circ \lim_{i \to \infty} p_i$. Since X is *M*-cogenerated, σ_X is a monomorphism, and so also is $\lim_{i \to \infty} p_i$. Moreover, since $M - \operatorname{dom.dim} X \ge 2$, we see using, for example, [2, Lemma 2.2] that Coker σ_X is *M*-cogenerated. Now $\lim_{i \to \infty} \sigma_{X_i}$ is a monomorphism and so Coker $\left(\lim_{i \to \infty} p_i\right)$ embeds in Coker σ_X . By hypothesis, Coker $\left(\lim_{i \to \infty} p_i\right) \in \mathcal{T}_M$ and thus we obtain that Coker $\left(\lim_{i \to \infty} p_i\right) = 0$ and hence that $\lim_{i \to \infty} p_i$ is an isomorphism.

(ii) \Rightarrow (i) Let $\{u_i : Y_i \longrightarrow X^*\}_I$ be the direct system of all the finitely generated submodules of X^* in Mod -S, with u_i the canonical inclusions. By [4, Lemma 2.1], whose proof can be easily adapted to the more general case we are considering here, each $u_i^* \circ \sigma_X$ has \mathcal{T}_M -torsion cokernel and so we have a \mathcal{T}_M -inverse system in R – Mod $\{u_i^* \circ \sigma_X : X \longrightarrow Y_i^*\}_I$. Let us show that this inverse system is also M-complete. Indeed, if $f \in X^* = \lim_{i \to \infty} Y_i$, then there exists an $i \in I$ such that $f = u_i(f_i)$ for some $f_i \in Y_i \subseteq X^*$. Since, by adjunction, $\sigma_X^* \circ \sigma_X \cdot = 1_X \cdot$, we see that $f = (\sigma_X^* \circ \sigma_X \cdot)(f) =$ $(\sigma_X^* \circ \sigma_X \circ u_i)(f_i) = (\sigma_X^* \circ u_i^{**} \circ \sigma_{Y_i})(f_i) = (u_i^* \circ \sigma_X)^* (\sigma_{Y_i}(f_i)) = \sigma_{Y_i}(f_i) \circ u_i^* \circ \sigma_X.$ Thus our hypothesis implies that $(\lim_{\longleftarrow} u_i^*) \circ \sigma_X$ is an isomorphism. Since $\lim_{\longleftarrow} u_i^* = (\lim_{\longrightarrow} u_i)^*$ is also an isomorphism, we see that σ_X is an isomorphism and X is M-reflexive.

If we specialise the preceding theorem to the case in which $M = {}_{R}R$ is a left QF-3'' ring, we obtain the following characterisation of reflexive modules.

COROLLARY 2.2. Let R be a left QF-3'' ring and X a left R-module. Then the following conditions are equivalent:

- (i) X is reflexive.
- (ii) For every R-complete Lambek-inverse system $\{p_i : X \longrightarrow X_i\}_I$, $\lim_{i \to \infty} p_i$ is an isomorphism.
- (iii) X is Lambek-weakly linearly compact and $R \text{dom} \cdot \dim X \ge 2$.

Observe that, as the Z-module $\mathbb{Z}^{(N)}$ and its dual, the Specker group \mathbb{Z}^N show, a Lambek-weakly linearly compact module may contain an infinite direct sum of copies of a nonzero module. The same example shows that, despite the fact that the maximal quotient ring of a QF-3" ring is also QF-3", the rational completion of a reflexive module over a QF-3" ring may not be reflexive as a module over the maximal quotient ring.

References

- J.L. Gómez Pardo and P.A. Guil Asensio, 'Morita dualities associated with the *R*-dual functors', J. Pure Appl. Algebra 93 (1994), 179-194.
- J.L. Gómez Pardo and P.A. Guil Asensio, 'Reflexive modules over QF-3' rings', Tsukuba J. Math 19 (1995), 387-395.
- [3] M. Hoshino, 'On Lambek torsion theories', Osaka J. Math. 29 (1992), 447-453.
- [4] M. Hoshino and S. Takashima, 'On Lambek torsion theories, II', Osaka J. Math. 31 (1994), 729-746.
- [5] K. Masaike, 'Semiprimary QF-3 rings', Comm. Algebra 11 (1983), 377-389.
- [6] K. Masaike, 'Duality for quotient modules and a characterization of reflexive modules', J. Pure Appl. Algebra 28 (1983), 265-277.
- [7] K. Masaike, 'Reflexive modules over QF-3 rings', Canad. Math. Bull. 35 (1992), 247-251.
- [8] B.J. Müller, 'Linear compactness and Morita duality', J. Algebra 16 (1970), 60-66.
- [9] B. Stenström, Rings of quotients (Springer-Verlag, Berlin, Heidelberg, New York, 1975).

Departamento de Alxebra Universidade de Santiago 15771 Santiago de Compostela Spain Departamento de Matemáticas Universidad de Murcia 30071 Murcia Spain